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Abstract

In this study, we have investigated the cheese starter culture as a microbial community

through a question: can the metabolic behaviour of a co‐culture be explained by the

characterized individual organism that constituted the co‐culture? To address this

question, the dairy‐origin lactic acid bacteria Lactococcus lactis subsp. cremoris, Lacto-

coccus lactis subsp. lactis, Streptococcus thermophilus and Leuconostoc mesenteroides,

commonly used in cheese starter cultures, were grown in pure and four different co‐
cultures. We used a dynamic metabolic modelling approach based on the integration of

the genome‐scale metabolic networks of the involved organisms to simulate the co‐
cultures. The strain‐specific kinetic parameters of dynamic models were estimated using

the pure culture experiments and they were subsequently applied to co‐culture models.

Biomass, carbon source, lactic acid and most of the amino acid concentration profiles

simulated by the co‐culture models fit closely to the experimental results and the co‐
culture models explained the mechanisms behind the dynamic microbial abundance. We

then applied the co‐culture models to estimate further information on the co‐cultures
that could not be obtained by the experimental method used. This includes estimation of

the profile of various metabolites in the co‐culture medium such as flavour compounds

produced and the individual organism level metabolic exchange flux profiles, which

revealed the potential metabolic interactions between organisms in the co‐cultures.

K E YWORD S

co‐culture metabolic modelling, genome‐scale metabolic network, lactic acid bacteria, starter
cultures

1 | INTRODUCTION

Milk has been processed by humankind for millennia and cheese is

one of the oldest fermented dairy food (Salque et al., 2013). Cheese

is traditionally made either by the lactic acid bacteria (LAB) naturally

present in milk or by the back‐slopping technique, which is adding a

small portion of a previous batch of cheese to milk. On the other

hand, in industrial cheese production, defined mixtures of purified

and characterized LAB, known as starter cultures, are used to

standardize the bulk production (Cogan & Hill, 1993; Leroy &
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De Vuyst, 2004; Powell et al., 2011). Acidification and flavour com-

pound production are the main functions of the starter cultures in

cheese making (Smid & Kleerebezem, 2014; Smit et al., 2005).

Cheese starter cultures are composed of different sets of LAB for

different cheese types and can be grouped as mesophilic and ther-

mophilic starter cultures (Cogan & Hill, 1993). Mesophilic starter

cultures are used in the cheese production requiring moderate

temperature (~30°C) such as Dutch type cheese, and they are

dominated by Lactococcus lactis and Leuconostoc mesenteroides strains

(Smid et al., 2014). Thermophilic starter cultures are used in the

cheese production requiring higher temperature such as Swiss and

Italian cheeses and they are dominated by L. lactis and Streptococcus

thermophilus strains (Cogan & Hill, 1993; Powell et al., 2011). The

success of producing a cheese with desired features such as aroma

and texture highly depends on the starter cultures being used. While

individual strains in monoculture have been well characterized

physiologically and modelled, much less is known about their beha-

viour when these strains are put together. Most microbial ecology

approaches deal with species abundances via (meta)genomics, not

with the metabolic exchange fluxes. We here address the question,

whether the properties of strains in isolation can be used to predict

their behaviour in co‐culture.
In this study, we have investigated dairy origin LAB in cheese

starter cultures by a dynamic metabolic modelling approach based

on genome‐scale metabolic networks of involved organisms. There

are several genome‐scale metabolic modelling studies of dairy‐origin
LAB at single‐species level (Flahaut et al., 2013; Oliveira et al., 2005;

Özcan et al., 2019; Pastink et al., 2009). Yet, this study is the first

metabolic modelling study that models the different LAB composing

a microbial consortium using genome‐scale dynamic metabolic

modelling approach. For this purpose, L. lactis subsp. cremoris, L. lactis

subsp. lactis, Leu. mesenteroides and S. thermophilus, the LAB com-

monly used in cheese starter cultures, were grown in pure and

co‐cultures in chemically defined medium under anaerobic condi-

tions. pH was not controlled in the experiments to mimic cheese

fermentation by starter cultures where pH is usually allowed to

follow its natural course (Bachmann et al., 2009; Cogan et al., 2007).

Co‐cultures comprised of L. lactis and Leu. mesenteroides strains re-

present mesophilic cheese starter cultures, while co‐cultures com-

prised of L. lactis and S. thermophilus strains represent thermophilic

cheese starter cultures. The dynamic metabolic modelling approach

implemented here combine both traditional dynamic kinetic model-

ling and genome‐scale metabolic modelling approaches (Henson &

Hanly, 2014). Pure cultures were simulated by dynamic flux balance

analysis (dFBA; Mahadevan et al., 2002), while co‐cultures were si-

mulated by the dynamic multi‐species metabolic modelling approach

(Hanemaaijer et al., 2017; Zhuang et al., 2011, 2012). As un-

dissociated lactic acid is the main inhibitory component in lactic acid

fermentations (Bouguettoucha et al., 2011), substrate uptake

kinetics of the dynamic metabolic models was defined with an em-

pirical equation as a function of undissociated lactic acid con-

centration. The strain‐specific parameters of the substrate uptake

kinetics were estimated using pure culture experiments and they

were subsequently used to model co‐cultures. The co‐culture models

estimated the co‐culture level metabolic capacities and the fermen-

tation dynamics behind the microbial composition of the co‐cultures.
Taking advantage of the genome‐scale metabolic modelling, we also

used the co‐culture models to elucidate further information on the

co‐culture fermentations, which could not be obtained by the ex-

perimental methods used, such as individual metabolic exchange flux

profiles of the involved organisms and the potential metabolic in-

teractions between LAB in the co‐cultures.

2 | MATERIALS AND METHODS

2.1 | Organism and fermentation conditions

LAB used in this study were L. lactis subsp. cremoris MG1363, L. lactis

subsp. lactis IL1403, S. thermophilus LMG 18311 and L. mesenteroides

subsp. cremoris ATCC 19254. Chemically defined medium (CDM)

described by (Otto et al., 1983) and modified by (Poolman & Konings,

1988) was used for the preparation of the inoculum and for the

fermentations (for the complete component list, see Supporting

Information File‐1, Table S1), and the CDM was filter‐sterilized with

0.22 µm filters. Fermentation experiments were carried out under

anaerobic conditions in a 1‐L stirred tank bioreactor (Biostat Q, B.

Braun Biotech International) with a working volume of 0.6 L at

constant temperature and without pH control (initial pH 6.8). The

two‐species co‐culture of L. lactis subsp. cremoris and Leu. mesenter-

oides, and the three‐species co‐culture of L. lactis subsp. cremoris,

L. lactis subsp. lactis and Leu. mesenteroides were assumed to re-

present mesophilic cheese starter cultures, while the two‐species co‐
culture of L. lactis subsp. cremoris and S. thermophilus, and the three‐
species co‐culture of L. lactis subsp. cremoris, L. lactis subsp. lactis and

S. thermophilus were assumed to represent thermophilic cheese

starter cultures. Pure cultures of L. lactis, Leu. mesenteroides, and

S. thermophilus strains were fermented at 30°C, 30°C and 37°C, re-

spectively, while mesophilic and thermophilic co‐cultures were

grown at 30°C and 33°C, respectively. Fermentation medium was

flushed with filter‐sterilized N2 until dissolved oxygen dropped to

zero before inoculation, and there was no gas supply after inocula-

tion. Maintenance of the anaerobic conditions were assumed with

slow mixing (50 rpm). For both pure and co‐cultures, the bioreactor

was inoculated with 2% (vol/vol) inoculum culture grown till late

exponential phase. Initial biomass compositions of the co‐cultures,
based on optical density (OD) measurements, were 1:1 (OD:OD) and

1:1:1 (OD:OD:OD) for two and three‐species co‐cultures respec-

tively. For each different batch experiment (pure and co‐cultures),
two independent culture replicates were run.

2.2 | Analytical techniques

Biomass concentration was determined using OD measurements of

fermentation culture at 600 nm, which was then correlated with
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biomass dry weight (gDW). Culture samples were centrifuged

at 10,000g for 10min, and cell‐free supernatant was used for glucose,

organic acids and amino acids analyses. Biomass samples of

co‐cultures were immediately stored at −20°C until the analysis of

relative microbial abundance analysis. Glucose concentration was

determined by reducing sugar analysis using DNS method (Miller,

1959). Organic acids and amino acids concentrations were determined

by high‐performance liquid chromatography as described previously

(Özcan et al., 2019). CO2 production profiles of L. lactis and S. ther-

mophilus strains showing homolactic fermentation patterns were as-

sumed to be negligibly small compared to the total carbon outflow

under anaerobic conditions as also stated in the literature (Jensen

et al., 2001). Molar concentration of ethanol and CO2 produced by

Leu. mesenteroides were estimated based on the glucose and citrate

consumption rates as described by our previous study (Özcan

et al., 2019).

2.3 | Estimation of the relative microbial
abundance in co‐cultures

Quantitative‐PCR (qPCR) method was employed for quantifying re-

lative microbial abundance ratios of different bacterial strains during

co‐culturing. Total cell dry weight concentrations of the co‐cultures
were multiplied by the relative microbial abundance ratios to esti-

mate the individual biomass concentrations. DNA extraction was

done using peqGOLD Bacterial DNA Kit (Peqlab, VWR), according to

manufacturer's protocol, from 3ml of culture. The primers used for

the qPCR procedure (Table 1) are specific to target genomes and

iTaq Universal SYBR Green Supermix (Bio‐Rad). The following PCR

protocol was used for all samples: initial denaturation at 95°C for

5min, 40 cycles of 95°C for 15 s, 62°C for 30 s and a melting curve

analysis with 0.5°C increments/5 s from 65°C to 95°C using CFX96

Touch Real‐Time PCR Detection System (Bio‐Rad).

2.4 | Genome‐scale metabolic models (GSMMs)
used in this study

The genome‐scale metabolic model (GSMM) of Leu. mesenteroides

ATCC 19254 (Özcan et al., 2019), L. lactis subsp. cremoris MG1363

(Flahaut et al., 2013) and the revised version of S. thermophilus LMG

18311 (Pastink et al., 2009), which were the same strains as used in

experiments, were used in this study. The GSMM of L. lactis subsp.

cremoris MG1363 (Flahaut et al., 2013) was used to simulate the

experimental data of both L. lactis subsp. cremoris and L. lactis subsp.

lactis. In addition to the use of strain‐specific parameters, amino acid

auxotrophy of L. lactis subsp. lactis was also considered for the si-

mulation of this strain. The exchange reactions of arginine, gluta-

mine, histidine, isoleucine, leucine, methionine and valine were

constrained in such a way that the model can only consume these

amino acids for the simulation of L. lactis subsp. lactis, because L. lactis

subsp. lactis IL1403 is known to be unable to synthesize these amino

acids (Aller et al., 2014; Cocaign‐Bousquet et al., 1995; van Niel &

Hahn‐Hägerdal, 1999). The GSMM of S. thermophilus LMG 18311

(Pastink et al., 2009) was revised via the following steps: (i) the draft

GSMM of S. thermophilus LMG 18311 was reconstructed using gen-

ome sequence of S. thermsophilus LMG 18311 (Bolotin et al., 2004;

GenBank accession number GCA_000011825.1) by MetaDraft (B.G.

Olivier 2018. [Online], https://systemsbioinformatics.github.io/

metadraft) (ii) the new reaction set was compared with that of the

original model and the reactions only available in the new draft

model was added to the original model to get the revised GSMM of

S. thermophilus LMG 18311. The revised GSMM of S. thermophilus

LMG 18311 containing 829 reactions between 886 metabolites

governed by 429 genes is available in SBML format in Supporting

Information File‐3. Non‐growth associated ATP maintenance rates

used in the GSMMs were obtained from original model studies

(Flahaut et al., 2013; Oliveira et al., 2005; Özcan et al., 2019; Pastink

et al., 2009). For the simulation of the cultures towards the end of

the batch, the low glucose uptake rate might not support the original

ATP maintenance rate (mATP) constraints, which results in an in-

feasible solution. In such cases, due to modelling purposes, we gra-

dually decreased the mATP value by 0.1 mmol/gDW/h until a feasible

solution was obtained. Such a decrease in mATP was also recently

demonstrated in a study, where L. lactis and Leu. mesenteroides were

grown in a retentostat reactor as a co‐culture, and mATP values of

both species decreased at low growth rates compared to high growth

rates (van Mastrigt et al., 2019).

2.5 | The dynamic metabolic modelling of pure
and co‐cultures

Concentration profiles of biomass and extracellular metabolites of

batch cultures were simulated by dynamic metabolic modelling

TABLE 1 16S rRNA specific qPCR primers

Forward primer sequences Reverse primer sequences PCR product size References

L. lactis subsp. cremoris MG1363 GTGCTTGCACCAATTTGAA GGGATCATCTTTGAGTGAT 163 Pu et al. (2002)

L. lactis subsp. lactis IL1403 GTACTTGTACCGACTGGAT GGGATCATCTTTGAGTGAT 163 Pu et al. (2002)

S. thermophilus LMG 18311 CGGGTGAGTAACGCGTAGGT CGCCTAGGTGAGCCATTACC 177 This study

Leu. mesenteroides ATCC 19254 CCGCATCTTCACGGGTATTT AGTTTCGGCGAAGGTACGAA 173 This study
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approaches. Static optimization‐based dynamic flux balance analysis

(dFBA) approach (Mahadevan et al., 2002) was applied for the pure

culture of L. lactis subsp. cremoris, L. lactis subsp. lactis, S. thermo-

philus and Leu. mesenteroides, while dynamic co‐culture metabolic

modelling approach (Hanemaaijer et al., 2017; Zhuang et al., 2011,

2012) which is a dFBA approach adapted for multi‐species systems,

was applied for the co‐cultures (Figure 1). In dynamic models, dif-

ferential mass balances were written for the following extracellular

metabolites: the metabolites experimentally measured (glucose, or-

ganic acids and amino acids), other metabolites in the fermentation

medium (vitamins and nucleic acids) and the metabolites that are

known to be produced (flavour compounds).

Undissociated form of lactic acid inhibited growth and the model

growth is limited by substrate uptake. To mimic that effect, substrate

uptake kinetics of the dynamic models was defined with an empirical

equation, which was a function of undissociated lactic acid concentration:

≤ − − −V V K Vexp( [LacH])i i LacH i imax, , min, (1)

where i denotes the index for glucose or amino acids, V is substrate

uptake rate, Vmax, Vmin and KLacH are the parameters that denote

maximum uptake rate, minimum uptake rate and undissociated lactic

acid constant, respectively. In GSMMs, negative values of exchange

reaction rates denote consumption, and positive values of the ex-

change reaction rates denote production for the corresponding

compound. Substrate uptake kinetics constrained only lower bound

of the substrate utilization rates.

According to the Henderson–Hasselbalch equation (Bouguettoucha

et al., 2011), the relationship between undissociated and total lactic acid

can be written as:

=
+ ‐ K

[LacH]
[Lac]

1 exp(pH p )a
(2)

where [LacH], [Lac] and pKa are undissociated lactic acid con-

centration, total lactic acid concentration and logarithmic acid dis-

sociation constant, respectively. Assuming pH to be linearly

correlated with total lactic acid concentration, [LacH] term in

Equation (2) can be written as:

=
+ +C C

[LacH]
[Lac]

1 exp( [Lac] )1 2
(3)

The constants, C1 and C2 in Equation (3) were estimated by the

non‐linear regression of batch‐specific experimental [LacH] and [Lac]

values in mmol/L. Finally, combining Equations (1) and (3) substrate

uptake kinetics used in dynamic models leads to:

≤ −
⎛

⎝
⎜− + +

⎞

⎠
⎟ −V V K

C C
Vexp

[Lac]

1 exp( [Lac] )
LacHmax

1 2
min (4)

Metabolic flux distribution in the dynamic models was calculated

by two sequential optimizations. The first one is a linear program-

ming (LP) problem (i.e., flux balance analysis, FBA; Orth et al.,

2010) which maximizes the growth rate by constraining the models

with the carbon source and amino acid utilization rates, and the

secondary optimization is a quadratic programming (QP) problem

that minimizes the total sum of absolute fluxes. QP applied in the flux

analyses as a secondary optimization after LP is based on the prin-

ciple of minimal use of enzyme resources to achieve the primary

objective, and it also helps to avoid the alternate optima problem

(Lewis et al., 2010; Tarlak et al., 2014). Metabolic flux analyses were

performed using COBRA Toolbox (Schellenberger et al., 2011) in

F IGURE 1 Dynamic co‐culture metabolic
modelling approach at genome scale. The
system in this example was defined for a
three‐species co‐culture. One of the outputs
of the solution of the set of differential mass
balance equations is co‐culture level lactic
acid concentration [Lac], which is
subsequently used in substrate uptake
kinetics, and the dynamic strain‐specific
substrate uptake rates constrain the
individual GSMMs. X, S and P are biomass,
substrate and product concentrations; µ,
VS and VP are growth, substrate uptake and
product production rates, respectively. [Color
figure can be viewed at
wileyonlinelibrary.com]
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MATLAB environment, with Gurobi6 (http://www.gurobi.com) as the

optimization solver. The ordinary differential equation (ODE) sets in

dynamic models were solved by ode45, which is a MATLAB function

based on the Runge‐Kutta numerical method. Finally, experimentally

obtained initial biomass and metabolite concentrations were used as

initial conditions for the solution of ODE sets.

The parameters of the substrate uptake kinetics in Equation (1)

were dynamically estimated by MEIGO optimization tool (Egea et al.,

2014). The strain‐specific kinetic parameters were estimated using

the pure culture experiments, and they were used both in the pure

and co‐culture models.

3 | RESULTS

3.1 | Dynamic pure cultures metabolic models

The pure cultures of L. lactis subsp. cremoris, L. lactis subsp. lactis, S.

thermophilus and Leu. mesenteroides were fermented until stationary

phase under anaerobic conditions. The pure cultures of L. lactis and S.

thermophilus species showed homolactic fermentation in which the

main fermentation product was lactic acid, while Leu. mesenteroides,

which is an obligate heterolactic lactic acid bacterium (Özcan et al.,

2019), produced CO2 and ethanol in addition to lactic acid. The

difference between homolactic and heterolactic fermentation could

also be manifested by the yield of lactic acid produced per glucose

consumed, which was lowest for Leu. mesenteroides among all pure

culture batches (Supporting Information File‐1, Table S2). To mimic

the cheese fermentation, pH was not controlled for all batches, and

the microbial growth was inhibited by undissociated lactic acid which

is increasingly formed by low pH. Therefore, glucose and amino acids

were not consumed completely in all batches. On the other hand,

during the stationary phase at such low pH levels, glucose con-

sumption and lactic acid production slightly continued. The yield of

lactic acid produced per glucose consumed was almost constant

during all batches (Supporting Information File‐1, Figure S1).

Biomass and extracellular metabolites concentration profiles of

the pure cultures of L. lactis, S. thermophilus and Leu. mesenteroides

strains were then simulated by dFBA. The strain specific parameters

of the substrate uptake kinetics used in the dynamic models were

estimated by dynamic parameter estimation (Supporting Information

File‐2). The lower bound of the substrate uptake rates (which are

defined in GSMMs as negative fluxes) was fixed to the values ob-

tained through substrate uptake kinetics, while the upper bound of

the substrate uptake rates was free to let the model consume less, or

even produce the corresponding substrate. In addition to the glucose

and amino acids uptake rate constraints, the experimental glucose to

lactic acid yield was also used as a constraint by fixing the ratio

between glucose consumption and lactic acid production rates in

GSMMs of L. lactis and S. thermophilus, which assured in‐silico

homolactic fermentation as observed experimentally. Glucose to

lactic acid yield as a model constraint was implemented using the

addRatioReaction function of COBRA Toolbox (Schellenberger et al.,

2011). Without such a lactic acid yield constraint, L. lactis and

S. thermophilus models showed mixed acid fermentation, which pro-

duced acetic acid, formic acid and/or ethanol instead of lactic acid, as

previously reported in the GSMM studies of Lactobacillus plantarum

(Teusink et al., 2006) and L. lactis (Flahaut et al., 2013; Oliveira et al.,

2005). The reason behind the mixed acid fermentation preference of

the models with biomass optimization is extra ATP gain with acetic

acid production, and re‐oxidization of NADH through formic acid and

ethanol production in mixed acid fermentation. GSMM of Leu. me-

senteroides did not need the lactic acid yield constraint as the or-

ganism is an obligate heterolactic fermentative lactic acid bacterium

that uses the phosphoketolase pathway and produces lactic acid and

ethanol in anaerobic fermentation for ATP production and reoxida-

tion of NADH, respectively (Özcan et al., 2019).

Dynamic pure culture model results of biomass, carbon source,

fermentation products and most of the amino acid profiles fitted

closely to the experimental data (Figures 2–5). These results pointed

out that the use of the substrate uptake kinetics as a function of

undissociated lactic acid in the dynamic metabolic modelling was a

suitable approach to define the dynamics of the cheese starter cul-

tures. Experimental amino acid profiles of the pure cultures were

mostly coupled with biomass profiles (Figures 2–5). The chromato-

graphy profiles of glutamine/glycine and alanine/proline pairs over-

lapped so that their concentration profiles were given as the sum of

the corresponding pair. For some amino acids such as aspartate in

the L. lactis subsp. cremoris culture, the models underestimated the

experimental profiles. The underestimated in‐silico amino acid pro-

files showed that the models used less amino acids than those ob-

served in the experiments. Excess amino acids consumption that

could not be predicted by the models might be due to their use in

other metabolic pathways not considered by these models. Methio-

nine and tyrosine were experimentally produced in L. lactis subsp.

cremoris and S. thermophilus batches. These amino acids were un-

derestimated by the L. lactis model as the production of these amino

acids dramatically decreased the in‐silico growth. On the other hand,

aspartate and asparagine were experimentally produced by L. lactis

subsp. lactis and Leu. mesenteroides, respectively, and the models of

these strains could estimate the productions.

Citrate was not consumed significantly in L. lactis and S. ther-

mophilus strains (results not shown), while Leu. mesenteroides, which

is known as a citrate consumer (Smid & Kleerebezem, 2014), con-

sumed all citrate before the stationary phase. The source of the

acetic acid produced in Leu. mesenteroides was the citrate consumed

through citrate utilization pathway (Özcan et al., 2019). Heterolactic

fermentation products, ethanol and CO2, produced through phos-

phoketolase pathway were also simulated by the dynamic model of

Leu. mesenteroides (Figure 5).

3.2 | Dynamic co‐culture metabolic models

We simulated mesophilic and thermophilic co‐cultures by a pre-

viously described dynamic co‐culture metabolic modelling approach
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F IGURE 2 Computational and experimental batch culture concentration profiles of Lactococcus lactis subsp. cremoris. Solid lines denote
model results simulated by dynamic flux balance analysis (dFBA), while points and bars denote average and range of two biological replicates,
respectively [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Computational and experimental batch culture concentration profiles of Lactococcuslactis subsp. lactis. Solid lines denote model
results simulated by dynamic flux balance analysis (dFBA), while points and bars denote average and range of two biological replicates,
respectively [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 4 Computational and experimental batch culture concentration profiles of Streptococcus thermophilus. Solid lines denote model
results simulated by dynamic flux balance analysis (dFBA), while points and bars denote average and range of two biological replicates,
respectively [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Computational and experimental batch culture concentration profiles of Leu. mesenteroides. Solid lines denote model results
simulated by dynamic flux balance analysis (dFBA), while points and bars denote average and range of two biological replicates, respectively
[Color figure can be viewed at wileyonlinelibrary.com]
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(Hanemaaijer et al., 2017; Zhuang et al., 2011, 2012). We used the

strain‐specific parameters estimated using the pure culture experi-

ments (Supporting Information File‐2, Table S1), and only estimated

the co‐culture specific parameters, C1 and C2 (Supporting Informa-

tion File‐2, Table S2) that describe the co‐culture specific pH profiles.

Mesophilic co‐culture models fitted closely to the experimental

data. The mesophilic co‐culture models and experiments showed the

domination of L. lactis species over Leu. mesenteroides. The con-

tribution of Leu. mesenteroides to the final biomass in two and three

species co‐cultures were around 6% and 3.5%, respectively

(Figure 6). This result is consistent with the previous reports (Erkus

et al., 2013; van Mastrigt et al., 2019) stating that the final biomass

ratio of Leu. mesenteroides in long term (days) is around 1% in the

mesophilic cheese starter cultures comprised of L. lactis and Leu.

mesenteroides strains.

The suppression of Leu. mesenteroides in the co‐cultures could

be explained by the rapid acidification of the medium by L. lactis

strains. In other words, lactic acid pool mostly produced by L. lactis

strains decreased the uptake rates of Leu. mesenteroides according

to the substrate uptake kinetics, which made Leu. mesenteroides

disadvantageous in the competition for sugar and amino acid

source in co‐cultures. Another reason for the suppression of

Leu. mesenteroides could be the ATP yield of Leu. mesenteroides per

mole of glucose consumed. Leu. mesenteroides is an obligate het-

erolactic lactic acid bacterium, and ATP yield of the obligate

heterolactic fermentation is lower than homolactic fermentation

as observed in L. lactis (Ganzle, 2015). On the other hand, unlike

the pH‐controlled co‐culture of L. lactis and Leu. mesenteroides

reported in literature (van Mastrigt et al., 2019), the ATP yield was

a minor explanation for the growth suppression of Leu. mesenter-

oides in our study, as the effect of rapid acidification was domi-

nant. Final biomass concentrations of Leu. mesenteroides in

mesophilic co‐cultures were 10‐fold less than the ones in pure

culture, which was also reported in a study investigating L. lactis

and Leu. mesenteroides strains in pure and co‐cultures in recon-

stituted skim milk (Bellengier et al., 1997). Furthermore, final

biomass concentration of L. lactis subsp. lactis was lower than

L. lactis subsp. cremoris in the three‐species mesophilic co‐culture,
as observed in pure cultures.

Similar to the mesophilic co‐cultures, L. lactis subsp. cremoris

dominated the thermophilic co‐cultures experimentally, but the

preliminary analyses of thermophilic co‐culture models showed the

opposite, with S. thermophilus dominating the co‐cultures in‐silico
(results not shown). In addition to a possible interaction between

S. thermophilus and L. lactis, which the co‐culture models might miss,

this unexpected result could be explained by the difference in the

fermentation temperature of L. lactis and S. thermophilic in pure and

thermophilic co‐cultures, which were 30°C, 37°C and 33°C respec-

tively (see methods). In terms of the growth performance based on

the experimental growth rates with respect to pH values (Supporting

Information File‐1, Figure S2), L. lactis showed higher and S. ther-

mophilus showed a lower growth performance in thermophilic co-

cultures compared to their pure cultures at above the pH values

causing the inhibitory effect (i.e., ~pH ≤ 5). This result is consistent

with the reported effect of different temperatures on growth rate for

several LAB including L. lactis and S. thermophilus at optimal pH va-

lues of related species (Adamberg et al., 2003). Because of the

temperature difference, the growth rate profile of L. lactis in the

co‐culture increased around 20%, while the growth rate profile of

S. thermophilus in the co‐culture decreased around 20%, compared to

their pure cultures. Assuming the substrate uptake rates are coupled

with growth rate, all substrate uptake rates of L. lactis and S. ther-

mophilus were then multiplied by 1.2 and 0.8, respectively, in co-

culture simulations to consider the effect of temperature difference.

After multiplying all the substrate uptake rates by the correction

coefficients, the domination of L. lactis subsp. cremoris in thermophilic

co‐cultures could be simulated (Figure 7). Two‐species thermophilic

co‐culture model fitted closely to the experimental concentration

profiles of individual biomass and co‐culture level extracellular

compounds (Figure 7a). Unlike mesophilic co‐cultures, acidification
did not affect the biomass composition of the thermophilic co‐culture
significantly, as both L. lactis and S. thermophilus species showed

similar homolactic fermentation patterns. The final biomass compo-

sition of two‐species thermophilic co‐culture was around 1:0.6 (L.

lactis subsp. cremoris:S. thermophilus). Although individual biomass

abundance ratio of L. lactis subsp. cremoris decreased in the early

phase of the batch, its abundance increased afterwards, and this

experimental result was also predicted by the model (Supporting

Information File‐1, Fig. S3).
Although the three‐species thermophilic co‐culture model pre-

dicted the final individual biomass‐based compositions of the or-

ganisms as L. lactis subsp. cremoris being the most and L. lactis subsp.

lactis being the least abundant species, the model could not predict

the individual biomass profiles of L. lactis strains precisely (Figure 7b).

Experimentally obtained individual biomass profiles in the co‐
cultures were not as smooth as those observed in pure cultures. We

observed some fluctuations on the individual biomass profiles of the

co‐culture especially at stationary phase, which could be due to the

estimation method of the relative microbial abundance (see meth-

ods). These small and instantaneous increase/decrease at the in-

dividual biomass profiles of all co‐cultures at stationary phases were

assumed acceptable as they showed the general biomass dynamics of

the co‐culture. Experiments showed that glutamate, leucine and

threonine were produced at the late phase of the three‐species
thermophilic co‐culture, but the model could not simulate these

productions due to the objective function in the models, which

forced the consumption of these amino acids to ensure the maximum

in‐silico growth rate.

3.3 | In‐silico production profiles of flavour
compounds in co‐cultures

In‐silico production profiles of the flavour compounds in the co‐
cultures were estimated through the pathways already defined in the

GSMMs used (Figure 8). Maximum production rates of the flavour
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F IGURE 6 Computational and experimental mesophilic co‐culture profiles. (a) Two‐species mesophilic co‐culture comprised of L. lactis subsp.
cremoris (LLC) and Leu. mesenteroides (LM). (b) Three‐species mesophilic co‐culture comprised of LLC, L. lactis subsp. lactis (LLL) and LM.
Solid lines denote the co‐culture model results, while points and bars denote average and range of two biological replicates, respectively [Color
figure can be viewed at wileyonlinelibrary.com]
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compounds calculated by FVA (Mahadevan & Schilling, 2003) were

used in the dynamic models to estimate the maximum flavour com-

pounds production potential of the co‐cultures. Flavour metabolites

acetoin, diacetyl, 2,3‐butanediol, acetaldehyde and benzaldehyde are

produced through pyruvate metabolism while the rest of the flavour

metabolites in Figure 8 are produced through amino acid catabolism.

Detailed information for the pathways of flavour metabolites pro-

duced by LAB can be found elsewhere (Smid & Kleerebezem, 2014;

F IGURE 7 Computational and experimental thermophilic co‐culture profiles. (a) Two‐species thermophilic co‐culture comprised of
Lactococcus lactis subsp. cremoris (LLC) and S. thermophilus (ST). (b) Three‐species thermophilic co‐culture comprised of LLC, L. lactis subsp. lactis
(LLL) and ST. Solid lines denote the co‐culture model results, while points and bars denote average and range of two biological replicates,
respectively [Color figure can be viewed at wileyonlinelibrary.com]
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Smit et al., 2005; Yvon & Rijnen, 2001). Production of acetoin, dia-

cetyl and 2,3‐butanediol by Leu. mesenteroides and acetaldehyde

production by S. thermophilus are well known phenomena in fer-

mentative dairy foods (Bottazzi & Dellaglio, 1967; Hemme &

Foucaud‐Scheunemann, 2004), and these metabolites are the only

flavour compounds defined in the corresponding GSMMs. On the

other hand, all flavour compounds in Figure 8 are defined in the

GSMM of L. lactis.

Parallel with the amino acid consumption limitation due to low pH,

production of L. lactis‐origin flavour metabolites 2‐hydroxy‐3‐methyl‐
butanoate, 2‐hydroxyisocaproate, 2‐methylbutanal, 2‐methylpropanoic

acid, 3‐methyl‐butanoic acid, methanethiol and phenylethyl alcohol

decreased or stopped at stationary phase. The rest of L. lactis‐origin
flavour metabolites were not produced at significant level (Figure 8).

Methanethiol is produced through methionine catabolism (Flahaut

et al., 2013), and in‐silico methanethiol production was only observed

in three‐species mesophilic and thermophilic co‐cultures, as L. lactis

subsp. lactis in the three‐species co‐cultures was the only species that

consumed methionine. L. lactis‐origin benzaldehyde and Leu. me-

senteroides‐origin diacetyl were not produced since oxygen is required

to produce these compounds according to the corresponding GSMMs.

Production of acetoin and 2,3‐butanediol was only observed in me-

sophilic co‐cultures, as these compounds are originated from Leu.

mesenteroides. Although production of L. lactis‐origin flavour com-

pounds, produced through amino acid catabolism, was inhibited by low

pH, production of Leu. mesenteroides‐origin flavour compounds, pro-

duced through pyruvate metabolism, continued during the entire

batch. In our previous study, flavour formation by Leu. mesenteroides

metabolic model was observed after the carbon source uptake did not

enhance the growth rate anymore, in other words, flavour compound

production only occurred under carbon and ATP excess (Özcan et al.,

2019). In the current study, both experimentally and computationally,

carbon source consumption slightly continued after growth inhibition

for all batches, and the growth inhibition of Leu. mesenteroides in

mesophilic co‐cultures started at the early stage of the batches, and a

certain part of the carbon source consumed by Leu. mesenteroides was

used for the production of flavour compounds. This in‐silico result is

consistent with the study that showed that acidic conditions promoted

the acetoin production by Leu. mesenteroides (LevataJovanovic &

Sandine, 1996).

3.4 | Potential metabolic interactions in the
co‐cultures

In the previous sections, we used the co‐culture models to estimate

the co‐culture level metabolite profiles. However, the co‐culture
models can also estimate the contribution of individual organisms on

the total consumption/production of a metabolite in co‐culture
medium. This is a crucial information about microbial consortia and is

not easily obtained by experiments. Moreover, such metabolite

consumption/production profiles of the individual organisms can

point out the potential metabolic interactions in a co‐culture. For
instance, a metabolite produced by an organism and consumed by

other(s) in a co‐culture has cross‐feeding potential between the

organisms.

F IGURE 8 In‐silico flavour compound production profiles of two and three‐species mesophilic and thermophilic co‐cultures [Color figure can
be viewed at wileyonlinelibrary.com]
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To this end, we used the co‐culture models to estimate the ex-

change flux profiles of various metabolites of the individual organ-

isms in the co‐cultures. Metabolic exchange flux profiles estimated

by the co‐culture models showed that, in the two‐species mesophilic

co‐culture, asparagine, methionine, proline and tryptophan were

produced by one organism, while the other consumed them

(Supporting Information File‐1, Figure S4). In the three‐species me-

sophilic co‐culture, asparagine, aspartate, methionine, phenylalanine,

proline, tryptophan and inosine were the metabolites that one or-

ganism produced while the others consumed or vice versa (Figure 9).

In the two‐species thermophilic co‐culture, leucine and adenine were

estimated by the model as being cross‐fed between L. lactis and

S. thermophilus (Supporting Information File‐1, Figure S5). In the

three‐species thermophilic co‐culture, the model estimated that as-

partate was produced and methionine was consumed by L. lactis

subsp. lactis and leucine was slightly produced by S. thermophilus at

stationary phase, which was a different metabolic behaviour than the

other co‐culture members (Supporting Information File‐1, Figure S6).

4 | DISCUSSION

This study showed that monoculture level properties could be used

to understand the co‐culture level properties for the LAB consortia.

We estimated the strain‐specific kinetic parameters using the

monocultures experiments and used these parameters in the co‐
culture models. The dynamic co‐culture models then accurately

predicted the experimental results such as dynamic biomass

compositions and the concentration profiles of glucose and lactic

acid. Conventional kinetics expressions based on an enzyme‐
substrate relationship such as the Michaelis–Menten kinetics could

not explain our system (results not shown), as the substrate itself

was not a rate limiting compound in our system where none of the

substrates were totally consumed due to pH inhibition. Hence, we

defined the substrate uptake kinetics of the dynamic models with an

empirical equation as a function of undissociated lactic acid con-

centration, and it was a suitable kinetic expression for the fermen-

tations without pH control. Due to the mathematical nature of the

substrate uptake kinetics (see methods), the models start fermen-

tation with maximum substrate uptake rate values in the early stage

of the batches, where undissociated lactic acid concentrations were

below the rate limiting level. This could have been a disadvantage for

fermentations with long lag phases, but in our case the lag phase

period of the batches were short enough to be ignored, and fits

were good.

In addition to the metabolite profiles that were already obtained

by experiments, the co‐culture models can estimate the profile of

more metabolites that could not be obtained by the experimental

methods used, such as nucleic acids, vitamins and flavour com-

pounds. Since one of the main functions of the starter cultures is

flavour compound production (Smid & Kleerebezem, 2014; Smit

et al., 2005), we used the co‐culture models to estimate the flavour

compound production profiles of mesophilic and thermophilic co‐
cultures through the pathways already defined in the GSMMs used.

Another modelling output that could not obtained by experimental

methods used is the potential metabolic interaction between the

F IGURE 9 Individual exchange flux profiles profiles of Lactococcus lactis subsp. cremoris (blue line), L. lactis subsp. lactis (green line) and Leu.
mesenteroides (red line) in three‐species mesophilic co‐culture. Negative and positive flux values show consumption and production, respectively
[Color figure can be viewed at wileyonlinelibrary.com]
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LAB in the co‐cultures. We obtained co‐culture level extracellular

metabolite profiles experimentally, and the co‐culture models esti-

mated the contribution of individual organisms on these profiles

through the metabolic exchange flux profiles of the individual or-

ganisms in the co‐cultures. This also revealed the potential metabolic

interactions between the LAB in the co‐cultures. Co‐culture models

estimated the amino acids as the major exchanged metabolites be-

tween organisms in the related co‐cultures. Amino acid exchange

between organisms is one of the important interactions in dairy

cultures, and it mostly occurs through the proteolysis of the casein

by proteolytic strains (Smid & Lacroix, 2013). Unlike the chemically

defined medium that we also used for the fermentations, complex

media such as milk evolutionarily pave the way for more co‐
operational metabolic interactions, which can be benefited from by

either individual organisms or entire consortia. In yoghurt culture,

non‐proteolytic S. thermophilus consumes peptide and amino acid

that are released by proteolytic Lactobacillus bulgaricus, in turn

S. thermophilus supplies some growth stimulating factors to L. bul-

garicus such as formic acid and folic acid (Sieuwerts et al., 2008). In

yeast‐LAB consortia such as kefir culture, yeast can benefit from

galactose which is secreted by LAB as a result of lactose catabolism,

in turn LAB benefits from amino acids secreted by yeast

(Ponomarova et al., 2017).

Biomass and lactic acid yields of the co‐cultures in this study were

in between the yields of pure cultures that constitute the related co‐
cultures (Supporting Information File‐1, Table S2). This result showed

that the metabolic interaction in the co‐cultures did not create an

advantage in terms of the yields, which is contrary to the ones ob-

served in other dairy cultures such as yoghurt and kefir. This could be

due to the lack of common evolutionary history of the strains used and

the chemically defined medium used, which contains all compounds

required for cell growth. However, the estimation of potential meta-

bolic interactions is still important for such experimental set‐ups to

design better starter cultures. It is noteworthy to mention that the

potential metabolic interactions estimated by the co‐culture models

are study‐specific results, and they should not be generalized for all

cheese starter cultures since amino acid, vitamin and carbon source

auxotrophies of LAB to be used in the dairy starter cultures vary

across different LAB (Teusink & Molenaar, 2017). On the other hand,

the dynamic co‐culture metabolic modelling applied in this study can

be used as a promising approach to uncover potential metabolic in-

teractions in co‐cultures having no known metabolic interactions.
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