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Abstract: The primary objective of this study is to detect biomarkers and develop models that enable
the identification of clinically significant prostate cancer and to understand the biologic implications
of the genes involved. Peripheral blood samples (1018 patients) were split chronologically into inde-
pendent training (n = 713) and validation (n = 305) sets. Whole transcriptome RNA sequencing was
performed on isolated phagocytic CD14+ and non-phagocytic CD2+ cells and their gene expression
levels were used to develop predictive models that correlate to adverse pathologic features. The
immune-transcriptomic model with the highest performance for predicting adverse pathology, based
on a subtraction of the log-transformed expression signals of the two cell types, displayed an area
under the curve (AUC) of the receiver operating characteristic of 0.70. The addition of biomarkers in
combination with traditional clinical risk factors (age, serum prostate-specific antigen (PSA), PSA
density, race, digital rectal examination (DRE), and family history) enhanced the AUC to 0.91 and 0.83
for the training and validation sets, respectively. The markers identified by this approach uncovered
specific pathway associations relevant to (prostate) cancer biology. Increased phagocytic activity in
conjunction with cancer-associated (mis-)regulation is also represented by these markers. Differential
gene expression of circulating immune cells gives insight into the cellular immune response to early
tumor development and immune surveillance.

Keywords: cancer; immune; cells; transcriptomics; phagocytosis; CD14+; CD2+; gradient; boosting

1. Introduction

Immune cell gene expression changes in response to different conditions or stimuli
such as infection, ageing, and diseases, including cancer, have revealed relevant new
pathways and co-expression networks [1–4]. Efficient next-generation RNA sequencing
platforms have facilitated the ability to perform whole genome expression profiling of
individual populations of immune cells [5–8] as a novel means of searching for patterns
of gene expression to aid in the identification of meaningful signals of various disease
states. For example, whole-blood RNA expression has been studied in castration resistant
prostate cancer (PCa) by various methods with good results predicting survival as well
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as suggesting dysregulation of the immune system [9–11]. Recent interest in expression
profiles of particular leukocyte subsets suggests that diagnostic information for many
disorders may be contained therein [12–21]. Mononuclear phagocytic cells including the
various CD14+ subsets have been studied extensively in various disease states including
some solid tumors, i.e., lung and pancreas [22–24]. This study aims to determine if the
differential transcriptomic profiles of CD14+ and CD2+ cell populations are associated
with features of adverse pathology in early stage, clinically localized prostate cancer.

Prostate cancer is a relatively slow growing, heterogenous, oligoclonal epithelial
malignancy that commonly affects the prostate of men as a result of germline genetic
predispositions [25], accumulation of mutations of oncogenes and tumor suppression
genes [26,27] and aberrant epigenetic events, as well as immune-evasion [28], and cancer
immunoediting [29]. Currently, it is hypothesized that cancer immunoediting occurs in
three phases [30]. First, during the elimination phase, tumor cells are killed by natural
killer (NK), and CD4+ and CD8+ T-lymphocytes [31]. During the second, equilibrium
phase tumor cells that have not been eliminated and that do not elicit an immunogenic
response are perpetuated, while (epi)genetic defects progressively accumulate and clonal
selection occurs [32]. Finally, the escape phase sets in, during which the immune system is
unable to destroy the tumor cells which can grow and expand in an uncontrolled manner,
resulting in the appearance of clinically detectable tumors. During these three phases
the immune cells are hypothesized to alter their (epi)genomic profile in response to the
increasing stress on the immune system that occurs while trying to maintain control of a
developing tumor [32]. These changes can be studied in isolated, purified immune cell
subpopulations, or by single cell sequencing.

Phagocytosis is one of the main mechanisms of innate immune defense. Macrophages
initiate phagocytosis by various receptors (mannose receptors, scavenger receptors, Fc
γ receptors, and complement receptors 1, 3, and 4). Macrophages are long-lived and
can continue phagocytosis by forming new lysosomes [33,34]. In this paper, we use
whole transcriptome sequencing analysis to study how phagocytosis of apoptotic tumor
cells affects the transcriptome of macrophages. From each patient, the transcriptome of
the CD2+ lymphocytic cells is also sequenced, both as a source of signals of the body’s
lymphocytic response to the presence of a developing tumor, but also as a patient-specific
white blood cell control for the phagocytic macrophages that potentially possess cancer-
specific signals when cleaning up apoptotic tumor cells. To this end, the RNA expression of
the CD14+ phagocytic cells in the peripheral blood is normalized for non-phagocytic CD2+
cell expression capturing both aspects of the immune response at the same time. Therefore,
it is hypothesized that this CD2-normalized CD14 signal could serve as a valuable metric
in predicting features for the presence of aggressive, clinically significant cancer. Relevant
gene sets that are differentially expressed between these two cell types of the same patient
are thus used to develop models predicting the presence of adverse pathologic features.
Pathway and ontology analyses are then used to provide biological insights into the
cooperative nature of the two cell types with respect to transcriptomic activation in response
to tumor presence. This approach might also be valuable to investigate therapeutic response
and minimal residual disease [35].

Prostate cancer was selected as a model system to study this hypothesis due to the
high prevalence in the population of early stage, clinically localized tumors that would be
available for study. Early-stage prostate cancer can be divided into indolent tumors that
are watched by active surveillance versus tumors demonstrating aggressive pathologic
features that require early intervention to prevent metastasis and mortality [36,37]. This
transition from indolent to aggressive tumor corresponds to the point of escape from the
immune system where the transcriptomic immune response signal is likely to be maximal.

2. Materials and Methods

Patient population: Blood samples were collected from 1018 men who were visiting
their urologist and were suspected of having prostate cancer or were known to have
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untreated prostate cancer and signed an informed consent to this IRB approved study
(WIRB # 20130028).

Inclusion criteria: Men were eligible for enrollment in the study if they (i) were
determined by their physician to have a risk profile that warranted either a prostate biopsy,
(ii) had a biopsy > 90 days prior to but <1 year of study entry and had not undergone
definitive therapy, (iii) were on active surveillance after the diagnosis of prostate cancer
such that a biopsy would be performed within the next year but at least 30 days after the
blood draw, or in combination.

Exclusion criteria: Men were not eligible for enrollment in this study if they (i) were
less than 40 years of age as prostate cancer in younger men has different behavior and
characteristics, (ii) had any known concurrent cancer except non-melanoma skin cancer
or any history of cancer in the last 5 years, or (iii) had any form of androgen deprivation
therapy (ADT) with the exception of 5-alpha reductase inhibitors.

Clinical and pathological data: Clinical, laboratory, and pathology data of each patient
was abstracted from the electronic medical record and entered into an electronic data
capture (EDC) system by the research teams at the various institutions under the IRB ap-
proved protocol (Comprehensive Urology (CU), Metropolitan Detroit, Michigan; Michigan
Institute of Urology (MIU) Metropolitan Detroit, Michigan; and Urology Austin, Austin,
Texas). The current gold standard of care (SOC) for prostate cancer detection remains
the 12-part transrectal, ultrasound-guided (TRUS) biopsy which was used at each of the
institutions during the time period of the study. Standard 12 core systematic biopsies were
performed with allowance for additional cores at the urologist’s discretion. Pathologists at
all three institutions agreed on the main standard data points to be included in the needle
biopsy pathology reports. The current International Society of Urological Pathology (ISUP)
modified Gleason grading system was used [38] and the data from the highest-grade group
of a single core was recorded. The maximal cross-sectional surface area of tumor on a
single core and the number of positive cores were recorded in the EDC. A portion of the
cases had pathology review to ensure grading uniformity between sites. For this study, the
presence of adverse pathologic features was defined as any (i) Gleason grade group (GG) 4
or 5, (ii) any GG 3 with greater than 3 cores positive or greater than 30% of a core involved,
or (iii) GG 2 with greater than 6 cores positive and greater than 60% of a core positive.
For patients who had undergone radical prostatectomy, adverse pathology was defined as
either GG 4 or GG 5 of any size, GG 3 with >30% of prostate involved, GG 3 with >10 mm
tumor size, GG 2 with >60% of prostate involved or GG 2 with >20 mm tumor size. All
available data was considered, and the most aggressive pathology was used to define cases
as having adverse pathology with patients being followed up to 5 years. The demographic
information of the study population is presented in the results section; Supplementary
Figure S1 contains details of data integrity, missing values, and imputation.

Sample collection and transport: Blood samples were obtained from the three large
urology practices. All enrolled patients signed written informed consent forms per ethical
guidelines of the Institutional Review Board. Blood samples were collected in four K2EDTA
BD VacutainerTM tubes (Cat. No. 366643, BD Biosciences, San Jose, CA, USA) and
transferred to the processing locations on ice at 4 ◦C and processed 4 h after draw time.

CD2 and CD14 cell separation: Blood was pooled from 3 blood tubes at 4 ◦C and split
into 1/3 and 2/3 aliquots for CD2 and CD14 cell type isolations, respectively. Specially
formulated positive selection magnetic-activated cell sorting (MACS) microbeads using
anti-CD2 antibodies and anti-CD14 antibodies (Cat. No. 130-101-329 and 130-101-328,
respectively, Miltenyi Biotech, Bergisch Gladbach, Germany) were added to the aliquots
of blood at a volume of 25 µL CD2 beads per 1 mL blood and 50 µL CD14 beads per 1
mL blood. Beads were incubated with the blood samples for 10 min at 4 ◦C. The blood-
bead suspensions were then processed at 4 ◦C using a positive selection template on the
autoMACS Pro Separator (Miltenyi Biotech) to isolate the CD2 and CD14 cells. Small
aliquots of the isolated CD2 and CD14 cells were removed for flow cytometry analysis
while the remaining cells were pelleted by a 10-min centrifugation at 300× g at 4 ◦C.
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Following centrifugation, the supernatant was removed and 700 µL of room temperature
QIAzol Lysis Reagent (Cat. No. 79306, Qiagen, Hilden, Germany) was added to each
cell pellet and the cell suspension pipetted up and down for 2 min to lyse the cells. The
suspension was then vortexed for 1 min to further homogenize the cell lysates and frozen
at −80 ◦C.

Flow cytometry: Following their isolation, aliquots of the two white blood cell pop-
ulations were stained with (1) a positive dye mix containing human CD2-FITC, human
CD36-APC-Vio770, and human MC CD14 Monocyte Cocktail for staining CD2 and CD14
cells, respectively, and (2) a negative dye mix consisting of human CD45-VioBlue, mouse
IgG2b-FITC, mouse IgG2a-PE, mouse IgM-APC, and mouse IgG2a-APC-Vio770 (Miltenyi
Biotech). Only samples with purity of ≥90% for CD2 and CD14 were used in our study.

RNA extraction: RNA extraction was accomplished using the miRNeasy Mini Kit
(Cat. No. 217004, Qiagen). In essence, the frozen CD2 and CD14 cell samples (−80 ◦C)
were thawed in a 37 ◦C dry bath (~2.5 min) and incubated at room temperature for 5 min
prior to the addition of 140 µL of chloroform and shaken vigorously for 15 s. Following
a 3 min room temperature incubation, the samples were centrifuged at 12,000× g (4 ◦C,
15 min). The upper clear aqueous phase (~350 µL) was transferred to a 2 mL collection tube
that was then placed inside the QIAcube (Cat. No. 9001292, Qiagen), and poly(A) RNA
was extracted using the miRNeasy Mini Kit per manufacturer’s protocol. The quality and
quantity of each RNA sample was determined on a Bioanalyzer 2100 (Agilent Technologies,
Santa Clara, CA, USA). Finally, the RNA samples were frozen at −80 ◦C and shipped to
the Yale Center for Genome Analysis (YCGA) (West Haven, CT) for RNA sequencing. Only
samples with high RIN (RNA Integrity Number) ≥ 9 were sequenced.

RNA sequencing library preparation: Samples were sent to the Yale Center for Genome
Analysis (YCGA; West Haven, CT, USA) for whole transcriptome RNA sequencing. mRNA
was purified from approximately 200 ng of total RNA with oligo-dT beads and sheared
by incubation at 94 ◦C. Following first-strand synthesis with random primers, second
strand synthesis was performed with dUTP for generating strand-specific sequencing
libraries. The cDNA library was then end-repaired, A-tailed, the adapters were ligated, and
second-strand digestion was performed by uracil-DNA-glycosylase. Indexed libraries that
met appropriate cut-offs for both were then quantified by qRT-PCR using a commercially
available kit (KAPA Biosystems) and insert size distribution determined with the LabChip
GX or Agilent Bioanalyzer. Samples with a yield of ≥0.5 ng/µL were sequenced.

Flow cell preparation and sequencing: Sample concentrations were normalized to 10
nM and loaded onto Illumina Rapid or high-output flow cells at a concentration that yields
130–250 million passing filter clusters per lane. Samples were sequenced using 75 bp paired-
end sequencing on an Illumina HiSeq 2500 according to Illumina’s protocols. The 6 bp index
is read during an additional sequencing read that automatically follows the completion
of read 1. Data generated during sequencing runs were simultaneously transferred to the
YCGA high-performance computing cluster. A positive control (prepared bacteriophage
Phi X library) provided by Illumina is spiked into every lane at a concentration of 0.3% to
monitor sequencing quality in real time.

Sequencing data processing: Signal intensities were converted to individual base calls
during using the system’s Real Time Analysis (RTA) software. Sample demultiplexing
was performed using Illumina’s CASAVA 1.8.2 software suite. Only data with sample
error rate < 2% and a distribution of reads per sample in a lane that is within reasonable
tolerance was used. Demultiplexed raw (FASTQ) RNA sequencing data was processed
using Trimmomatic [39] for adaptor trimming, Bowtie2 [40] for alignment to the UCSC
(University of California, Santa Cruz) hg19 transcriptome, and Express [41] for quantifica-
tion. Processed reads yielded counts for 23,368 transcripts (gene symbols), corresponding
to 29.8 ± 7.5 million and 33.9 ± 7.5 million mapped reads for CD2 and CD14 samples,
respectively. Sample normalization to account for RNA concentration differences was
performed using trimmed mean M-value (TMM) normalization [42]. The gene expression
counts from each gene were determined for both CD2 and CD14 enriched cells separately.
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For each gene the ratio is determined as log(CD14/CD2), which is mathematically identical
to log(CD14)−log(CD2).

Statistical analyses: Non-normal continuous clinical covariates, namely, total prostate
specific antigen (PSA), prostate volume, and PSA density (PSAD) were log-transformed
before further analyses. Models were built using a two-step procedure consisting of unsu-
pervised variance-based transcript down-selection and classification by gradient boosting
tree-based model (LightGBM) [43]. These models are then used to make predictions on the
validation set.

Models were developed on the discovery set for each cell type alone (CD2 and CD14),
and for the ratio (CD14/CD2). These are considered the genomic expression only models.
The performance of various clinical data (age, race, DRE, family history, PSA and PSA
density (PSAD which is PSA/prostate volume)) was evaluated and then combined with
the ratio of CD14/CD2 to investigate possible enhancements to model performance.

Model performance was evaluated by determining the area under the curve (AUC)
of the receiver operating characteristic (ROC) curve [44]. Differences in performance are
assessed using the DeLong test [45]. All analyses were performed in R, including the gene
ontology and pathway associations using the enrichR package [46–48].

3. Results

Clinical and demographic characteristics of the independent training and validation
sets are presented in Table 1. The entire cohort was collected in chronological order with
the first 713 men serving as the discovery and training set, and last 315 men enrolled in the
study being part of the independent validation set. While some small differences between
patients in the training and validation sets were observed for age, race, and DRE, these
do not have relevant clinical implications. Patients in the training set were slightly older,
somewhat more likely to be Caucasian, and had fewer abnormal DREs. Differences in
recruitment rates from the three different sites over the duration of the study most likely
explain these minor differences observed in the clinicodemographic characteristics. No
significant differences were observed for family history of prostate cancer, prostate volume,
total PSA, PSAD, number of cancer-positive cores, maximum % of tumor involvement
in a core, GG, or the adverse pathology binary endpoint. Missing data include 9.6% of
prostate volume and 1.2% of PSA values leading to an overall 10.8% of cases where PSA
density could not be calculated (Supplementary Figure S1). The worst pathology at any
time during follow-up was used to define the patients’ status, in particular for the binary,
adverse pathology endpoint, with a median follow-up of 3.8 years (interquartile range:
1.2–4.7 years) for the patients enrolled in this study.

Initial filtering of the transcriptomic data resulted in a reduced set of 18,703 transcripts
with observed expression (nonzero counts) in at least 15% of the samples in either CD2
or CD14. While log-transformed CD14 and CD2 counts were analyzed separately, the
CD2-normalized CD14 signal was also used as model input. The normalization consists
of subtracting the log-transformed CD2 counts from the log-transformed CD14 counts
per patient, on a gene-by-gene basis. This is also referred to as the log(CD14/CD2) ratio.
Exploratory principal component analysis on log-transformed ratios of CD2 and CD14 data,
log(CD14/CD2), revealed no significant batch effects between the training and validation
datasets (Supplementary Figure S4).

The clinico-genomic model is built on a two-step procedure consisting of transcript
down-selection and classification. For the former, we apply (unsupervised) variance-
based transcript selection using the training set (n = 713). This down-selection stage is
necessary to prevent the model from overfitting because the number of transcripts (17,138)
is much larger than the number of subjects (n = 713), which is a well-recognized issue
in regularized models when the effect sizes of individual transcripts are small. In the
second step, we consider age, log-transformed total PSA, log-transformed PSAD, and the
transcripts selected by variance as inputs to the model. To optimize the hyperparameters,
namely, the number of transcripts selected by variance and the regularization parameter
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of the gradient boosting tree-based model used as classifier (LightGBM) [43] model, we
use 10-fold cross-validation on the training set. Parameters of LightGBM other than the
regularization strength were set to their default values. LightGBM is a gradient boosting
machine (GBM) algorithm that combines (ensembles) the predictions of a collection of
decision tress, each of which, considers a subset of model inputs, thus often resulting in
performance improvements relative to standard approaches such as logistic regression. We
verified that small variations of these hyperparameters did not substantially change the
performance of the model. The final model is built on the entire training set restricted to the
selected transcripts and the optimal regularization parameter found by cross-validation.
This model is then used to make predictions on the validation set.

Table 1. Cohort demographics for discovery and validation data sets. p-values are for significance testing for differences
between the discovery and validation sets. Missing represents the percentage of cases where data was missing or unavailable.

Level Validation Discovery p Missing

n 305 713
age (mean (SD)) 62.69 (7.60) 64.09 (7.89) 0.009 0

race (%) AA 38 (12.5) 69 (9.7) 0.006 0
Caucasian 227 (74.4) 593 (83.2)

Other 25 (8.2) 29 (4.1)
Unknown 15 (4.9) 22 (3.1)

family history (%) First 59 (19.3) 132 (18.5) 0.764 0
None 204 (66.9) 494 (69.3)

Positive 7 (2.3) 12 (1.7)
Second 16 (5.2) 27 (3.8)

Unknown 19 (6.2) 48 (6.7)
DRE (%) Abnormal/Positive 74 (24.3) 114 (16.0) 0.002 0

Normal/Negative
(T1c) 203 (66.6) 550 (77.1)

Unknown 28 (9.2) 49 (6.9)
volume (median (IQR)) 40.20 (29.60, 54.08) 40.85 (30.78, 57.85) 0.264 9.6

psa_total (median (IQR)) 4.97 (3.80, 7.10) 5.12 (3.80, 7.30) 0.3 1.2
psa_density (median (IQR)) 0.12 (0.08, 0.19) 0.12 (0.07, 0.19) 0.929 10.8

cores_positive (median (IQR)) 1.00 (0.00, 4.00) 1.00 (0.00, 4.00) 0.973 0
cores_percent (median (IQR)) 4.00 (0.00, 30.00) 5.00 (0.00, 35.00) 0.862 0

site (%) Unknown 0 (0.0) 55 (7.7) <0.001 0
CU 147 (48.2) 577 (80.9)

MIU 62 (20.3) 46 (6.5)
Urology Austin 96 (31.5) 35 (4.9)

Gleason Group (%) 0 145 (47.5) 337 (47.3) 0.963 0
1 32 (10.5) 78 (10.9)
2 66 (21.6) 166 (23.3)
3 38 (12.5) 77 (10.8)
4 13 ( 4.3) 27 ( 3.8)
5 11 (3.6) 28 (3.9)

Adverse Pathology (%) 0 245 (80.9) 577 (80.9) 1 0.2
1 58 (19.1) 136 (19.1)

Using this two-step procedure, transcriptomic models were built based on either the
individual cell type counts for CD2 and CD14, but also using the CD14/CD2 ratio (Table 2).
The genes and weighting factors of these models are shown in Supplementary Figure S2.
The data demonstrates that the best performing immunotranscriptomic model is the one
based on the CD14/CD2 ratio, emphasizing both the tumor phagocytosis mechanism and
the anti-tumor immune response, yielded an AUC of 0.70. This compares favorably to the
CD14 and CD2 only models, which resulted in AUCs of 0.59 (p = 0.033) and 0.63 (p = 0.079),
respectively, indicating that the ratio has significantly increased performance in predicting
adverse pathology over either cell type alone (Figure 1). Note that since the ratio (i) is taken
on a log scale it is considered as a form of subtraction of underlying background within the
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immune system (reducing noise), and (ii) outperformed both individual CD14 and CD2
modalities, it was used as the basic immunotranscriptomic component for more advanced
modeling exercises.

Table 2. ROC analysis results for various models showing discovery and validation AUC values with confidence intervals.
Results are shown for discovery set (disc), and independent validation set (val). Colors indicate clinical variables used in
models. Only validation AUC results by age tertial are shown—significance testing p-values are in Supplementary Figure S3.
PSAT = total PSA and PSAD = PSA density. Clinical models are color coded with and without genomic component for ease
of identifying the boost in performance achieved by adding genomics (CD14/CD2). Yellow (PSAT, Age), Blue (PSAT, Age,
Race, DRE, FamH), and Orange (PSAD, Age).

Model AUC (disc) AUC (val) AUC (val)
Age (42,60) Age (60,66) Age (66,87)

Age 0.60 (0.54, 0.65) 0.56 (0.47, 0.65)
PSAT 0.72 (0.67, 0.77) 0.67 (0.59, 0.75) 0.63 (0.48, 0.77) 0.74 (0.59, 0.89) 0.66 (0.52, 0.82)
Vol 0.60 (0.55, 0.66) 0.72 (0.65, 0.80) 0.75 (0.65, 0.85) 0.82 (0.67, 0.96) 0.62 (0.48, 0.76)

PSAD 0.77 (0.72, 0.81) 0.78 (0.71, 0.85) 0.76 (0.64, 0.89) 0.88 (0.80, 0.97) 0.74 (0.61, 0.87)
Clinical (PSAT, Age) 0.72 (0.67, 0.77) 0.67 (0.59, 0.75) 0.60 (0.46, 0.75) 0.73 (0.58, 0.88) 0.67 (0.54, 0.80)

Clinical (PSAT, Age, Race, DRE, FamH) 0.73 (0.69, 0.78) 0.73 (0.65, 0.80) 0.70 (0.56, 0.83) 0.72 (0.56, 0.88) 0.72 (0.61, 0.83)
Clinical (PSAD, Age) 0.78 (0.74, 0.82) 0.78 (0.71, 0.85) 0.73 (0.61, 0.86) 0.89 (0.80, 0.97) 0.76 (0.64, 0.88)

CD2 0.80 (0.76, 0.84) 0.63 (0.55, 0.71) 0.67 (0.53, 0.80) 0.53 (0.35, 0.71) 0.61 (0.49, 0.74)
CD14 0.82 (0.77, 0.86) 0.59 (0.51, 0.67) 0.60 (0.46, 0.74) 0.54 (0.36, 0.73) 0.63 (0.51, 0.75)

CD14/CD2 0.72 (0.67, 0.77) 0.70 (0.62, 0.77) 0.76 (0.65, 0.88) 0.63 (0.47, 0.79) 0.68 (0.55, 0.81)
CD14/CD2 + Clinical (PSAT, Age) 0.99 (0.99, 1.00) 0.75 (0.67, 0.82) 0.73 (0.60, 0.86) 0.72 (0.57, 0.88) 0.76 (0.64, 0.88)

CD14/CD2 + Clinical (PSAT, Age, Race,
DRE, FamH) 0.97 (0.95, 0.99) 0.76 (0.69, 0.83) 0.78 (0.66, 0.90) 0.72 (0.55, 0.89) 0.75 (0.63, 0.86)

CD14/CD2 + Clinical (PSAD, Age) 0.91 (0.88, 0.93) 0.83 (0.77, 0.89) 0.79 (0.67, 0.92) 0.91 (0.84, 0.97) 0.80 (0.70, 0.90)
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Figure 1. ROC curves for genomics only CD2, CD14, and CD14/CD2 ratio models. AUC values and
confidence intervals are shown in the white area of Table 2.

The same LightGBM optimization procedure was also applied to combine immuno-
transcriptomics with readily available clinical and demographic risk factors. This resulted
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in increased performance in predicting adverse pathology compared to immunotranscrip-
tomics alone. An immunotranscriptomics model combined with the simplest clinical risk
factors, i.e., PSA and age, significantly (p = 0.02) outperformed these same clinical risk
factors alone. While a measurement of prostate volume is not always readily available, it
is known to be a significant risk factor in detecting adverse pathology and a good aid in
the management of prostate cancer patients. When available, prostate volume is typically
used to normalize PSA levels, resulting in a metric called PSAD (PSA/prostate volume). A
model combining immunotranscriptomics with PSAD and age reached an AUC of 0.83 in
the independent validation set (Figure 2), a significant improvement compared to a model
based on age and PSA density alone, which yielded an AUC of 0.78 (p = 0.01).
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The biological relevance of the genes involved in the best performing model, i.e.,
immune-transcriptomics, age, and PSAD, was further evaluated through pathway and
ontology analysis. This model included a set of 120 genes (Supplementary Table S1).
As expected, immune response and immune system related pathways are significantly
enriched (false discovery rate < 0.1) within this set of genes, as evidenced in the hallmarks
MSigDB database (Figure 3A), KEGG database (Figure 3B), and gene ontology biological
processes (Figure 3C). Interestingly, several cancer-related pathways also appear to be
significantly over-represented by this geneset, most notably, hedgehog signaling (A),
epithelial mesenchymal transition (A), PDL1 and PD1 checkpoint (B), and transcriptional
misregulation in cancer (B). Other pathways can be linked to either the general function,
response, or activation of phagocytic immune cells, or the presence of cancer cells, e.g.,
TNF alpha and NF-kappa B signaling, acute myeloid leukemia, and apoptosis. However,
due to the nature of the gene selection procedure with the gradient boosting method,
selecting for independent contributors, significant enrichment of certain pathways was
not necessarily expected. Indeed, the set of 120 genes clearly link to phagocytic activity
and cancer-related genes in KEGG. The phagocytic component is clearly represented by Fc
gamma R-mediated phagocytosis and phagosome. In addition to the general pathways
in cancer, choline metabolism in cancer, colorectal/breast/gastric cancer, microRNAs in
cancer, proteoglycans in cancer appear in the list of KEGG-terms associated with the set of
120 genes included in the final model (Figure 3).



Cells 2021, 10, 2567 9 of 13
Cells 2021, 10, x 10 of 14 
 

 
 

Figure 3. Top-ranked, enriched pathways and ontologies represented by the 120 genes in the best
performing model according to MSigDB hallmark (A), KEGG (B), and gene ontology biological
processes (C). Only terms that had a false discovery rate < 0.1 (or <0.01 for gene ontology (C))
are shown.
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To further explore the effect of patient age on the model performance, the analysis
was also done by stratifying into age groups. This did not show statistically significant
differences for most age group dependent models. The model including PSAD and age
together with immunotranscriptomics showed a trend toward better performance in the
60–66-year age range with an AUC of 0.91 in the independent validation set, compared to
the 42–60-year age range with an AUC of 0.79 (p = 0.06), and a significant difference in the
66–87 age range with an AUC of 0.80 (p = 0.04). Similar analysis was performed for race
and DRE with results presented in Supplementary Table S2 which did not show significant
differences; however, a trend was observed for race but the sample size was too small to
draw definite conclusions.

4. Discussion

The immune-transcriptomic profiling of purified populations of CD14+ monocytes
and CD2+ lymphocytes by next-generation RNA sequencing provides a unique look into
the pathways that are up or down regulated in patients with aggressive prostate cancer
as defined by adverse pathologic features compared to biopsy negative controls and men
with indolent pathologic disease. Since historic data sets with purified populations of
immune cells are not available, adverse pathologic features were used a surrogate endpoint.
These findings will need to be validated on clinically significant outcomes data once this
data set matures and sufficient number of definitive events have occurred (metastasis and
mortality). The specific genes in these pathways can be used in models predicting adverse
prostate cancer pathology. Understanding the underlying biological phenomena and the
cell types involved in this immunologic response to cancer provides insights, not only into
the biologic pathways involved in the immune response to cancer, but also into potential
novel biomarker strategies to manage cancer. It also demonstrates the systemic nature of
the response that can be accessed via examining particular subpopulations of circulating
immune cells.

Two distinct immunologic responses to early-stage prostate cancer are focused upon,
the phagocytic and the immune response mechanisms, each harboring specific involve-
ment in their response to an ongoing oncogenic process. Exploring this response as a
ratio between these two cell type populations provides more information than exploring
an individual cell type alone. This is likely due to the normalization effect (noise reduc-
tion) that using the ratio has on setting the baseline overall activity state of the immune
system and showing the upregulation of multiple pathways including phagocytic and
cancer pathways.

Future insights can be gained by looking at single cell RNA sequencing data to better
understand the subsets of cells involved and how the proportions of these cell types shift
with the development of cancer that escapes the immune surveillance system. This may
allow for the deconvolution of bulk sequencing data on populations of circulating immune
cells that are sequenced.

The gene sets and associated pathways uncovered by examining differential gene ex-
pression of circulating immune cells in the setting of early-stage prostate cancer highlights
two different response mechanisms to early tumor development: (a) the tumor phagocyto-
sis and (b) immune response mechanisms. Eventually, the genes associated with clinically
significant cancer may also lead to identification of novel immune modulation therapeutic
targets as well as markers for the development of prognostic and diagnostic models.

In conclusion, the novel clinico-immuno-genomic blood cell based approach utilizing
gradient boosting described here demonstrates that (i) concurrent CD14+/CD2+ sequenc-
ing from the same patient is required to (a) filter out genomic signatures not associated
with the disease, (b) achieve strong concordance with tissue biopsy testing results, and (c)
substantially enhance the AUCs obtained from various current PCa clinical risk factors only,
and (ii) the differential transcriptomic profiles of CD14+ and CD2+ cell populations are
associated with and can predict adverse pathologic features of clinically localized prostate
cancer. The performance of this strategy appears maximal in the peak years of prostate
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cancer detection. These results confirm the power of this novel technology, and further
development should eventually aid in the management of PCa patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10102567/s1, Figure S1: Data Integrity, Figure S2: Signatures–expression only, Figure S3:
Significance tests, Figure S4: UMAP for XPR+age+PSA. Table S1: 120 genes from best performing
model. Table S2 combined clinical and genomic model for race and DRE subgroups.
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