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Abstract: Atom transfer radical polymerization (ATRP) is one of the most successful techniques for
the preparation of well-defined polymers with controllable molecular weights, narrow molecular
weight distributions, specific macromolecular architectures, and precisely designed functionalities.
ATRP usually involves transition-metal complex as catalyst. As the most commonly used copper
complex catalyst is usually biologically toxic and environmentally unsafe, considerable interest
has been focused on iron complex, enzyme, and metal-free catalysts owing to their low toxicity,
inexpensive cost, commercial availability and environmental friendliness. This review aims to
provide a comprehensive understanding of iron catalyst used in normal, reverse, AGET, ICAR,
GAMA, and SARA ATRP, enzyme as well as metal-free catalyst mediated ATRP in the point of view of
catalytic activity, initiation efficiency, and polymerization controllability. The principle of ATRP and
the development of iron ligand are briefly discussed. The recent development of enzyme-mediated
ATRP, the latest research progress on metal-free ATRP, and the application of metal-free ATRP in
interdisciplinary areas are highlighted in sections. The prospects and challenges of these three ATRP
techniques are also described in the review.
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1. Introduction

Since it was discovered independently by Matyjaszewski and by Sawamoto in 1995 [1,2],
atom transfer radical polymerization (ATRP) has become one of the most powerful tools for the
preparation of well-defined polymers with controlled molecular weights, narrow molecular weight
distributions, and designable molecular architectures. Typically, the ATRP system is composed of
monomer, initiator and catalyst. The most important component is the catalyst, which is a key factor to
the ‘living’/controlled characteristics of polymerization. Up to now, a large variety of transition metal
complexes—such as Cu, Ru, Mo, Rh, Ni, Pd, Co coordination compounds—have been successfully
employed as catalysts in ATRP systems [3–24].

The environment-friendly aspects of ATRP have attracted a lot of interest in recent years. In an
ideal situation, a good ATRP catalyst could realize: (1) synthesizing polymer with desired molecular
weight and narrow polydispersity; (2) high catalytic activity for the polymerization reaction; (3) a
little amount of residual catalyst in the polymer. To the best of our knowledge, the fulfillment of these
requirements still remains a challenge. Since the ATRP of methyl methacrylate and styrene with iron
complex as catalyst was first reported in 1997 [25,26], iron coordination compounds have been one of
the most promising environmentally friendly catalysts because of their low toxicity, inexpensive cost,
and abundant commercial availability [27]. Besides iron complex catalyst, enzyme-mediated ATRP has
also attracted considerable interest due to its high efficiency and selectivity, mild reaction conditions,
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and excellent biocompatibility [28]. Recently, metal-free ATRP has emerged as a green and sustainable
strategy for precise polymer synthesis [29].

Matyjaszewski and coworkers have summarized iron-catalyzed ATRP recently on the basis of the
structures and properties of iron ligands, the effects of ligands on the polymerization rate, and the
development of initiating systems for activator regeneration [30]. Xie et al. also reviewed iron-catalyzed
ATRP based on mechanistic considerations and the types of iron complex and iron ligand [31]. Hawker
and de Alaniz presented a review on metal-free ATRP and discussed its catalysis principle, catalyst
structure, monomer scope, and application in the synthesis of architecturally complex materials [29].
As enzymes could be denatured and deactivated by heavy metal catalyst, there are only a few reports
on enzyme-mediated ATRP [28].

Herein, this review aims to provide a comprehensive understanding of these three types of
environmentally friendly ATRP technology and primarily focused on the catalytic activity, initiation
efficiency, polymerization controllability, and environmental friendliness. The latest research progress
on iron complex-catalyzed ATRP of a large variety of monomers, the recent developments of
enzyme-mediated ATRP, and the application of metal-free catalyst mediated ATRP in interdisciplinary
areas are highlighted in sections. The prospects and challenges of these three ATRP techniques are also
described in the review.

2. Applications of Iron Catalyst in Various ATRP Systems

2.1. Applications of Iron Catalyst in Normal ATRP

Transition metal complex and organic halide are generally used as catalyst and initiator
respectively in early ATRP system. The earliest catalyst in a normal ATRP was a copper complex
(CuCl/Bipyridine) [1], which had excellent catalytic activity and good control for the polymerization of
multiple monomers. Compared to copper complex, iron complex has broader application prospects
because of its environmentally friendly nature. The mechanism of normal ATRP catalyzed by iron
complex is shown in Figure 1.
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Matyjaszewski group first reported in 1997 that iron complex-catalyzed normal ATRP of
styrene (St) and methyl methacrylate (MMA) with (1-bromoethyl)benzene (PEBr) as an initiator [25].
They investigated the effect of different ligands such as tri-n-butylphosphine, tri-n-butylamine,
and triphenylphosphine on the polymerization and found that the polymerization catalyzed by
FeBr2/tri-n-butylamine had well-controlled characteristics for styrene and methyl methacrylate, but not
for acrylate. Sawamoto et al. also reported an iron complex-catalyzed normal ATRP of MMA in 1997
using iron(II) bis(triphenylphosphine)dichloride [FeCl2(PPh3)2] as catalyst [26]. The number average
molecular weight of obtained poly(methyl methacrylate) (PMMA) increased linearly with the increase
of monomer conversion, and the molecular weight distribution was narrow (Mw/Mn = 1.1–1.3). Later,
iron complexes with halide anions as ligands were found to catalyze controlled polymerizations of
acrylates by Matyjaszewski and coworkers in 2000 [32]. The residual catalysts could be readily removed



Polymers 2020, 12, 1987 3 of 32

from the polymer products because of their ionic nature. However, this polymerization system was
not applicable for ATRP of styrene probably due to the involvement of cationic polymerization.

Sawamoto et al. used iron complex [Fe(Cp)I(CO)2; Cp = cyclopentadienyl] as catalyst
in normal ATRP of acrylates, finding that the synthesized polymers had controlled molecular
weights and narrow molecular weight distributions (Mw/Mn < 1.2) [33]. This catalytic system
was also applicable for the synthesis of poly(methyl acrylate)-b-poly(styrene) and poly(butyl
acrylate)-b-poly(styrene) block copolymers, but the controllability of the polymerization was decreased
when [(CH3)2C(CO2CH3)CH2C(CH3)(CO2CH3)Br] or [(CH3)2C(CO2CH3)CH2C(CH3)(CO2CH3)Cl]
was used as an initiator. Sawamoto and coworkers later found that the iron bromide complexed
with butylphosphine had an excellent activity/controllability in the normal ATRP of MMA [34].
The polymerization reached over 90% conversion in 5 h, producing PMMA with narrow molecular
weight distributions (Mw/Mn = 1.20–1.32). Yan and coworkers discovered that the polymerization of
styrene was controlled when using low toxic organic acid as ligand in iron mediated ATRP, but the
obtained polystyrene (PS) had a relatively broad molecular weight distribution (Mw/Mn = 1.50) [35].

Gibson et al. demonstrated that a four-coordinated iron(II) complex bearing α-diimine ligands had
high catalytic activity in normal ATRP of styrene [36]. A five-coordinated iron(II) complex containing
tridentate nitrogen donor ligands was also found very effective for styrene [37]. They investigated
the effects of different structures of catalyst on the reaction rate of ATRP and revealed that α-diimine
ligands bearing electron-donating groups increased the polymerization rate but the ligands bearing
electron-withdrawing substituents decreased the polymerization rate. Zhang and coworkers reported
that iron(II) ligated with N-(n-hexyl)-2-pyridylmethanimine (NHPMI) was an effective catalyst for
ATRP of MMA [38]. The molar ratio of iron/NHPMI had relatively large impacts on the controllability
of the polymerization. The molecular weight distribution of produced PMMA ranged from 1.25 to 2.50.
Wang et al. proved that iron(II) coordinated with tris(3,6-dioxaheptyl)amine (TDA) was an excellent
catalyst in normal ATRP of styrene with (1-chloroethyl)benzene (PECl) or PEBr as an initiator [39].
The residual catalyst could be easily removed out of the polymer product because of the good water
solubility of TDA.

Xue et al. reported that using 2-[(diphenylphosphino)-methyl]pyridine (DPPMP) as ligand in
an iron mediated normal ATRP of MMA had well-controlled characteristics [40]. The molecular
weight of PMMA increased linearly with the increase of monomer conversion. They investigated
the effect of different solvents (e.g., p-xylene, toluene, and anisole) on the polymerization, and found
that the controllability was decreased when using p-xylene or anisole as a solvent and only PMMA
prepared in toluene had low polydispersities (Mw/Mn = 1.1–1.3). The system was not applicable
for controlled polymerizations of methyl acrylate (MA) and butyl acrylate (BA). Recently, Gao et al.
claimed that the iron(II) complexed with anilidoimine ligands showed excellent catalytic performances
in ATRP of MMA [41]. Nagashima and coworkers described that a trinuclear iron(II) complex
with 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3TACN) as ligand was an effective catalyst for
normal ATRP of styrene [42]. The residual catalyst in the polystyrene could be removed by a
simple washing process. Nagashima et al. later also reported that the [(i-Pr)3TACN]FeX2 complex
(TACN = N,N,N-substituted-1,4,9-triazanonane) had a high catalytic activity in ATRP of styrene and
MMA [43]. They further found that the iron complex [{(cyclopentyl)3TACN}FeBr2]n could catalyze
well-controlled polymerizations of styrene, BA, and MMA [44]. The PS-b-PMMA block polymer had
been synthesized using this catalyst at a low catalyst concentration of 59 ppm.

2.2. Applications of Iron Catalyst in Reverse ATRP

Normal ATRP usually presents some limitations such as requirement of relatively large amount of
catalyst and instability of the lower oxidation state of transition metal complex. The use of oxidatively
stable catalyst in ATRP is a favorable approach to solve the problem. Reverse ATRP catalyzed by
air-stable higher oxidation state metal complex has been successfully applied to prepare well-designed
polymers. The mechanism of iron mediated reverse ATRP is shown in Figure 2.
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The iron mediated reverse ATRP of MMA with triphenylphosphine as ligand and
azodiisobutyronitrile (AIBN) as initiator was first reported by Teyssié and coworkers in 1998 [45].
From then on, a series of iron complex mediated reverse ATRP of vinyl monomers had been investigated.
Qiu et al. prepared well-defined PMMA with high molecular weight (Mn = 171,800 Da) and narrow
molecular weight distribution (Mw/Mn = 1.13) by a reverse ATRP with 1,1,2,2-tetraphenyl-1,2-ethanediol
(TPED)/FeCl3/PPh3 as catalyst [46]. They later investigated the polymerization of MMA by using
diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS)/FeCl3/PPh3 as a catalyst [47]. The polymerization
could be well-controlled even at high monomer conversions.

Zhu and coworkers conducted a reverse ATRP of MMA using iron(III)/pyromellitic acid
as a catalyst and AIBN as an initiator [48]. However, they found that this catalytic system
was only effective for methacrylates but not for acrylates. Zhu et al. later reported an iron
mediated reverse ATRP of MMA using 2,2-azobis(2-methylpropionamidine) dihydrochloride (V-50)
as initiator and N,N-butyldithiocarbamate ferrum (Fe(S2CN(C4H9)2)3) as catalyst, but the monomer
conversion and polymerization rate in this system were relatively low [49]. Ferro and coworkers
showed that the Fe(BOX)Cl3 (BOX = 1,1-bis(4,4-dimethyl-1,3-oxazolin-2-yl)ethane) was an excellent
catalyst for the reverse ATRP of styrene [50]. Ferro et al. investigated the reverse ATRP of
styrene initiated by TPED and catalyzed by three iron(III) complexes—namely FeIII coordinated
with BOX, 3,5-dimethyl-bispyrazolylmethane as well as 2,2′-dipyridyl—and found that only
TPED/FeCl3/BOX produced polystyrene with controlled molecular weights and narrow molecular
weight distributions [51].

Shaver and coworkers revealed that reverse ATRP of MMA and styrene could be achieved using
α-diimine iron complexes as catalysts and AIBN as initiator [52]. Based on the advantages of their
iron complex, a series of monomers such as MA [32,52], stearyl methacrylate (SMA) [53], n-hexadecyl
methacrylate (HMA) [54], 2-hydroxyethyl methacrylate (HEMA) [55], acrylonitrile (AN) [56], n-docosyl
acrylate (DA) [57], and methacrylonitrile (MAN) had been polymerized by reverse ATRP [58].

2.3. Applications of Iron Catalyst in Initiators for Continuous Activator Regeneration (ICAR) ATRP

A relatively large amount of catalyst is required in normal ATRP and reverse ATRP system.
Consequently, a relatively high concentration of catalyst residue is inevitably left in the polymer and
brings difficulty in the purification of polymer product after polymerization. In order to overcome this
limitation, the initiators for continuous activator regeneration atom transfer radical polymerization
(ICAR ATRP) had been developed [59,60]. Iron catalyst has been successfully applied to ICAR ATRP.
The mechanism of iron mediated ICAR ATRP is shown in Figure 3.
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In an iron-catalyzed ICAR ATRP system, radicals are generated by a conventional radical initiator
such as AIBN. The polymerization possesses highly controllable characteristics even at very low
concentration of catalyst. Zhu and coworkers firstly reported an iron mediated ICAR ATRP of MMA
and styrene in 2010 [60]. They investigated the effects of different polymerization conditions on the
ICAR ATRP, finding that the ICAR ATRP of styrene could be achieved even if the concentration of
iron(III) catalyst was as low as 50 ppm. However, this system showed insufficient catalytical activity for
the polymerization of MMA because of the intrinsic low activity of iron catalyst for polar monomers.
Zhu et al. later demonstrated a controlled ICAR ATRP of MMA using iron(III) complexed with PPh3 as
a catalyst, bifunctional 1,4-(2-bromo-2-methylpropionato)benzene (BMPB2) as an initiator, and AIBN
as a thermal radical initiator [61]. This catalytic system showed excellent activities and promoted the
polymerization of MMA even at a very low catalyst concentration of 30 ppm.

Wang and coworkers performed an ICAR ATRP of MMA using ethyl 2-bromoisobutyrate
(EBiB) as an initiator, AIBN as a thermal radical initiator, and FeCl3·6H2O/succinic acid as a
catalyst [62]. The polymerization could produce PMMA with narrow molecular weight distribution
(Mw/Mn = 1.20–1.50) at low catalyst concentrations (30–100 ppm). However, a relatively slower
polymerization rate was observed in this system, and the polymerization controllability was found to
decrease with the increase of AIBN, indicating the presence of coupling side reactions of macromolecular
radicals in the polymerization.

Matyjaszewski et al. reported an iron(III) complex mediated ICAR ATRP of MMA using AIBN as
thermal initiator at a catalyst concentration of 100 ppm [63]. Later, an iron(III) complex mediated ICAR
ATRP of styrene using 1,1-azobis(cyclohexanecarbonitrile) (ACHN) as thermal initiator had also been
reported by his group [64]. The obtained polystyrene had a narrow molecular weight distribution
with a polydispersity index (PDI, PDI = Mw/Mn) of 1.29. The polymerization rate was found to be
largely depended on the amount of ACHN. Matyjaszewski and coworkers investigated ICAR ATRP of
MMA and styrene catalyzed by iron-based N-heterocyclic carbene (FeX3(NHC)) complexes, finding
that both FeX3(IDipp) (IDipp = 1,3-bis(2,6-diisopropyl-phenyl)-imidazol- 2-ylidene) and FeX3(HIDipp)
(HIDipp = 1,3-bis(2,6-diisopropyl-phenyl)imidazolidin-2-ylidene) had excellent catalytical activities
and produced PMMA and PS with controlled molecular weights and narrow molecular weight
distributions (Mw/Mn = 1.15–1.40) [65].

2.4. Applications of Iron Catalyst in Activators Generated by Electron Transfer (AGET) ATRP

Activators generated by electron transfer (AGET) ATRP was first developed by Matyjaszewski [66].
Compared to normal ATRP, AGET ATRP has a better chance for industrial applications owing to its
lower requirement of catalyst. In a typical AGET ATRP, alkyl halide and transition metal complex
in its oxidatively stable state are used as initiator and catalyst respectively. The activators are
produced by in situ reduction of the oxidatively stable metal complex with tin(II) 2-ethylhexanoate
[Sn(EH)2] [67], ascorbic acid (VC) [68,69], or other reducing agents [70]. Iron catalysts are highly
promising in AGET ATRP system because of their environmental friendliness, naturally abundant
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features, and biocompatibilities. A descriptive mechanism of AGET ATRP catalyzed by iron complex
is shown in Figure 4.
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The AGET ATRP of MMA using FeCl3 complexed with iminodiacetic acid (IDA) as catalyst and
VC as reducing agent had been reported by Zhang and his colleagues in 2008 [68]. The polymerization
was well-controlled even in the presence of a limited amount of air, producing PMMA with narrow
molecular weight distributions (Mw/Mn = 1.31–1.44). Zhang et al. used FeCl3/PPh3 complex as a
catalyst and VC as a reducing agent in AGET ATRP of MMA [71]. However, the above mentioned
two catalytic systems showed relatively low catalytic performance due to low initiator efficiency.
Zhang and coworkers later reported an iron(III) mediated AGET ATRP of styrene using TDA as a
ligand and 1,3,5-(2′-bromo-2′-methylpropionato)benzene (BMPB) as an initiator [72].

The iron-based AGET ATRP of styrene derivatives including 4-methylstyrene (MS),
4-acetoxystyrene (AS), and 4-tert-butylstyrene (tBS) have been explored by Sen and his coworkers
using PEBr as an initiator, FeBr3/tributylamine as a catalyst, and Sn(EH)2 as a reducing agent [73].
Well-defined PS-b-PMMA block copolymer had been prepared using the catalytic system. The monomer
conversion was revealed to be determined by the activity of the reducing agent and the yield would be
dramatically decreased if a weak reducing agent was used in the polymerization. As the requirement
of a large amount of reducing agent actually limits the industrial application of iron(III) mediated
AGET ATRP, it is of great importance to decrease the amount of reducing agent and find low-cost and
commercially available reducing agent. Xue and coworkers recently found that the iron(III) mediated
ATRP of MMA could be successfully achieved using trimethylphosphite (TMP) and tributylphosphine
(TBP) as ligands even in the absence of reducing agent [74].

Zhu and his colleagues reported an iron mediated AGET ATRP of styrene in the presence of Fe(OH)3

using commercially available tetra-n-butylphosphonium bromide (TBPBr) or tetrabutylammonium
bromide (TBABr) as the ligands [75]. They claimed that the polymerization could occur at the catalyst
concentration as low as ppm level. However, as the inorganic base Fe(OH)3 was practically insoluble in
most organic solvents, it was difficult to calculate the exact amount of the iron catalyst participated in the
reaction. Yan and coworkers used 1-butyl-3-methyl imidazolium hydroxide as an additive to enhance
the iron mediated AGET ATRP of MMA [76]. Compared to Fe(OH)3, 1-butyl-3-methyl imidazolium
hydroxide was readily soluble in MMA and other organic solvents. Therefore, it was feasible to
quantify the amount of 1-butyl-3-methyl imidazolium hydroxide. They investigated the effect of
the molar ratio of 1-butyl-3-methyl imidazolium hydroxide to iron complex on the polymerization,
finding that the polymerization was controlled only in appropriate ratios of 10.8:1–15.6:1. Yan et al.
later studied the effects of the other imidazolium-type ionic liquids (ILs) such as 1-butyl-3-methyl
imidazolium carbonate ([Bmim][CO3]), 1-butyl-3-methyl imidazolium phosphate ([Bmim][PO4]) and
1-butyl-3-methyl imidazolium bicarbonate ([Bmim][HCO3]) on the iron mediated AGET ATRP of
MMA [77].

Cellesi and coworkers discovered that the iron(III) complexed with commercial porphyrin ligand
was an excellent catalyst for the AGET ATRP of poly(ethylene glycol) methyl ether methacrylate
(PEGMA) [78]. Recently, Bai et al. found that iron(III) ligated with 1-butyl-3-methylimidazolium
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hexafluorophosphate (BMIMPF6) was an excellent catalyst for the AGET ATRP of MMA [79]. Fe(0) wire
was used as a reducing agent in this polymerization and it could be recycled and reused.

2.5. Applications of Iron Catalyst in Generation of Activators by Monomer Addition (GAMA) ATRP

The GAMA ATRP is usually conducted without the use of conventional free radical initiators or
reducing agent. The Fe(II) complex is generated by the reaction of Fe(III) complex and monomer due
to the oxidizing power of FeX3. The mechanism of GAMA ATRP catalyzed by iron complex is shown
in Figure 5.
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Noh and coworkers reported an iron(III) mediated ATRP of MMA using phosphorus as ligand in
the absence of a conventional free radical initiator or reducing agent [80]. The effects of iron complex
and ligand on the polymerization have been investigated, finding that the FeBr3/DPPP/EBiB [DPPP =

2-(diphenylphosphino)pyridine] system showed the highest controllability and produced well-defined
PMMA (Mn = 1.75 × 104 Da, PDI = 1.18). In addition, controlled polymerizations of butyl methacrylate,
methyl acrylate, and styrene were also achieved by using FeBr3/DPPP as a catalyst. For comparison,
a normal ATRP of MMA using FeBr2/phosphorus as the catalyst was also investigated. However,
the molecular weights of produced PMMA were higher than theoretical values, and a relatively
higher molecular weight distribution (PDI = 1.37) was obtained. These results indicated that the
FeBr3/phosphorus showed a better controllability than the FeBr2/phosphorus for the polymerization of
MMA. Later, a series of Fe(III)/phosphorus mediated GAMA ATRP have been reported by their group,
and a large number of well-defined polymers and block copolymers have been synthesized [74,81–83].

Kamigaito and coworkers conducted a FeCl3/TnBP [TnBP = tri(n-butyl)phosphine] mediated
polymerization of styrene without the use of conventional radical initiator and reducing agent [84].
The polymerization was well-controlled and yielded poly(styrene) (PS) with a low polydispersity index
(PDI = 1.19). Moreover, this polymerization was also successfully applied to the copolymerization
of styrene with other monomers including MA, MMA, and BA. Later, the FeX3/nitrogen ligand
(X = Cl, Br) catalyzed polymerizations of styrene, MMA and MA in the absence of conventional
radical initiator and reducing agent were also achieved in their group [85]. Well-defined PS
(Mn = 1.03 × 104 Da, PDI = 1.11), PMMA (Mn = 9.70 × 103 Da, PDI = 1.26), PMA (Mn = 8.50 × 103 Da,
PDI = 1.15), and PMMA-b-PS (Mn = 2.01 × 104 Da, PDI = 1.31) block copolymer were successfully
prepared. A mechanism investigation revealed that FeCl3 was converted into [Fe(III)Cl4-] and
[Fe(III)Cl2+] in the presence of phosphine or nitrogen ligand. The [Fe(III)Cl2+] interacted with
phosphorus ligand give Fe(III)Cl2(PR3)+ or [Fe(II)Cl2(PR3)•+] species, which were the active catalysts
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for ATRP. Matyjaszewski and coworkers reported that in the Fe(III)X3/phosphorus mediated ATRP
of styrene [86]. The phosphines could directly reduce Fe(III) to Fe(II) and could also act as a ligand
coordinated with iron to form efficient ATRP catalyst.

Recently, Xue et al. reported a FeBr3/TPP (TPP = triphenylphosphine) catalyzed polymerization
of MMA in the absence of conventional free radical initiators or reducing agent. The system could also
be applied to the polymerization of butyl methacrylate (BMA) and styrene (St) [87]. The mechanism of
the polymerization has been investigated, and it was found that the polymerization was initiated by
Ph3PBr2 or Ph3PBr4 generated from the reaction between TPP and FeBr3.

2.6. Applications of Iron Catalyst in Supplemental Activator and Reducing Agent (SARA) ATRP

Fe(0) is a kind of reducing agents in iron mediated AGET ATRP. It can also act as a supplemental
activator and react with ATRP initiator to induce a polymerization [63,88]. This system is termed as
supplemental activator and reducing agent ATRP (SARA ATRP). The mechanism of SARA ATRP is as
shown in Figure 6.
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Coelho and coworkers reported a Fe(0)/Cu(II) based SARA ATRP of 2-(dimethylamino)ethyl
methacrylate (DMAEMA) [89]. The molecular weights of obtained poly(DMAEMA) (PDMAEMA)
increased linearly with the increase of monomer conversions and the molecular weight distribution
was narrow (PDI = 1.13). Moreover, the polymerization of DMAEMA was also realized by using
bromo-telechelic mPEG (mPEG-Br) or cholesteryl-2-bromoisobutyrate (CHO-Br) as a macroinitiator,
producing corresponding PEG-b-PDMAEMA and CHO-b-PDMAEMA block copolymers. They later
carried out the Fe(0)/Cu(II) based SARA ATRP of MA and glycidyl methacrylate (GMA), and prepared
PMA and poly(GMA) with low polydispersity index (PDI = 1.08 and 1.27 respectively) [90].

2.7. Developments of Iron Ligands in ATRP

The ligand is a key factor in iron mediated ATRP. The redox potential of the metal core is controlled
by the ligand around the center iron ions. Therefore, the polymerization rate and the controllability
are practically dependent on the ligands. A large variety of phosphorous, nitrogen, and oxygen
compounds have been used as iron ligands in ATRP, and these ligands are primarily classified as
nitrogen-based ligand, phosphorous ligand, organic acid-based ligand, and onium salt-based ligand.

2.7.1. Nitrogen-Based Ligands

As nitrogen ligand has shown excellent performances in copper mediated ATRP, it has also
been largely used in iron mediated polymerizations. The first nitrogen ligand used in iron complex
catalyzed ATRP was tri-n-butylamine (TnBA), reported by Matyjaszewski in 1997 [25]. The FeBr2/TnBA
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complex showed very high activity and catalyzed well-controlled polymerization of styrene and
methyl methacrylate. Other typical nitrogen ligands include dibutylamine (DnBA) [85], n-butylamine
(nBA) [85], TDA [91], tetramethylethylenediamine (TMEDA) [92,93], pentamethyldiethylenetriamine
(PMDETA) [94,95], N,N,N′,N”,N”-penta(methyl acylate)diethylene- triamine (MA5-DETA) [96],
2,2′-bipyridine (bpy) [97], 4,4′-dinonyl-2,2′-dipyridyl (dNbpy) [98], tris(2-dimethylaminoethyl)amine
(Me6TREN) [88], NHPMI, and 1,3-bis-(dimethylamino)propane (TPDA) [38,99].

Sawamoto and coworkers reported an iron mediated ATRP of MMA with a chiral compound,
(R)-N,N-dimethyl-1-(2-(diphenylphosphino)phenyl)-ethanamine, as ligand. The polymerization could
reach 92% conversion in 23 h [99]. Matyjaszewski group showed an iron mediated polymerization
of vinyl acetate (VAc) using PMDETA as ligand [100]. They found that the iron complex in this
system actually acted as a redox initiator but not a catalyst. Interestingly, the synthesized poly(vinyl
acetate) (PVAc) was an excellent macroinitiator for ATRP of styrene and BA. They later reported a Fe(0)
mediated ATRP of MA with Me6TREN as ligand [88]. The polymerization was well controlled but
only reached a low conversion of 16% due to the formation of inefficient deactivators.

Zhang and coworkers presented an iron mediated ATRP of MMA using MA5-DETA as
a ligand [101]. The catalyst promoted well-controlled ATRP of MMA with high initiation
efficiency. Wu et al. conducted an iron mediated ATRP of MMA using hexamethylene tetramine
(HMTA) as ligand, and prepared PMMA with controlled molecular weights and narrow molecular
weight distributions (Mw/Mn = 1.24–1.41) [102]. Baruah et al. performed ATRP of HMA using
tris(2,2′-bipyridine)iron(III) complex as catalyst and CBr4 as initiator [54]. The effects of monomer,
initiator, and catalyst concentration on the controllability of the polymerization were investigated.
ATRP of styrene with FeBr2/Fe(0)/dNbpy as a catalyst had been reported and the polymerization
produced polystyrene with narrow molecular weight distributions (Mw/Mn = 1.17–1.27) [103].
The iron mediated ATRP of MMA with [N,N′-diphenyl-N,N′-di(quinoline-2-methyl)]-1,2-ethylene
diamine (DPDQMEDA), (1R,2R)-(–)-N,N′-di(quinoline-2-methyl)di-iminocyclohexane (DQMDICH)
and [N,N′-dioctyl-N,N′-di(quinoline-2-methyl)]-1,2-ethylene (DODQMEDA) as ligands had also been
reported [104]. Except for the nitrogen-based ligands mentioned above, the tridentate diiminopyridine
(DOIEP) and diaminopyridine (DOAEP) were also used in iron mediated ATRP [105].

2.7.2. Phosphorous Ligands

Phosphorous ligands exhibit excellent performances in iron mediated ATRP. The first
phosphorous ligand used in iron mediated ATRP was TPP, reported by Sawamoto in 1997 [26].
A large number of phosphorus ligands such as TnBP [25], TMP [74], triethyl phosphite
(TEP) [82], TPP [106], tricyclohexyl phosphine (TCHP) [107], tris(4-methoxyphenyl)phosphine
(TMPP) [86], trichlorophenyl phosphine (TCPP) [107], tris(2,4,6-trimethoxyphenyl)phosphine
(TTMPP) [86], DPPP [108], DPPMP [40], 2-(diphenylphosphino) benzaldehyde (DPPB) [80],
diphenyl-(2-methoxyphenyl)phosphine (DPMPP) [83], N-(2-diphenyl-phosphinobenzylidene)-
aniline (DPPBA) [80], N,N-dimethyl-(2-(diphenylphosphino)phenyl)-methanamine (DMDPM) [99],
(R)-N,N-dimethyl-1-(2-(diphenylphosphino)-phenyl)ethanamine (DMDPE) [99], N,N-dimethyl-
(2-(dicyclohexylphosphino)-phenyl)methanamine (DMDCM) [99], bis(diphenylphosphino)- methane
(BDPPM) [74], and 1,2-bis(diphenylphosphino)ethane (BDPPE) have been developed for iron mediated
ATRP [74].

Sawamoto group reported an iron mediated ATRP of PEGMA using TPP as a ligand and prepared
corresponding polymers with controlled molecular weights and narrow molecular weight distributions
(PDI < 1.20) [107]. They investigated the effect of different ligands such as TPP, TMPP, and TCPP on the
polymerization rate of PEGMA and found that the catalytic activity of iron complex could be markedly
enhanced by the introduction of electron donating groups into the TPP ligand.

Yamamoto and coworkers found that the iron mediated ATRP with TPP as a ligand could be
successfully applied to grafting methyl methacrylate to polyethylene (PE) [109]. Ying et al. conducted an
iron mediated ATRP of AN with TPP as a ligand [110]. Noh and his colleagues performed iron mediated
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ATRP of styrene and MMA using DPPP and DPPMP as ligands and showed that FeBr2/DPPP had high
catalytic activity in the ATRP of MMA but poor catalytical performance in the ATRP of styrene [106].
In order to promote the polymerization rate of iron mediated ATRP, Matyjaszewski et al. investigated
the iron mediated ATRP of styrene using a series of phosphines such as TPP, TMPP, and TTMPP as
ligands [86]. They revealed that Fe(III)X3/TTMPP was very active in the ATRP of styrene, and a high
monomer conversion of 92% could be achieved in 21 h. Noh and coworkers found that the iron mediated
ATRP of MMA using TPP, DPPP, or TEP as a ligand was well controlled, but the polymerization of
styrene showed poor controllability [82]. They later also investigated iron mediated ATRP using
2-(diphenylphosphino)-N,N′- dimethyl-[1,1′-biphenyl]-2-amine (DPPDMA), DPPB, DPPBA, DPMPP,
BDPPM, BDPPE, and 1,3-bis(diphenylphosphino)propane (BDPPP) as ligands [74,80,83].

2.7.3. Organic Acid-Based Ligands

The nitrogen-based ligands and the phosphorous ligands have been widely used in iron mediated
ATRP. However, many these ligands are practically toxic and harmful to human health. Therefore,
finding ‘green’ ligands for iron mediated ATRP attracts considerable attentions of chemical researchers.
Organic acids seem to be excellent ligands for iron mediated ATRP because of their low toxicity
and inexpensive cost characteristics. These acids include pyromellitic acid [48], IDA [111], succinic
acid (SA) [62], acetic acid [112], isophthalic acid (IA) [113], and ethylenediamine tetraacetic acid
(EDTA) [114].

Yan and coworkers carried out an iron mediated ATRP of styrene using SA as ligand and obtained
polystyrene with controlled molecular weights and low polydispersities (Mw/Mn = 1.23–1.53) [115].
The iron mediated ATRP of MMA with IA as ligand and ethyl 2-bromopropionate (EBP) as initiator
was found to be well controlled in polar solvents such as N,N-dimethylformamide [113]. However,
the polymerization could not be successfully finished in bulk or in nonpolar solvents because the
solubility of the catalyst and ligand in monomer or nonpolar solvents were very limited.

Ji and coworkers reported an iron mediated ATRP of acrylonitrile and prepared a
poly(acrylonitrile)-g-poly(styrene) copolymer using IDA as ligand [116]. The copolymer could
be further modified by NH2OH·HCl to produce amidoxime poly(acrylonitrile)-g-poly(styrene) beads,
which had an excellent adsorption selectivity for Hg2+. Similar poly(acrylonitrile) had also been
synthesized with IDA as ligand by Chen group in 2011 [117]. Hou et al. used iron mediated ATRP of
acrylonitrile with IDA or SA as ligand to yield poly(acrylonitrile) (PAN) with well-controlled molecular
weights [118,119]. Recently, an iron mediated ARGET ATRP of AN using IA as ligand and VC as
reducing agent was reported by Chen group, and PAN with narrow molecular weight distributions
(Mw/Mn = 1.14–1.38) were obtained [120]. Iron mediated reverse ATRP of MMA with pyromellitic acid
as ligand had been explored by Zhu and coworkers in 2003 [48]. A series of (di)picolinic acids including
2,6-pyridine dicarboxylic acid (PDA 1), 2,3-pyridine dicarboxylic acid (PDA 2), 3,5-pyridine dicarboxylic
acid (PDA 3), 2,5-thiophene dicarboxylic acid (PCA), and their derivatives have been developed as
ligands for iron mediated ATRP in their group [121]. They concluded that the polymerization rate and
the polymer polydispersity were largely depended on the structure of ligands.

EDTA was also an excellent ligand for iron mediated ATRP. Malmström and coworkers reported
an iron mediated ATRP of styrene using EDTA as ligand [122]. Similarly, Wu and coworkers reported
a Fe(0) mediated single electron transfer-living radical polymerization (SET LRP) of MMA using
EDTA as ligand and obtained PMMA with controlled molecular weights and low polydispersities
(Mw/Mn = 1.19–1.35) in the presence of a limited amount of air [123].

2.7.4. Onium Salt-Based Ligands

Onium salt is also a type of widely used ligand in iron mediated ATRP. Matyjaszewski and
coworkers explored a large variety of onium salts as iron ligands and found that FeBr3/onium salts
catalyzed well-controlled reverse ATRP of MMA and MA, but the catalysts were not efficient for
the polymerization of styrene [32]. Zhu et al. investigated the iron mediated ATRP of styrene using
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onium salt as ligand and discussed the effects of different onium salts such as tetrabutylammonium
triflate (TBAOTf), triphenylamino phosphonium bromide (TPAPB), dimethyl diallylammonium
chloride (DMDAAC), hexadecyl trimethyl ammonium chloride (HDTMAC), and hexadecyl trimethyl
ammonium bromide (HDTMAB) on the polymerization rate and polydispersities of obtained
polymers [124].

Matyjaszewski group investigated iron mediated ATRP of MMA in the presence of a series of salts
including TBAOTf, tetrabutylammonium perchlorate (TBAClO4), tetrabutylammonium with BF4 anion
(TBABF4), and tetrabutylammonium with PF6 anion (TBAPF6) [125]. They found that iron/TBAOTf
could catalyze ATRP of MMA with excellent controllability not only in anisole but also in nonpolar
solvents. The weakly coordinating triflate anions were beneficial to the dissolution of FeIIBr2. The iron
mediated ATRP of MMA with phosphazenium salts (PZN-X; X = Cl, Br, I) as ligands had been studied
by Inoue and coworkers in 2009 [126]. They found that the phosphazenium halide was an excellent
cocatalyst, and the in situ formed iron halide/phosphazenium halide complex had an excellent catalytic
performance in ATRP of alkyl and functionalized methacrylates.

Ionic liquids (ILs) have been used in iron mediated ATRP due to their low volatility
and high stability. A series of ILs such as 1-butyl-3-methylimidazolium bromide (MIBR),
1-butyl-3-methylimidazolium chloride (MICH), 1-butyl-3-methylimidazolium dodecyl sulfate (MICDDS),
and 1-butyl-3-methylimidazolium carbonate (MICar) have been investigated by Matyjaszewski et al.
in iron mediated ATRP [127]. The polymerization produced PMMA with controlled molecular
weights and narrow molecular weight distributions (Mw/Mn = 1.24–1.55) in the presence of ILs
without any other organic ligands. The iron mediated reverse ATRP of MAN in the presence of ionic
liquids such as 1-methylimidazolium acetate ([mim][AT]), 1-methylimidazolium caproate ([mim][CT]),
1-methylimidazolium butyrate ([mim][BT]), and 1-methylimidazolium heptylate ([mim][HT]) had been
inspected by Chen and coworkers [128]. A poly(methacrylonitrile)-b-poly(styrene) block copolymer had
been synthesized in the presence of 1-methylimidazolium acetate using PMAN as a macroinitiator.

2.7.5. Miscellaneous Ligands

Generally, iron ions could complex with any ligand that has a coordination site. Therefore,
a number of polar solvents such as acetonitrile (MeCN) and N,N-dimethylformamide (DMF) may be
potential ligands for iron mediated ATRP [129,130].

Xue and coworkers conducted iron mediated ATRP of MMA in polar solvents such as
N-methylpyrrolidone, DMF, and MeCN using Sn(EH)2 as a reducing agent [129]. They studied
the effects of solvents and different initiators on the polymerization of MMA and found that most of
the polymerizations showed excellent controllability. Xue et al. later also succeeded in iron mediated
ATRP of MMA in polar solvents using alcohols (e.g., methanol, ethanol, ethylene glycol, glycerol) as
reducing agents [130].

As a summary, Table 1 lists representative experimental data of iron complex catalyzed ATRP.
A large variety of iron compounds coordinated with nitrogen (Table 1, Entry 3, 11, 16, 24, 34, 46, 47,
and 81), phosphorus (Table 1, Entry 4, 5, 25, 28, 36, 53–56, 76, and 78), organic acid (Table 1, Entry 21,
37, 38, and 40), onium salt ligands (Table 1, Entry 9, 10, 41, 48, and 63) have been employed as ATRP
catalysts for controlled polymerizations of acrylate (Table 1, Entry 22–24, 79, 81, and 82), methacrylate
(Table 1, Entry 3–5, 9, 10, 27–29, 42–46, 50–56, 63, 70–74, and 80), styrene (Table 1, Entry 11, 14, 16, 18, 47,
48, 64–66, and 75–78), and acrylonitrile (Table 1, Entry 36–38) due to their low toxicity, high abundance,
and environmental friendliness. A large number of well-defined homo- (Table 1, Entry 3–5, 9–11, 22–25,
27–29, 36–43, 46–48, 50–56, 63–65, 70–72, 74–83), block- (Table 1, Entry 4, 9, 23, 25, 27–29, 36, 40–43, 46,
47, 50, 51, 63, 71, 82, 83), and graft copolymers (Table 1, Entry 26) have been successfully synthesized
via iron mediated ATRP.
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Table 1. Iron complex catalyzed ATRP.

Entry ATRP Monomer Iron Ligand/Additive Initiator Catalyst
Concentration(mmol/L)

Temp.
(◦C)

Time
(h)

Conv.
(%)

Mn
(g/mol) Mw/Mn Ref.

1

Normal
ATRP

MMA FeCl2 TPP CCl4 a 10.0 80 30.0 90.0 5.31 × 103 1.41 [26]
2 MMA FeBr2 TnBP (MMA)2Br b 10.0 80 5.0 90.0 1.54 × 104 1.42 [34]
3 MMA FeBr2 NHPMI EBiB 62.8 90 2.1 47.0 1.33 × 104 1.21 [38]
4 MMA FeBr2 DPPMP BPN 23.4 90 5.0 83.0 1.70 × 104 1.17 [40]
5 MMA FeBr2 DMDPE H-(MMA)2-Br c 10.0 80 23.0 92.0 1.16 × 104 1.25 [99]
6 MMA FeCl2 MA5-DETA EBiB 47.1 90 20.0 61.2 8.77 × 103 1.29 [101]
7 MMA FeCl2 DPDQMEDA EBiB 31.6 90 1.5 87.5 2.60 × 104 1.35 [104]
8 MMA FeCl2 IA EBP 18.8 90 10.0 89.0 5.41 × 104 1.39 [113]
9 MMA FeBr2 TBAOTf EBPA 31.4 60 16.0 98.0 1.79 × 104 1.20 [125]
10 MMA FeBr2 MIBR EBiB 125.4 60 7.3 65.3 8.60 × 103 1.16 [127]
11 styrene FeBr2 TnBA PEBr 87.3 110 5.0 82.0 9.60 × 103 1.13 [25]
12 styrene FeCl2 acetic acid CCl4 a 43.5 120 23.0 75.0 1.47 × 104 1.46 [35]
13 styrene FeCl2 PMDETA PECl 43.5 120 24.0 65.0 1.51 × 104 1.62 [37]
14 styrene FeBr2 TDA PEBr 43.5 110 18.0 80.0 1.74 × 104 1.20 [39]
15 styrene FeBr2 DPPMP PEBr 87.0 80 24.0 67.0 6.95 × 103 1.41 [40]
16 styrene FeCl2 Me3TACN PECl 5.0 120 20.0 76.0 2.80 × 104 1.20 [42]
17 styrene FeBr2 (i-Pr)3TACN PECl 34.9 120 4.0 95.0 2.60 × 104 1.31 [43]
18 styrene FeBr2 dNbpy PEBr 34.9 110 21.0 64.0 6.47 × 103 1.27 [103]
19 styrene FeBr2 DPPP PEBr 87.3 110 8.0 37.0 5.20 × 103 1.42 [106]
20 styrene FeCl2 SA BEB d 72.5 70 3.0 80.0 6.00 × 103 1.30 [115]

21

Normal
ATRP

styrene FeCl2 EDTA PEBr 5.6 50 0.5 32.0 3.10 × 103 1.20 [122]
22 MA FeBr2 TBPBr EBP 47.7 90 23.2 32.0 6.40 × 103 1.23 [32]
23 MA Fe(Cp)I(CO)2 Al(Oi-Pr)3 (CH3)2C(CO2Et)I 40.0 60 80.0 93.0 1.21 × 104 1.19 [33]
24 BA FeBr2 (cyclopentyl)3TACN EBiB 27.8 100 20.0 92.0 2.40 × 104 1.24 [44]
25 PEGMA FeBr2 TMPP H-(MMA)2-Br c 5.0 60 3.0 46.0 2.03 × 104 1.14 [107]

26

Reverse
ATRP

MMA FeCl3 TPP AIBN 55.4 90 8.0 76.1 1.56 × 105 1.34 [109]
27 MMA FeCl3 TPP AIBN 29.0 85 2.0 85.0 7.50 × 104 1.16 [45]
28 MMA FeCl3 TPP TPED 30.4 95 12.0 99.1 1.72 × 105 1.13 [46]
29 MMA FeCl3 pyromellitic acid AIBN 25.1 100 6.0 88.6 2.78 × 104 1.28 [48]
30 MMA FeCl3 PDA 3 AIBN 31.4 100 18.0 93.0 2.16 × 104 1.32 [121]
31 MMA Fe(S2CN(C4H9)2)3 / V-50 4.7 90 72.0 61.8 3.32 × 104 1.34 [49]
32 styrene FeCl3 BOX TPED 23.3 120 20.0 N/A 2.10 × 104 1.15 [50]
33 SMA [Fe(DMF)6](ClO4)3 bpy AIBN 1.0 80 N/A N/A 1.48 × 105 1.36 [53]
34 HMA [Fe(DMF)6](ClO4)3 bpy AIBN 20.0 80 N/A N/A 7.75 × 104 1.24 [54]
35 HEMA FeCl3 TPP BPO N/A 80 24.0 90.0 2.37 × 104 N/A [55]
36 AN FeCl3 TPP TPED 15.0 70 6.0 48.3 5.32 × 103 1.16 [110]
37 AN FeCl3 IDA AIBN 12.0 60 4.0 38.0 5.20 × 103 1.16 [118]
38 AN FeCl3 SA AIBN 6.3 60 4.0 45.0 1.80 × 104 1.17 [119]
39 DA FeCl3 bpy AIBN 1.0 80 N/A 50.0 1.20 × 104 1.46 [57]
40 MAN FeCl3 IA AIBN 58.1 75 3.0 52.0 5.59 × 103 1.13 [58]
41 MAN FeCl3 [mim][AT] AIBN 39.7 70 2.0 67.9 7.56 × 103 1.23 [128]
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Table 1. Cont.

Entry ATRP Monomer Iron Ligand/Additive Initiator Catalyst
Concentration(mmol/L)

Temp.
(◦C)

Time
(h)

Conv.
(%)

Mn
(g/mol) Mw/Mn Ref.

42

ICAR
ATRP

MMA FeCl3 TPP BMPB2 7.5 60 5.5 40.8 2.44 × 104 1.24 [61]
43 MMA FeCl3 SA EBiB 0.6 90 36.0 36.4 2.12 × 104 1.22 [62]
44 MMA FeBr3 TBABr EBPA 0.6 60 48.0 51.0 9.10 × 103 1.38 [63]
45 MMA FeBr3(HIDipp) TBABr EBPA 0.2 60 24.0 64.0 1.29 × 104 1.20 [65]
46 MMA FeCl3 HMTA CCl4 N/A 60 5.0 71.1 3.55 × 104 1.25 [102]
47 styrene FeCl3 TDA PEBr 14.5 110 96.0 26.2 7.85 × 103 1.12 [60]
48 styrene FeBr3 TBABr EBPA 0.4 90 24.0 70.0 1.40 × 104 1.15 [64]

49

AGET
ATRP

MMA FeCl3 IDA EBiB 28.0 90 7.0 76.0 2.50 × 104 1.30 [68]
50 MMA FeCl3 TBABr EBiB 18.8 90 7.0 55.8 3.45 × 104 1.21 [69]
51 MMA FeCl3 TPP EBiB 18.8 90 14.0 44.3 2.18 × 104 1.25 [70]
52 MMA FeBr3 DMF EBPA 11.8 60 10.0 35.3 3.14 × 104 1.23 [129]
53 MMA FeBr3 TnBP EBiB 23.4 80 2.5 84.0 2.02 × 104 1.23 [74]
54 MMA FeBr3 TMP EBiB 23.4 80 2.0 54.0 1.11 × 104 1.26 [74]
55 MMA FeBr3 DPPP EBiB 23.4 80 9.0 87.0 1.75 × 104 1.18 [74]
56 MMA FeBr3 BDPPM EBiB 23.4 80 1.0 71.0 7.30 × 103 1.23 [74]
57 MMA FeBr3 BDPPE EBiB 23.4 80 4.0 66.0 6.80 × 103 1.49 [74]
58 MMA FeBr3 BDPPP EBiB 23.4 80 4.0 92.0 9.40 × 103 1.66 [74]
59 MMA FeCl3 TBABr EBiB 37.7 60 7.0 27.4 9.11 × 103 1.49 [76]
60 MMA FeCl3 [Bmim][CO3] EBiB 37.7 70 18.0 16.7 6.33 × 103 1.33 [77]
61 MMA FeCl3 [Bmim][PO4] EBiB 37.7 90 18.0 43.1 1.12 × 104 1.42 [77]
62 MMA FeCl3 [Bmim][HCO3] EBiB 37.7 90 18.0 31.9 9.24 × 103 1.44 [77]

63

AGET
ATRP

MMA FeCl3 BMIMPF6 EBiB 12.6 90 4.0 46.2 2.31 × 104 1.23 [79]
64 styrene FeCl3 TDA BMPB 13.1 110 8.6 65.4 1.49 × 104 1.15 [72]
65 styrene FeBr3 TnBA BEB d 21.8 110 2.0 68.0 2.67 × 104 1.20 [73]
66 styrene FeCl3 TBABr PEBr 17.5 110 24.0 46.7 9.10 × 103 1.28 [75]
67 tBS FeBr3 TnBA BEB d 54.6 110 2.0 51.0 1.19 × 104 1.33 [73]
68 MS FeBr3 TnBA BEB d 38.0 110 2.0 61.0 1.28 × 104 1.38 [73]
69 AS FeBr3 TnBA BEB d 58.2 110 2.0 85.0 1.36 × 104 1.32 [73]

70

GAMA
ATRP

MMA FeBr3 DPPP EBiB 4.7 80 4.0 42.0 5.10 × 103 1.16 [80]
71 MMA FeBr3 DPPP EBiB 23.4 80 6.0 57.0 1.24 × 104 1.15 [81]
72 MMA FeCl3 TPP EBiB 47.1 80 5.0 62.0 2.62 × 104 1.13 [82]
73 MMA FeCl3 TnBA (MMA)2-Cl e 10.0 100 76.0 91.0 9.70 × 103 1.26 [85]
74 MMA FeBr3 TPP / 47.1 80 0.5 11.0 6.01 × 104 1.21 [87]
75 styrene FeBr3 DPPP PEBr 87.0 110 12.0 54.0 6.75 × 103 1.12 [80]
76 styrene FeCl3 DPPDMA PECl 87.3 110 15.0 39.0 4.61 × 103 1.10 [83]
77 styrene FeCl3 TnBP (MMA)2-Cl e 10.0 100 N/A 91.0 1.10 × 104 1.19 [84]
78 styrene FeBr3 TTMPP EBiB 21.8 100 21.0 44.0 8.10 × 103 1.11 [86]
79 MA FeBr3 DPPP EBiB 55.5 80 24.0 40.0 4.30 × 103 1.18 [80]
80

SARA
ATRP

MMA FeBr3/Fe0 TBABr EBPA 0.6 60 45.0 76.0 1.64 × 104 1.18 [63]
81 MA CuBr2/Fe0 Me6TREN MBP 0.7 25 72.0 88.0 1.78 × 104 1.06 [88]
82 MA CuBr2/Fe0 Me6TREN EBiB N/A 30 5.0 77.0 1.54 × 104 1.08 [90]
83 DMAEMA CuBr2/Fe0 PMDETA EBiB 4.4 25 N/A 93.0 1.40 × 104 1.13 [89]

a CCl4 = carbon tetrachloride; b (MMA)2Br = Me2C(CO2Me)CH2C-(CO2Me)(Me)Br; c H-(MMA)2-Br = H(CH2CMeCO2Me)2Br; d BEB = 1-bromoethyl benzene; e (MMA)2-Cl =
Me2C(CO2Me)CH2C-(CO2Me)(Me)Cl.
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3. The Enzyme Mediated ATRP System

Though iron mediated ATRP has been successfully developed and applied to controlled
polymerization of a large number of vinyl monomers in recent two decades, the residual iron
catalyst in polymer products still presents a challenge to the industrialization of iron mediated ATRP
and practically limits its application in biomaterials or microelectronics. Enzymes are usually non-toxic,
highly selectable, biodegradable, and environmentally friendly biocatalysts and have been used to
synthesize a large number of polymers under mild reaction conditions due to their biocompatible
characteristic and high catalytic efficiency. Similarly, enzymes have been utilized as highly efficient
catalysts in ATRP system.

Di Lena and coworkers reported that the laccase derived from fungus Trametes versicolor (LTV)
could induce ATRP of methacrylic monomers in the presence of alkyl halide initiators and VC [131].
A couple of alkyl halides including EBiB, 2-bromopropionitrile (BPN), ethyl iodoacetate (EIAc),
methyl 2-chloropropionate (MCP), and 2-cyano-2-propyl dithiobenzoate (CPDB) were explored in the
polymerization of PEGMA. Among these initiators, BPN showed the highest initiation efficiency and
produced corresponding polymers with relatively low polydispersity index (PDI = 1.94). The catalytical
system was also applied to the polymerization of hydrophobic monomers such as MMA with EBiB as
an initiator in the presence of LTV. Later, di Lena et al. performed the polymerization of poly(ethylene
glycol) methyl ether acrylate (PEGA) using catalase derived from bovine liver (CBL) as catalyst [132].
The molecular weights of obtained poly(PEGA) increased linearly with the increase of monomer
conversions when using BPN as an initiator, and the molecular weight distribution of poly(PEGA)
was relatively narrow (PDI = 1.60). Moreover, the polymerization of PEGA in the presence of LTV or
horseradish peroxidases (HRP) was also conducted, and the molecular weight of poly(PEGA) was
found to increase with the increase of monomer conversion.

Bruns et al. conducted the ATRP of N-isopropylacrylamide (NIPAAm) using HRP as a catalyst and
2-hydroxyethyl-2-bromoisobutyrate (HEBiB) as an initiator and prepared poly(NIPAAm) (PNIPAAm)
with a high molecular weight (Mn = 9.99 × 104 Da) and low polydispersity index (PDI = 1.44) [133].
The polymerization kinetics and the effect of different pH (5.2 to 10.5) on the polymerization were
investigated. It was found that the highest monomer conversion (78%) was obtained at pH = 7.0. Bruns and
coworkers also reported other enzymes (e.g., hemoglobin and red blood cells) mediated ATRP of NIPAAm,
PEGMA, and PEGA using HEBiB as an initiator and VC as a reducing agent [134]. All the polymerizations
showed a first order kinetic characteristic but a relatively poor controllability. Only the polymerization
of PEGA using BPN as an initiator produced poly(PEGA) with a low polydispersity index (PDI < 1.11).
The polymerization of PEGA in a polymersome, poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline),
using HRP as a catalyst and HEBiB as an initiator had also been reported by their group [135]. Kadokawa
and coworkers carried out ATRP of NIPAAm using an enzyme mimetic (hematin) as catalyst and found
that the number average molecular weight (Mn) of the synthesized poly(NIPAAm) increased linearly
with the increase of monomer conversion, but the molecular weight distribution of poly(NIPAAm) was
relatively broad (PDI = 1.8–2.1) [136].

Matyjaszewski and coworkers reported polymerization of oligo(ethylene oxide) methyl
ether methacrylate (OEOMA) using hemin or its modified products [hemin-(PEG1000)2 and
mesohemin-(MPEG550)2, MPEG = methoxy PEG] as catalyst [137]. The hemin mediated ATRP
showed poor controllability due to its low halidophilicity. The controllability could be improved
by using hemin-(PEG1000)2 as catalyst. Correspondingly, the obtained poly(OEOMA) had a low
polydispersity index (PDI = 1.32) and its molecular weight increased linearly with the increase of
monomer conversion. The polymerization could produce poly(OEOMA) with more narrow molecular
weight distribution (PDI = 1.19) when mesohemin-(MPEG550)2 was used as a catalyst.

Deuterohemin-β-Ala-His-Thr-Val-Glu-Lys (DhHP-6) is a synthesized heme-containing peroxidase
mimic showing high catalytic performance. Tang and coworkers carried out the DhHP-6 mediated
ARGET ATRP of PEGMA and GMA [138]. They found that the molecular weights of corresponding
polymers increased linearly with the increase of monomer conversions. Well-defined poly(PEGMA)
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(Mn = 6.02 × 103 Da, PDI = 1.08) and poly(GMA) (Mn = 8.43 × 103 Da, PDI = 1.38) have been successfully
synthesized. Poly(ε-caprolactone) (PCL) had been synthesized via enzymatic ring-opening polymerization
(eROP) using novozyme 435 as a catalyst and HEBiB as an initiator [138]. The synthesized PCL-Br was
further used as a macroinitiator to prepare amphiphilic copolymers such as PCL-PHEMA and PCL-PMAA
(PMAA = poly(methacrylic acid)) using DhHP-6 as a catalyst. The integration of eROP and enzyme
mediated ATRP was a promising environmentally benign process for the preparation of biomaterials.
Tang et al. later reported the polymerization PEGMA using DhHP-6@ZIF-8 (DhHP-6@ZIF-8 = DhHP-6
embedded in zeolite imidazolate framework-8) as a catalyst and BPN as an initiator [139]. This catalyst
could be applied to the polymerization of PEGA and NIPAAm.

As oxygen is an undesirable radical inhibitor, it is important to develop a polymerization system
that can be conducted in oxygen-rich environments. Matyjaszewski and coworkers reported a
well-controlled aqueous ATRP conducted in the open air [140]. This ATRP was realized by continuous
conversion of oxygen (O2) to carbon dioxide (CO2) using glucose oxidase (GOx) as catalyst in the
presence of sodium pyruvate. In the first step of the polymerization, the glucose and oxygen were
converted into d-glucono-1,5-lactone and hydrogen peroxide (H2O2). Therefore, the inhibition of O2 to
the polymerization was eliminated. Then, the toxic H2O2 produced in the first step was consumed
via the reaction between H2O2 and sodium pyruvate to yield CO2, water and acetate. In this case,
the ATRP of OEOMA could be successfully achieved, producing poly(OEOMA) with low dispersity
(1.09 ≤ PDI ≤ 1.29). In addition, block copolymer poly(OEOMA)-b-poly(OEOMA) (Mn = 7.94 × 104

Da, PDI = 1.28) had also been prepared by using poly(OEOMA) (Mn = 4.23 × 104 Da, PDI = 1.23)
as a macroinitiator. This GOx mediated approach was also used to polymerize BA and BMA using
ethyl α-bromophenylacetate (EBPA) as an initiator, and well-defined poly(BA) (Mn = 2.53 × 104 Da,
PDI = 1.24) and poly(BMA) (Mn = 3.24 × 104 Da, PDI = 1.16) have been successfully prepared [141].

Matyjaszewski et al. also reported HRP mediated ATRP of OEOMA using α-bromophenylacetic
acid (BPAA) as an initiator [142]. The effect of HRP concentration on the polymerization was
investigated. It was found that the polymerization rate increased with the increase of HRP
concentration. The monomer conversion reached 94% in 30 min at a HRP concentration of 1130 nM,
producing poly(OEOMA) with a low polydispersity index (PDI = 1.17). The chain extension was
realized by using poly(OEOMA500)-Br (Mn = 3.82 × 104 Da, PDI = 1.13) as a macroinitiator to
copolymerize with OEOMA300. Moreover, this system was also applied to the copolymerization
of OEOMA with bovine serum albumin (BSA) or human serum albumin (HSA). Well-defined
BSA-b-poly(OEOMA) (Mn = 6.31 × 104 Da, PDI = 1.38) and HSA-b-poly(OEOMA) (Mn = 4.01 × 104 Da,
PDI = 1.25) bioconjugates have been synthesized.

Polymer brush can be used as surface coating due to its ability to endow an interface with a large
number of useful properties such as biocompatibility [143], lubrication and protein-resistance [144,145].
The surface-initiated atom transfer radical polymerization (SI-ATRP) is a commonly used approach
for the preparation of polymer brush. Zauscher and coworkers reported the synthesis of
biomedically relevant polymer brushes such as poly(oligo(ethylene glycol) methacrylate) (POEGMA),
poly(sulfobetaine methacrylate) (PSBMA), poly(2-dimethylaminoethyl methacrylate) (PDMAEMA),
and poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA) via enzyme (GOx) mediated SI-ATRP in an open
air environment [146]. The presence of GOx improved the fouling resistance of the polymer materials.
Bruns et al. found that the enzyme mediated surface-initiated biocatalytic atom transfer radical
polymerization (SI-bioATRP) could be used to prepare PNIPAAm brushes [147]. This method provided
a new way for the translation of bioadhesion into a controlled functionalization of materials.

Enzyme catalyzed ATRP has attracted considerable attentions due to the high efficiency,
excellent selectivity, mild reaction conditions, and good biocompatibility of enzymes. Representative
experimental data of enzyme catalyzed ATRP are summarized in Table 2. The polymerizations show
typical ‘living’/controlled characteristics and produces a lot of well-defined homo- (Table 2, Entry 4, 6,
11, 12, and 15–18), block- (Table 2, Entry 1, 5, and 17) and brush polymers (Table 2, Entry 19) with good
water-solubility and biocompatibility.
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Table 2. Enzyme catalyzed ATRP.

Entry Monomer Catalyst Reducing
Agent/Additive Initiator Catalyst

Concentration
Temp.
(◦C)

Time
(h)

Conv.
(%)

Mn
(g/mol) Mw/Mn Ref.

1 PEGMA LTV VC BPN 4.00 mg/mL 40 0.5 28.0 1.71 × 105 1.94 [131]
2 PEGMA LTV VC EBiB 4.00 mg/mL 40 1.0 20.0 2.72 × 105 2.43 [131]
3 PEGMA LTV VC EIAc 4.00 mg/mL 40 22.0 15.0 4.32 × 105 2.27 [131]
4 PEGMA Hb VC HEBiB 2.50 mg/mL 25 4.0 48.3 5.00 × 103 1.14 [134]
5 PEGMA DhHP-6 sodium L-ascorbate EBiB 1.40 mg/mL 35 2.0 80.7 6.02 × 103 1.08 [138]
6 PEGMA DhHP-6@ZIF-8 L-ascorbate BPN N/A 30 4.0 85.5 8.20 × 103 1.10 [139]
7 PEGA CBL VC BPN 8.00 mg/mL 40 8.0 81.0 1.18 × 104 1.66 [132]
8 PEGA CBL VC EBiB 8.00 mg/mL 40 8.0 50.0 9.81 × 103 1.61 [132]
9 PEGA LTV VC BPN 4.00 mg/mL 40 N/A 76.0 1.10 × 104 1.63 [132]

10 PEGA HRP VC BPN 0.80 mg/mL 40 N/A 62.0 9.63 × 103 1.58 [132]
11 PEGA Hb VC HEBiB 2.50 mg/mL 25 6.0 56.0 6.60 × 103 1.41 [134]
12 NIPAAm HRP L-ascorbate HEBiB N/A 25 24.0 48.0 9.99 × 104 1.44 [133]
13 NIPAAm Hb VC HEBiB 2.95 mg/mL 25 4.0 60.1 2.93 × 105 1.73 [134]
14 NIPAAm hematin sodium L-ascorbate EBiB 2.53 mg/mL 25 24.0 80.0 3.18 × 104 1.80 [136]
15 OEOMA mesohemin-(MPEG550)2 sodium L-ascorbate PEG2000-Br a 2.00 mmol/L 30 6.0 60.0 6.30 × 104 1.19 [137]
16 OEOMA hemin sodium L-ascorbate PEG2000-Br a 2.00 mmol/L 30 18.0 50.0 6.00 × 104 1.32 [137]
17 OEOMA HRP acetylacetonate EBPA 270.00 nmol/L 37 0.5 58.0 3.84 × 104 1.13 [142]
18 BMA GOx sodium pyruvate EBPA 2.00 µmol/L 44 6.5 89.0 3.24 × 104 1.16 [141]
19 NIPAAm Hb sodium nitrate BIBB N/A 25 16.7 N/A N/A N/A [147]

a PEG2000 = Polyethylene glycol 2000.
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4. The Metal-Free Catalyst Mediated ATRP System

Enzyme mediated ATRP has the advantages of high efficiency, mild reaction conditions,
and synthesizing biocompatible polymers, which have potential valuable applications in materials
science and biomedical engineering areas. However, it suffers from the problems of narrow range
of polymerizable monomers and less applicable enzymes. Chemists always envisage developing
metal-free catalyst and constructing new environmentally friendly technology for ATRP. The organic
photoredox catalyst has been proved to be an excellent candidate [148,149].

4.1. Organic Photocatalyst Mediated Metal-Free ATRP

4.1.1. Phenothiazines Mediated ATRP

Hawker and coworkers firstly reported in 2014 a photoinduced metal-free ATRP of methacrylates
using 10-phenylphenothiazine (Ph-PTZ) as an organic photocatalyst under UV light irradiation
(380 nm) [149]. The polymerization showed good controllabilities for MMA, benzyl methacrylate
(BnMA), and DMAEMA. The produced PMMA, poly(benzyl methacrylate) (PBnMA) and PDMAEMA
had narrow molecular weight distribution of 1.18, 1.25, and 1.11 respectively. Well-defined block
copolymer PMMA-b-PBnMA (Mn = 2.59 × 104 Da, PDI = 1.31) was also prepared via metal-free ATRP
by using PMMA as a macroinitiator and Ph-PTZ as a photocatalyst.

Matyjaszewski group performed a photoinduced metal-free ATRP of AN using Ph-PTZ as an
organic photocatalyst and EBPA as an initiator, and obtained PAN with Mn = 6.20 × 103 Da and PDI
= 1.60 [150]. They also tried the polymerization of AN using 10-(4-methoxyphenyl)-phenothiazine
(4-MeOPh-PTZ) or 10-(1-naphthalenyl)-phenothiazine (Nap-PTZ) as a photocatalyst and BPN as an
initiator. The molecular weights of produced PAN increased with the increase of monomer conversion
at the early stage of the polymerization, but were much higher than theoretical values, indicating that
the initiation efficiency of BPN was lower than that of EBPA.

Matyjaszewski et al. also conducted a metal-free ATRP of MMA using Ph-PTZ as a photocatalyst
and EBPA as an initiator [151]. The produced PMMA had a molecular weight (Mn,GPC = 2.07 × 103 Da)
close to its theoretical value (Mn,th = 1.80 × 103 Da) and the molecular weight distribution was relatively
narrow (PDI = 1.50). A number of photocatalysts including 10-methylphenothiazine (Me-PTZ),
benzo[b]phenothiazine (Ph-benzoPTZ), 9-phenylcarbazole (Ph-CBZ), thianthrene (TH), and N-aryl
phenothiazine derivatives (Nap-PTZ) have been investigated in the polymerization of MMA. The results
indicated that the Ph-benzoPTZ and Nap-PTZ mediated polymerizations showed better controllability
than Ph-PTZ. Moreover, a mechanism investigation of the polymerization catalyzed by phenothiazine
derivatives revealed that all the selected catalysts were involved in the activation step, but only part
of them were efficiently participated in the deactivation step, leading to different controllability of
the polymerization.

Tran et al. reported metal-free ATRP of methacrylate monomers such as MMA, HEMA,
and DMAEMA using 4-(10H-phenothiazin-10-yl)-N,N-diphenylaniline (PDPA) as a photocatalyst
and phenyl 2-bromo-2-methylpropionate (PhBMP) as an initiator under UV irradiation [152].
The polymerization reached a high monomer conversion of 94.6% and produced PMMA with
molecular weight close to theoretical value, indicating that the polymerization was controlled. They also
investigated the influence of solvents on the polymerization of MMA and found that the polymerization
performed in THF gave higher yield (94.6%) than in DMF (85%) and toluene (43%).
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4.1.2. Aromatic Hydrocarbons Mediated ATRP

Miyake and coworkers developed a metal-free ATRP of methacrylates using perylene as an
organic photocatalyst and EBPA as an initiator and prepared PMMA and PBA with narrow molecular
weight distributions (PDI < 1.30) [153]. The catalyst system had also been successfully applied to
the preparation of PMMA-b-PMMA (Mw = 3.43 × 105 Da, PDI = 1.45), PMMA-b-PS (1.65 × 105 Da,
PDI = 1.39), and PMMA-b-PBA (Mw = 5.23 × 105 Da, PDI = 2.55) block polymers.

Yilmaz group later reported metal-free ATRP of methacrylates and other vinyl monomers using
pyrene or anthracene as catalyst and alkyl halides such as EBiB, 1-bromoethyl benzene (BEB), EBP as
initiators [154]. They found that EBiB and BEB showed higher initiation efficiency than EBP in the
polymerization of MMA and produced PMMA with lower polydispersity index (PDI = 1.38, 1.37
respectively). Other vinyl homopolymers such as poly(tert-butyl acrylate) (Mn = 1.07 × 105 Da,
PDI = 1.32) and PS (Mn = 2.00 × 103 Da, PDI = 1.32) and PMMA-b-PMMA (Mn = 1.92 × 105 Da,
PDI = 1.40) as well as PMMA-b-PS (Mn = 1.85 × 104 Da, PDI = 1.50) block copolymers had also been
prepared using the same catalyst system.

4.1.3. Fluorescein Mediated ATRP

Fluorescein has good chemical stability, visible region absorbance, and favorable redox potential,
and can activate alkyl bromide and induce metal-free ATRP by a reductive quenching pathway in the
presence of electron donors. Zhang et al. reported a metal-free ATRP of MMA using fluorescein (FL)
as an organic photocatalyst in the presence of triethylamine (TEA) [155]. The polymerization was
controlled and produced PMMA with relatively narrow molecular weight distribution (PDI = 1.46).
In order to expand the scope of monomer, styrene, GMA, PEGMA, BnMA, and AN have been
polymerized using fluorescein (FL) as a photocatalyst. These polymerizations presented lower
controllability than MMA.

Yagci and coworkers conducted metal-free ATRP of MMA using eosin Y or erythrosin B as a
photocatalyst in the presence of electron donor amines [156]. The polymerization was completed
using EBP as initiator and PMDETA as electron donor under visible light irradiation. The results
demonstrated that eosin Y and erythrosin B had higher catalytical activity and controllability than
fluorescein and could produce PMMA with narrow molecular weight distributions (PDI = 1.33, 1.20
respectively). The system was also applied to the homopolymerization of other vinyl monomers
including styrene, tert-butyl acrylate (t-BA), and HEMA and block copolymerization to prepare
PMMA-b-PMMA (Mn = 2.27 × 104 Da, PDI = 1.41) and PMMA-b-PS (Mn = 2.79 × 104 Da, PDI = 1.60)
block copolymers.

4.1.4. Phenazines and N-aryl Phenoxazines Mediated ATRP

Miyake et al. reported metal-free ATRP of MMA using dihydrophenazine derivative as a photocatalyst
and EBPA as an initiator under the irradiation of white LEDs [157]. The dihydrophenazine derivatives are a
kind of new efficient visible light stimulating photocatalyst possessing high excited state reduction potential
(E0* = −2.36 to −2.06 V). The effect of different dihydrophenazine derivatives on the polymerization has
been investigated, showing that 5,10-di(4-trifluoromethylphenyl)-5,10-dihydrophenazine (PhenN-CF3)
had more advantages in producing PMMA with a combination of the highest initiation efficiency (65.9%)
and the lowest polydispersity index (PDI = 1.17). In addition, PhenN-CF3 mediated metal-free ATRP of
MMA was also achieved under sunlight. The Mn of produced PMMA increased linearly with the increase
of monomer conversion and the molecular weight distribution was very narrow (PDI = 1.10), indicating
that the polymerization was well-controlled. Miyake and coworkers also synthesized a series of N-aryl
phenoxazines and successfully used them as catalysts to mediate ATRP of MMA, isobutyl methacrylate
(IBMA), BnMA, and isododecyl methacrylate (IDMA) [158].
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4.1.5. Carbazoles Mediated ATRP

Zhang and coworkers performed a metal-free ATRP of MMA using 1,2,3,5- tetrakis(carbazol-
9-yl)-4,6-dicyanobenzene (4CzIPN) as a photocatalyst and EBPA as an initiator under the irradiation
of blue light emitting diode [159]. The effect of photocatalyst concentration (5 to 1500 ppm) on
the polymerization has been investigated. It was found that the molecular weight distribution of
PMMA became broader with the increase of photocatalyst concentration and the polymerization could
be achieved without the initiator. The polymerization reached a high monomer conversion (90%)
and was well-controlled even at a low concentration of photocatalyst (15 ppm), producing PMMA
with a relatively narrow molecular weight distribution (PDI = 1.50). The initiation efficiency of the
polymerization was as high as 95.2%.

4.1.6. Benzaldehyde Derivative Mediated ATRP

Yang et al. reported that the metal-free ATRP of methacrylates could be mediated by benzaldehyde
derivative photocatalyst [160]. Three benzaldehyde derivatives including p-anisaldehyde (E0* = −2.42 V),
p-cyanobenzaldehyde (E0* = −2.19), and 2,4-dimethoxy benzaldehyde (E0* = −2.60) were investigated in
the polymerization. The effects of different initiator including EBiB, EBPA, and perfluoro-1-iodohexane
(CF3(CF2)5-I) on the polymerization have been studied. The results showed that the polymerization
of PEGMA could be controlled by using p-anisaldehyde as a catalyst while the polymerization of
MMA could be controlled by using p-cyanobenzaldehyde as a catalyst. The polymerization of
MMA showed a longer induction period due to the relatively higher oxidation reduction potential
of p-cyanobenzaldehyde. The effect of initiator concentration on the polymerization of PEGMA was
investigated using 2,4-dimethoxy benzaldehyde as a catalyst and (CF3(CF2)5-I) as an initiator. Well-defined
homopolymer poly(PEGMA) (PPEGMA) (Mn = 1.33× 104 Da, PDI = 1.21) and block copolymers including
PBnMA-b-PMMA (Mn = 2.23 × 104 Da, PDI = 1.92), PPEGMA-b-PMMA (Mn = 6.45 × 104 Da, PDI = 1.87),
and PPEGMA-b-PBnMA (Mn = 5.48 × 104 Da, PDI = 2.29) have been synthesized.

4.1.7. Other Photocatalyst Mediated ATRP

Wang et al. conducted metal-free ATRP of methacrylates under visible LED light
irradiation [161]. N,N-bis(tert-butyloxycarbonyl)-quinacridone (TBOC-QA), N,N-bis(tert-butyloxycarbonyl)
-thiophenediketopyrrolopyrrole (TBOC-DPP), and N,N-bis(tert-butyloxycarbonyl)- indigo (TBOC-Indigo)
were developed as organic photocatalysts. The effects of fluorescence quantum yield, photostability,
and reduction potential of these photocatalysts on the polymerization were investigated by using MMA
as a monomer and alkyl bromide as an initiator. They found that the polymerization with TBOC-QA as
photocatalyst showed excellent controllability, but the polymerization with TBOC-DPP as photocatalyst had
a low initiation efficiency of 6.5% due to the poor photostability and electrochemical stability of TBOC-DPP.
TBOC-indigo had the lowest fluorescence quantum yield and did not initiate any polymerization. These
results indicated that TBOC-QA was a promising photocatalyst for light-controllable ATRP. To investigate
the scope of polymerizable monomers in TBOC-QA mediated ATRP, other vinyl monomers including BMA,
2-(diisopropylamino) ethyl methacrylate (DPA), styrene, or OEGMA were also tested. All the monomers
except styrene could be well polymerized with TBOC-QA as a photocatalyst.

4.2. Applications of Metal-Free ATRP in The Preparation of Composite Materials

Amphiphilic block copolymer attracts considerable attention due to its self-assemble ability,
and has been widely used in drug and gene delivery areas [162–165]. Son et al. reported that an
amphiphilic diblock copolymer could be prepared through metal-free ATRP by using Ph-PTZ as
organic photocatalyst under the irradiation of LED light (380 nm) [166]. This method was also
successfully applied to the polymerization of MMA, GMA, BA, 2-diethylaminoethyl methacrylate
(DEAEMA), and allyl methacrylate (AMA). The PMMA-b-PBA (Mn = 7.5 × 103 Da, PDI = 1.50) block
copolymer and poly(ethylene glycol)-b-poly(glycidyl methacrylate) (PEG-b-PGMA) amphiphilic
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block copolymer were prepared by using PMMA-Br and PEG-Br respectively as a macroinitiator and
Ph-PTZ as a photocatalyst. The epoxide groups of PEG-b-PGMA could react with polyethylenimine
to produce a cationic polymer bearing oligoamine side chains, which could be applied to gene
delivery [167]. They later investigated visible light-mediated metal-free ATRP of MMA using
N-trifluoromethylphenyl phenoxazine derivatives as organic photocatalysts [168]. They found
that the polymerization was significantly affected by the visible light absorption efficiency, excited
state reduction potential, and spatially separated singly occupied molecular orbitals (SOMOs) of
the catalyst. The visible light absorption could be enhanced by introducing a biphenyl ring or
phenyl with electron-withdrawing groups into the phenoxazine core. On the other hand, a strong
excited state reduction potential and spatially separated SOMOs were beneficial for preparing
well-defined polymers.

SiO2 hollow spheres (HS) have attracted much attention due to their wide potential applications
in electrical materials and catalysis [169], biomacromolecule delivery [170], controlled drug-release
carriers [171], and optical devices [172]. However, the application of SiO2 HS is largely limited
because of its low physical loading ability and poor hydrophobicity. Therefore, surface modification
of SiO2 HS to improve its solubility and physicochemical properties is essential to expand its
application scope. Wang and coworkers prepared an amphiphilic diblock copolymer poly(methyl
methacrylate)-b-poly(N-isopropylacrylamide) grafted HS (HS-g-PMMA-b-PNIPAAm) hybrid material
via metal-free surface-initiated ATRP using Ph-PTZ as a photocatalyst and α-bromoisobutyryl
bromide (BIBB) as an initiator [173]. They investigated the dispersions of HS, HS-g-PMMA,
and HS-g-PMMA-b-PNIPAAm in inorganic (H2O) and organic solvent (THF) and found that the HS
was dispersed in water but aggregated in THF while the HS-g-PMMA showed a complete opposite
dispersibility to HS, indicating that the grafted PMMA improved the surface hydrophobicity of HS.
The HS-g-PMMA-b-PNIPAAm could be dispersed in both THF and H2O, implying that the PNIPAAm
chains were beneficial for the increase of surface amphiphilicity.

Wang et al. later prepared poly(DEAEMA) (PDEAEMA) grafted silica nanoparticles (SNPs)
(SNPs-g-PDEAEMA) and used them for quercetin (Qu) controlled-release [174]. The SNPs-g-PDEAEMA
was a kind of pH-sensitive material which was dispersed in acid but aggregated in neuter and alkaline
solutions. The self-assembled Qu-loaded microcapsules formed a tight structure under normal
physiological conditions (pH = 7.4) with drug entrapped in the core, but the microcapsules became
swollen under a weak acid owing to the protonation of the amine groups of PDEAEMA, resulting in
drug release from the inner cores. They also evaluated the in vitro cytotoxicity of SNPs-g-PDEAEMA
to L929 cells and found that the cell viabilities kept 90.18% and 92.43% on the first and second day
respectively, and the cytotoxicity was completely disappeared on the third day. These results showed
that the SNPs-g-PDEAEMA had excellent biocompatibility and could be served as drug carriers.

Cellulose is a kind of abundant, inexpensive and renewable biopolymeric materials, and is largely
used in daily life. Compared to synthetic polymers derived from petroleum resources, cellulose
shows poor solubility in organic solvents, low dimensional stability, and insufficient crease resistance.
Wang and coworkers reported a method to prepare cellulose-grafted copolymers using biomass-based
monomers such as lauryl methacrylate (LMA), furfuryl methacrylate (FMA), and rosin monomer
(DAGMA) via photoinduced metal-free ATRP with Ph-PTZ as a photocatalyst and bromated ethyl
cellulose (EC-Br) as an initiator [175]. A series of EC grafted copolymers including EC-g-PLMA
(Mn = 1.67 × 104 Da, PDI = 1.66), EC-g-PFMA (Mn = 1.20 × 104 Da, PDI = 1.74), and EC-g-PDAGMA
(Mn = 1.84 × 104 Da, PDI = 1.79) have been synthesized.
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Wang et al. reported a recyclable and sustainable flexible thermoset elastomer derived
from fatty acid, furfural, and cellulose via the combination of metal-free ATRP with Diels–Alder
reaction [176]. Firstly, the thermoplastic ethyl cellulose (EC) grafted copolymer, EC-g-poly(lauryl
methacrylate-co-furfuryl methacrylate) (EC-g-P(LMA-co-FMA)), was synthesized via metal-free ATRP
using Ph-PTZ as catalyst. Then, a modified epoxidized soybean oil containing 6-maleimidohexanoic
group (ESOM) was employed to conduct Diels–Alder reaction with furfural groups in the chain of
EC-g-P(LMA-co-FMA) to prepare the recyclable thermoset elastomers. The formation of dynamic
crosslinking structure by Diels–Alder reaction provided an excellent self-healing and recyclability for
the thermoset elastomers.

Hydrogels have been widely applied in the fields of drug-controlled release [177], biosensors [178],
tissue engineering and adsorbents [179,180]. However, the service life of conventional hydrogel is short
due to its poor mechanical strength. The mechanical strength and self-healing properties of hydrogel
can be enhanced by cellulose nanocrystals (CNCs) due to their highly crystalline and nontoxic nanorods
characteristics [181]. Bai et al. reported the preparation of self-healing nanocomposite hydrogels based
on modified CNCs [182]. 4-vinylpyridine (4VP) was surface-initiated onto the surface of CNCs via
metal-free ATRP using Ph-PTZ as a photocatalyst to form poly(4-vinylpyridine) CNCs hybrid material
(CNCs@P4VP). The CNCs@P4VP was an excellent reinforcement for self-heal poly(acrylic acid) (PAA)
hydrogels. The reversible electrostatic interaction between the carboxyl group of PAA and the pyridyl
group of CNCs@P4VP acted as a dynamic reversible supramolecular interaction to heal and crosslink
the PAA hydrogels. The prepared nanocomposite hydrogels showed an excellent self-healing (85.9%
after repairing 6 h) and mechanical properties (6.6 MPa at a strain of 921.6%).

Table 3 summarizes typical experimental data of metal-free catalyst mediated ATRP. A large
number of organic compounds including phenothiazines (Table 3, Entry 1, 3, 4, and 8), polynuclear
aromatic hydrocarbons (Table 3, Entry 9 and 10), fluorescein (Table 3, Entry 11), N-aryl phenoxazines
(Table 3, Entry 12), carbazoles (Table 3, Entry 13), and benzaldehyde derivative (Table 3, Entry 14),
have been developed as photocatalyst and a lot of homopolymers [149], block polymers [183],
star polymers [184,185], hyperbranched polymers [186], and composite materials [187–189] have been
prepared via metal-free ATRP.
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Table 3. Metal-free catalyst mediated ATRP.

Entry Monomer Catalyst Light Source Initiator
Catalyst

Concentration
(mmol/L)

Temp.
(◦C)

Time
(h)

Conv.
(%)

Mn
(g/mol) Mw/Mn Ref.

1 BnMA Ph-PTZ UV light EBPA 5.9 25 9.0 70.1 1.40 × 104 1.36 [149]
2 AN Ph-PTZ UV light EBPA 5.0 N/A 7.0 63.0 1.21 × 104 1.42 [150]
3 AN 4-MeOPh-PTZ UV light EBPA 5.0 N/A 6.0 33.0 7.49 × 103 1.69 [150]
4 AN Nap-PTZ UV light EBPA 5.0 N/A 15.0 42.0 8.14 × 103 1.62 [150]
5 MMA Ph-PTZ UV light EBPA 4.7 25 4.0 16.0 2.07 × 103 1.50 [151]
6 MMA Ph-PTZ UV light EBiB 4.7 25 4.0 20.0 3.84 × 103 1.79 [151]
7 MMA Nap-PTZ UV light EBPA 4.7 25 4.0 10.0 1.60 × 103 1.40 [151]
8 MMA PDPA UV light PhBMP 3.1 25 24.0 94.6 1.17 × 104 1.46 [152]
9 MMA perylene natural sunlight EBPA 5.4 N/A 10.0 59.2 4.12 × 104 1.29 [153]

10 MMA anthracene UV light EBP 47.1 N/A 2.0 10.1 8.70 × 103 1.41 [154]
11 MMA erythrosin B visible light EBP 3.1 25 2.0 20.0 9.00 × 104 1.20 [156]
12 MMA phenN-CF3 white LED EBPA 9.4 N/A 8.0 98.4 1.53 × 104 1.17 [157]
13 MMA 4CzIPN blue LED EBPA 0.1 25 3.0 90.0 1.91 × 104 1.50 [159]
14 MMA p-anisaldehyde CFL bulbs CF3(CF2)5-I N/A N/A 46.0 77.9 3.04 × 104 1.47 [160]
15 MMA TBOC-QA blue LED EBPA 3.8 N/A 10.0 66.3 1.54 × 104 1.56 [161]
16 DMAEMA PDPA UV light PhBMP 3.1 25 24.0 80.2 1.35 × 105 1.36 [152]
17 HEMA PDPA UV light PhBMP 3.1 25 24.0 51.0 7.05 × 103 1.48 [152]
18 DEAEMA Ph-PTZ 380 nm LED light EBiB 3.8 25 6.0 48.2 3.98 × 103 1.47 [166]
19 GMA Ph-PTZ 380 nm LED light EBiB 3.8 25 6.0 17.4 2.14 × 103 1.60 [166]
20 AMA Ph-PTZ 380 nm LED light EBiB 3.8 25 6.0 11.1 2.01 × 103 1.50 [166]
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5. Summary and Future Perspectives

Though copper complex is the most commonly used ATRP catalyst, the application of copper
catalyst at industrial scale is restricted due to its biological toxicity and environmentally unsafety [7,78].
Using iron complex as ATRP catalyst has attracted considerable interest in recent decades due to
the negligible toxicity, low cost, and environmental friendliness of the iron catalyst. This review
summarized the applications of iron catalyst in normal ATRP, reverse ATRP, ICAR ATRP, AGET ATRP,
GAMA ATRP, and SARA ATRP in view of the catalytic activity, initiation efficiency, and polymerization
controllability. A large variety of homo-, block-, graft-, brush-, star-, and hyperbranched polymers
have been prepared via iron complex mediated ATRP and summarized in the review. As the catalytic
activity of iron catalyst is largely depended on the ligand of the complex, the development of the
catalyst ligand has also been discussed in this review.

Despite significant success and progress in iron complex-catalyzed ATRP, there are still challenges
for iron catalysis. For instance, it is necessary to establish a structure–reactivity relationship for iron
catalyst, especially the dependence of the activation and deactivation rate constant on the redox
potential of iron complex. On the other hand, the polymerization of monomers containing strong
polar functional groups is still troublesome due to the interaction between the polar groups and the
iron catalyst. Therefore, developing more stable iron catalyst would be benefit to the development of
iron-catalyzed ATRP. Moreover, developing new iron catalyst derived from biological resources for the
preparation of biocompatible polymers would also be conducive to the iron complex catalyzed ATRP.

Though enzyme mediated ATRP has the advantage of synthesizing biocompatible polymers
and bioconjugates, it suffers from limited polymerizable monomers and less applicable enzymes.
It would be very advantageous to develop other enzymes such as hydrogenases and chlorophyl for
ATRP. In addition, incorporating this method in more important reaction systems and fabricating
multifunctional enzyme-containing materials with outstanding performances are also expected to be a
direction of the enzyme mediated ATRP.

As metal-free ATRP is regarded as a green and sustainable process for precise polymer synthesis,
a lot of desirable homo-, block-, star-, and hyperbranched polymers have been prepared via metal-free
ATRP. However, a relatively large amount of photocatalyst is generally required in the polymerization.
In addition, the use of photocatalyst often causes a problem of discoloration of the polymer products
due to the highly colored performance of some photocatalysts. Further research is recommended
to improve the catalyst activity, develop new photocatalysis strategy for cost-effective production
of various polymeric materials and solve the problem of the discoloration. As many biocompatible
materials such as HS-g-PMMA-b-PNIPAAm, SNPs-g-PDEAEMA, EC-g-PLMA, and CNCs@P4VP
have been successfully prepared via metal-free ATRP, the application of metal-free ATRP in medicine,
electricity, and other interdisciplinary areas would have a more promising perspective.
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