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Sir,
In a recent editorial, Peto (2012) states that the ‘single measure

of lifetime cumulative dose (dose rate times duration)’ is
‘unnecessary and scientifically unhelpful’, as there is ‘long-standing
evidence that cancer risk at a given cumulative dose sometimes
varies substantially with the duration of exposure.’ Further he also
states ‘Science advances by developing and testing plausible
models, not by regression analysis of gross deviations from models
that are clearly wrong’; ‘Lung cancer risk is not proportional to
pack-years’; and ‘modeling of the variation in ERR (excess relative
risk) per pack-year in relation to y smoking rate y is unlikely to
be biologically informative.’ He proffers two lung cancer-related
examples: radon, where the ERR per working level month (WLM)
increases with duration; and cigarette smoking. These diverse
examples suggest that he intends his comments to apply
universally to all exposures, and therefore: (i) cumulative exposure
metrics are never useful for modelling risk; and (ii) variations of
the disease and cumulative exposure association by duration (or
equivalently exposure rate) are biologically uninformative. In our
view, evidence strongly contradicts both statements.

Analyses by cumulative exposure and exposure rate provide a
unique perspective on risk, potentially leading to enhanced
mechanistic understanding, whereas, in contrast to common belief,
parameter estimates from models in exposure duration and rate are
not interpretable as ‘separate’ and ‘independent’ effects. The
recommendation to abandon cumulative exposure-based metrics
serves only to restrict flexibility in data analysis and risk modelling,
and thereby limit inference on biological mechanisms. Cumulative
exposure metrics have a long history of proven success in
increasing our understanding of disease aetiology and formulating
public health policy.

Cigarette smoking analyses typically start with computation of
marginal relative risks (RRs), that is, unadjusted for other
smoking-related variables, for three primary metrics: smoking
duration, cigarettes smoked per day (CPD) and pack-years. As only
pack-years estimate the total body burden of the presumed

carcinogen, it is the single variable most relevant for characterising
exposure and, thus, risk. Nevertheless, it is abundantly clear that
pack-years alone does not fully describe smoking-related lung
cancer risk (Doll and Peto, 1978; Lubin and Caporaso, 2006).
Investigators therefore extend analysis to two variables, cross-
classifying variables or adjusting one variable for the other. The
selected variables may be smoking duration and CPD as in the
Doll–Peto model (Doll and Peto, 1978), or pack-years and CPD as
in our model (denoted as the L–C model; Lubin and Caporaso,
2006). As pack-years equal duration times CPD/20, any ‘duration
and CPD’ model is transformed into a ‘pack-year and CPD’ model
simply by replacing duration with pack-years/(CPD/20). Conse-
quently, there is no practical difference in the choice and neither is
intrinsically preferable for model building. The Doll–Peto model
predicts that lung cancer rates increase with the fourth power of
duration and the square of CPD. However, these predications are
equally described as increasing with the fourth power of pack-years
and the square of 1/CPD, that is, decreasing with CPD with pack-
years fixed. This change alters only interpretation of parameters
(see below), without affecting model fit. Furthermore, if ‘aging
per se is irrelevant’ in a ‘duration and CPD’ model (Peto, 2012),
then age is also irrelevant in a ‘pack-years and CPD’ model.
Notably, the Doll–Peto model indeed varied with age when applied
in both the American Cancer Society’s Cancer Prevention Study I
(CPS-I; Knoke et al, 2004) and II (CPS-II; Flanders et al, 2003).
The real issue is not that ‘duration and CPD’ models are good and
‘pack-years and CPD’ models are bad, but rather the interpret-
ability of parameters and consistency of models with observed data
and with current understanding of biological mechanisms.

With ‘duration and CPD’ models, parameter interpretations are
inherently ambiguous, as duration effects with CPD fixed
necessarily embed pack-years effects (Lubin and Caporaso, 2006).
In Peto’s Table 1, predicted lung cancer rates for 20 CPD, current
smokers increase with duration. However, there is no obligation to
assign the cause of the increasing rates to increasing duration,
rather it could equally be assigned to increasing pack-years.
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Compared with a 70-year-old smoker, an 80-year-old 20 CPD
smoker accrues not only 10 years additional duration but also
10 pack-years. Thus, it is no less reasonable to suppose that
the increased lung cancer rate for the 80-year-old derives from the
consumption of 73 000 additional cigarettes. Interpretation of
CPD effects at fixed duration is likewise problematic. For a 30-year
duration, risks at 20 and 30 CPD necessarily embed risks
from 30 and 45 pack-years, respectively. RRs or absolute risks by
duration and CPD are thus not interpretable as separate and
‘independent’ effects.

In contrast, a model in pack-years and CPD reformulates
analysis in terms of the quantitative trend with pack-years and the
modifying effects of CPD, or more precisely ‘delivery rate’ effects.
Delivery rate effects describe the relative impact on the disease and
pack-years association for a given pack-years delivered at higher
exposure rate for shorter duration compared with lower exposure
rate for longer duration. For 80 pack-years, the delivery rate effect
measures the extent that smoking 2 packs/day for 40 years results
in a larger, equal or smaller RR (or absolute risk) compared with
smoking 4 packs/day for 20 years.

Specifically for adjustment variables (z), pack-years (d) and
CPD (n), the L–C model posits a disease rate of r(z, d, n)¼
ro(z)�RR(d, n), where ro(.) is the rate in never-smokers and
RR¼ 1þ bdg(n). The ERR/pack-year (b) represents the strength of
association, whereas g(.) describes delivery rate effects that may be
fitted parametrically or with splines. For each n, RRs by pack-years
increase linearly with slope b g(n). This formulation emerged
directly from observed RRs for pack-years and CPD, ensuring a
good description of smoking-related risks. Questions concerning
age, age at initiation, cessation and so on reflect potential effect
modification, that is, variations of b and/or g(.).

The L–C model predications compare favourably with other
models. For CPS-I data, Knoke et al (2004) significantly improved
the Doll–Peto model by including either age or age at smoking
initiation. We compared the L–C model inserting Knoke’s lung
cancer rate model in never-smokers for ro(.) with Knoke’s
preferred duration/CPD/age model. Although L–C model para-
meters were estimated independently of CPS-I data, predicted
smokers’ rates were nearly identical (Figure 5 in Lubin and
Caporaso, 2006). At age 60 years, predicted yearly lung cancer rates
for 10, 20 and 30 CPD smokers were 0.0011, 0.0018 and 0.0025 for
the duration/CPD/age model, respectively, and 0.0010, 0.0020 and
0.0027, respectively, for the L–C model.

Above 10–15 CPD, the L–C model specifies an inverse delivery
rate effect, whereby smoking more CPD for shorter duration is less
deleterious (per cigarette) than smoking fewer CPD for longer
duration, a pattern consistent with ‘reduced potency’ (Lubin and
Caporaso, 2006). The inverse delivery rate pattern occurs
consistently across lung cancer studies and smoking-related
cancer sites, including oesophagus, bladder, pancreas, kidney, oral
cavity, larynx and pharynx (Lubin et al, 2007a, 2008, 2009, 2010,
2012). Thus, delivery rate represents an important modulator of
risk, and its consistency suggests a general smoking-related
phenomenon. Under 5–10 CPD, the L–C model describes a direct
delivery rate effect, with increasing strength of association with
increasing CPD; however, pack-year ranges are necessarily limited
and effects are estimated with substantial uncertainty, and
additional analyses are needed.

The inverse delivery rate may reflect smoking-related biological
mechanisms, such as increased DNA repair, increased induction of
detoxification enzymes or saturation of activation enzymes (Lewtas
et al, 1997). Heavy smokers exhibited increased DNA repair
capacities compared with light smokers (Wei et al, 2000; Shen et al,
2003; Spitz et al, 2003). Polycyclic aromatic hydrocarbons (PAHs)
from incomplete tobacco combustion undergo metabolic activation
to form DNA and protein adducts (Lewtas et al, 1997; Lutz, 1998;
Phillips, 2002). Lewtas et al (1997) observed higher DNA adduct

levels in white blood cells per unit PAH exposure in environmen-
tally exposed individuals than in high-exposed workers. More
directly, nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-buta-
none (NNK) is a tobacco-specific carcinogen. Among smokers,
ratios of urinary NNK metabolites to urinary cotinine declined
with increasing cotinine, indicating reduced NNK uptake per unit
cotinine with increasing cotinine (Lubin et al, 2007b). Finally, the
N-acetyltransferase 2 (NAT2) enzyme detoxifies aromatic amines, a
class of tobacco-related carcinogens, with slow acetylation
phenotypes that have reduced detoxification capacity compared
with rapid/intermediate phenotypes, and also have a well-described
impact on both carcinogen-adduct levels and subsequent cancer.
At low and moderate CPD, phenotypes exhibit similar bladder
cancer risks, whereas at high CPD, rapid/intermediate acetylators
exhibit reduced risks relative to slow acetylators (Gu et al, 2005;
Lubin et al, 2007a).

The inverse delivery rate pattern may also reflect dosimetric
changes related to nicotine dependency, with heavier smokers
inhaling less vigorously, leading to lower carcinogenic yields per
cigarette. Although evidence supports such dosimetric changes
(Patterson et al, 2003; US Department of Health and Human
Services, 2010), in one lung cancer study inhalation did not
confound pack-years variations with CPD (Lubin et al, 2007c).
Also, sensitivity analyses using the relationship between
urinary cotinine and CPD to ‘correct’ CPD estimates found that
dosimetric changes could not fully explain delivery rate patterns
(Lubin et al, 2007c).

Radon exposure also challenges Peto’s assertions about
cumulative exposure metrics. Multiple studies of underground
miners demonstrate that lung cancer RRs by cumulative WLM
increase linearly, and that the ERR/WLM decreases with working
level (WL; National Research Council, 1999; Walsh et al, 2010).
Moreover, miner-based model predictions correspond precisely to
observed risks in residentially exposed populations, whereas in vivo
studies, in vitro studies and radiobiological models provide a
mechanistic basis for observed patterns (National Research
Council, 1999). Radon and its decay products are a-particle
emitters and a single a-particle can damage DNA. Radiobiological
analysis predicts dose rate effects. At residential exposure levels, a
cell nucleus incurs a o0.01 probability of ‘seeing’ even one a-
particle per year, and hence cannot ‘experience’ a delivery rate
effect. As multiple traversals are rare, doubling a-particles mainly
doubles the number of cells traversed, that is, risks are
approximately proportional to dose. At high exposures, multiple
traversals are highly probable, yielding increased cell death, greater
‘wasted dose’ and a decreased exposure–response relationship.
Miners’ data exhibit both proportionality of excess RRs with WLM
and ERR/WLM variations, with no delivery rate effects at low WLs
and inverse delivery rate effects at high WLs (National Research
Council, 1999). This concordance of epidemiology and radio-
biology explains why expert committees and health policy agencies
worldwide have long used this characterisation for predicting
radon-associated lung cancer.

Parameters in cumulative exposure and exposure rate models
are directly interpretable in terms of the disease and cumulative
exposure relationship and the modulating effects of exposure
delivery (high exposure rate for short duration or low rate for
long duration). In contrast, interpretation of parameters in
duration and exposure rate models is ambiguous due to imbedded
cumulative exposure effects. More generally, increased
understanding of biological mechanisms is best achieved when
investigators analyse data carefully using the broadest range
of tools. There is little rationale in arbitrarily labelling any class
of exposure metrics as inherently invalid and off-limits, thereby
restricting explanatory models. Prohibitions on exposure
metrics or model formulations do not serve to advance science
and should be rejected.
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