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Abstract
Despite considerable progress in understanding the pathogenesis ofMycobacterium tuber-
culosis (Mtb), development of new therapeutics and vaccines against it has proven difficult.

This is at least in part due to the use of less than optimal models of in-vivo Mtb infection,

which has precluded a study of the physiology of the pathogen in niches where it actually

persists. C3HeB/FeJ (Kramnik) mice develop human-like lesions when experimentally

infected withMtb and thus make available, a faithful and highly tractable system to study

the physiology of the pathogen in-vivo. We compared the transcriptomics ofMtb and vari-

ous mutants in the DosR (DevR) regulon derived from Kramnik mouse granulomas to those

cultured in-vitro. We recently showed that mutant ΔdosS is attenuated in C3HeB/FeJ mice.

Aerosol exposure of mice with the mutant mycobacteria resulted in a substantially different

and a relatively weaker transcriptional response (< = 20 genes were induced) for the func-

tional category ‘Information Pathways’ inMtb:ΔdosR; ‘Lipid Metabolism’ inMtb:ΔdosT; ‘Vir-
ulence, Detoxification, Adaptation’ in bothMtb:ΔdosR andMtb:ΔdosT; and ‘PE/PPE’ family

in all mutant strains compare to wild-typeMtb H37Rv, suggesting that the inability to induce

DosR functions to different levels can modulate the interaction of the pathogen with the

host. TheMtb genes expressed during growth in C3HeB/FeJ mice appear to reflect adapta-

tion to differential nutrient utilization for survival in mouse lungs. The genes such as glnB,
Rv0744c, Rv3281, sdhD/B,mce4A, dctA etc. downregulated in mutant ΔdosS indicate

their requirement for bacterial growth and flow of carbon/energy source from host cells. We

conclude that genes expressed inMtb during in-vivo chronic phase of infection in Kramnik

mice mainly contribute to growth, cell wall processes, lipid metabolism, and virulence.

Introduction
Delineating mycobacterial gene expression in-vivo is central to the understanding how bacilli
invade and interact with or disrupt host cell functions, to facilitate their adaptation to differ-
ent microenvironments [1–7]. A clear understanding of the molecular events responsible for
establishing and maintainingMtb infection is thus essential to develop approaches to contain
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the disease. However, this requires the use of faithful models of humanMtb infection. The tra-
ditional mouse model does not result in the formation of human-like granulomas upon exper-
imental infection [8]. For example, C57Bl/6 mice do not faithfully reproduce certain aspects
of human TB. In contrast, C3HeB/FeJ mice display lesions with prominent necrotic degenera-
tion, thus more closely resembling human granulomas [9–11]. It has been previously demon-
strated that tubercle lesions in C3HeB/FeJ mice develop hypoxia [10–12]. This results in the
induction of the DosR regulon that likely enablesMtb to persist in hypoxic conditions [13,
14] and within human-like lesions present in the lungs ofMtb infected non-human primates
[15]. Induction of DosR and the resulting downstream transcriptional changes then likely
cause significant perturbation in the metabolic profile of the pathogen. It is postulated that
this not only assists the survival ofMtb in the changed milieu, allowing it to conserve energy
while remaining viable in an anorexic environment, but likely also results in altered antigen
presentation [16, 17] and thus adaptive responses [15]. Such changes likely impact signifi-
cantly, the ability of the antigen-specific responses to controlMtb replication and might facili-
tate the persistence of the pathogen over the long-haul. Therefore, we tested the regulation of
Mtb genes by comparing the transcription profile that investigated the effects of TB infection
in C3HeB/FeJ mice.

Here we report expression profiles of mycobacterial genes upon infection of C3HeB/FeJ
mice withMtbH37Rv wild-type (WT) (henceforth referred to asMtb) relative to the mutants
defective in response regulator DosR (Mtb:ΔdosR) or sensor kinases DosS (Mtb:ΔdosS) or
DosT (Mtb:ΔdosT) during chronic phase of infection in C3HeB/FeJ mice by using DNA
microarrays.

Materials and Methods

Bacterial Strains and Animals
We used frozen lung samples of C3HeB/FeJ mice from a previous study [11]. TheMtb and Dos
mutants were revived from frozen stocks and cultured as described [18].

In-Situ RNA Hybridization
In-situ RNA-RNA hybridizations designed to detect mycobacteria specific transcripts on 5 μm
section of paraffin-embedded lung tissue (RNase-free) with appropriate controls were per-
formed essentially as described earlier [19].

Preparation of RNA samples
RNA was isolated from frozen lung samples from our previous study [11]. Frozen tissue (15–20
mg lung lobe of mice) samples were placed in a sterile plastic tissue sample bag, crushed
mechanically, transferred to screw caped tube containing 700 μl Qiazol (Qiazen, Germany), fol-
lowed by mixing the contents and incubated at room temp for 10 minutes. The samples were
lysed by bead beating in Lysing Matrix B tubes (MP Biomedicals, USA), added with 140 μl chlo-
roform and mixed by inverting the tubes several time followed by incubation for 5 min at room
temp and centrifugation at 13,000 rpm for 15 min at 4°C. RNA was purified with RNA purifica-
tion kit (Qiazen, Germany) and used in microarrays as described [18]. RNA was isolated from
in-vitro grownMtb cultures as described [20].

RNAQuantification and Real Time PCR
The amount of total RNA from in-vitro and in-vivo samples used for each hybridization was
quantified first by RT-PCR as previously described [21]. Toward this, total RNA isolated from
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lung tissue was subjected to microbe enrichment kit for removal of host RNA followed by
microbe express and bacterial RNA amplification, strictly as per manufacturer’s instructions
(Life Technologies, USA). RNA isolated from in-vitro grown cultures was also treated with
microbe express and amplified in parallel. RT-PCR was carried out with cDNA that was reverse
transcribed from 1000 ng DNA-free RNA as described [21]. For quantification, a series of
genomic DNA with 10-fold dilution was used in RT-PCR as described [21]. Constitutive sigA
mRNA was quantified in all samples and used as invariable housekeeping control in RT-PCR.
The data was normalized to sigA. We also tested the levels of dnaB inMtb and Dos mutants
grown in-vitro or those isolated from mouse lung samples.

DNAMicroarrays and Sample hybridization
Mtb specific DNA microarrays (MYcroarrays, Biodiscovery Llc, USA) were used to compare
transcriptome-wide responses in WTMtb and the Dos mutant strains isolated from mouse
lung samples from our previous study [11]. Detailed protocols for array procedures have been
described earlier [22]. Differences in the magnitude of gene expression relative to cultures
grown till log phase were subjected to statistical analysis using corrected ANOVA (P<0.05) in
2 biological replicate arrays and in every technical replicate spot on each array. Real-time (RT)
PCR was performed as previously described [20]. The gene expression levels were normalized
to sigA. The microarray data has been assigned a GEO (Gene Expression Omnibus) and is pub-
licly available using the accession number GSE70765.

Comparative transcriptomics
We compared our current data onMtb gene-expression using DNA microarray technology, to
that obtained previously from BALB/c mice [7]), macrophages [23]) and in-vitro (NRP) condi-
tions [24]). First, we collected all the genes (1.5-fold with increased or decreased expression in
datasets obtained from Kramnik mice in the current study and compared these to the datasets
(gene expression values in fold-change) obtained during growth in BALB/c mice, macrophages
and in-vitro (NRP) conditions. The fold-change in gene expression was plotted against myco-
bacterial genes obtained from various datasets.

Results

Detection of RNA in the infected lungs of C3HeB/FeJ mice
Quantitative RT-PCR on amplified RNA samples derived fromMtb-,Mtb:ΔdosR-,Mtb:ΔdosS-
andMtb:ΔdosT-infected mouse lungs at the chronic stage of infection (frozen lung samples
were derived from a prior in-vivo study [11]) exhibited the presence of transcripts of gene sigA
(not shown). sigA transcripts were also detected by In-Situ hybridization using a specific probe
generated using the DIG-RNA labeling kit (Roche). Lung granulomas from Kramnik mice
infected withMtb and Dos mutants contained abundant sigA transcripts as visualized by
brown signal (Fig 1), although not all cells stained positive. On the contrary, the expression lev-
els of dnaB did not exhibit induced expression, when assayed by RT-PCR (not shown).
Together, these two results strongly suggest thatMtb sigAmRNA is expressed at high levels in
infected lung lesions [25].

Functional analysis ofMtb genes expressed in C3HeB/FeJ mouse lungs
We compared the changes in bacterial gene expression levels by microarray in WTMtb and
Dos mutant strains during chronic phase of in-vivo growth in C3HeB/FeJ mice. Total RNA
was isolated and purified frommouse lung samples as well as fromMtb and Dos mutant strains
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cultured in-vitro. Prior to microarray analyses, purified RNA samples were enriched for bacte-
rial mRNA, subjected to amplification and then normalized on the basis of the invariant gene-
expression exhibited by sigA in both lung and in-vitro grown cultures by RT-PCR (not shown).
For microarray experiments, RNA was isolated from lung, and profiled relative to the RNA iso-
lated from control samples (in-vitro grownMtb and Dos mutant cultures).

Fig 1. In-Situ hybridization. In-Situ hybridization detected the presence ofMtb specific sigA transcripts in
mice lung samples (derived at chronic phase of infection) infected withMtb,Mtb:ΔdosR,Mtb:ΔdosS and
Mtb:ΔdosT strains. Representative images with low (left) and high (right) magnification for eachMtb strain is
shown.

doi:10.1371/journal.pone.0135208.g001
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Statistical analyses revealed that a group of 650, 255, 406 and 114 mycobacterial genes
whose expression state changed (up-/down-regulated) respectively for eachMtb,Mtb:ΔdosR,
Mtb:ΔdosS andMtb:ΔdosT (Fig 2A). We identified several differentially expressed genes
betweenMtb and Dos mutants in mouse lungs, which delineate various functional categories
as defined in the “Tuberculist” database (http://tuberculist.epfl.ch) (Fig 2B–2C). The results in
Fig 2B–2C were calculated for a given data set, based on the total number of genes assigned to
each category in the genome and then compared to the actual number of genes in a functional
category induced or repressed for aMtb strain. A group of genes involved in functional cate-
gory ‘lipid metabolism’, ‘cell wall biosynthesis’ as well as those encoding various ‘regulatory’
and ‘virulence, detoxification, adaptation’ proteins etc. demonstrated statistically significant
(P<0.05) differences in gene expression (Fig 3 and S1 Table). Various functional categories
have been discussed below.

Information pathways
DNA recombination and repair result in an increased mutation frequency and better adapt-
ability of the bacterium to stressful conditions inside the host. Thus, genes involved in DNA
damage, repair and recombination e.g. Rv3585, Rv0630c etc. changed in all datasets may indi-
cate modification of mycobacterial genes in hostile environment. In addition, a set of genes
required for DNA replication, transcription and translation processes were also upregulated;
Rv0001, Rv0056, Rv0718, Rv0719, Rv2904 etc. inMtb-; Rv3442c, Rv0233, Rv3585, Rv2889c
etc. inMtb:ΔdosR-; Rv1165, Rv2890c inMtb:ΔdosS-; Rv0937c, Rv3585, Rv0630c inMtb:ΔdosT-
infected lung samples. The genes pks6 encoding a polyketide synthase and tgs2 (Rv0045c)
encoding a putative triacylglycerol synthase (diacylglycerol acyltransferase) were also changed
inMtbWT,Mtb:ΔdosR andMtb:ΔdosT datasets.

It is known thatMtb gene products which are involved in the import of host-derived fatty
acids and synthesis of tri-acyl glycerol (TAG) might play critical roles in the energy metabolism
during dormant stage [26]. Interestingly, among iVEGI (In-vivo Expressed Genomic Island)
signature genes as described previously [7] Rv0974c (1.8 fold up), Rv0976c (2.0 fold up)
involved in lipid metabolism and Rv0996 (1.83 fold) encoding a transmembrane protein
involved in cell wall and cell processes also expressed in mice infected withMtb. On the other
hand fadE12 (Rv0972c, 1.62-fold upregulation) and Rv0992 (2.6-fold upregulation) involved in
lipid metabolism and conserved hypothetical protein (unknown function) respectively were
also changed inMtbWT-infected lung samples only. In summary, the expression of different
genes but those involved in lipid metabolism in all datasets indicate degradation of host-cell
lipids is vital in the intracellular life of bacilli and host cells may provide potential precursors
for various mycobacterial metabolic processes and cell wall constituents required during
growth in C3HeB/FeJ mice. Genes involved in lipid metabolism were examined next.

Lipid metabolism
InMtb, the expression of fadD26 (Rv2930), involved in phthioceroldimycocerosate (PDIM)
biosynthesis; fadE13 (Rv0975c), probable acyl-CoA dehydrogenase; ppsD (Rv2934) involved
PDIM biosynthesis; fabG2 (Rv1350), echA9 (Rv071c) involved in the fatty acid biosynthesis
and fadD5 (Rv0166) in lipid degradation was noted. InMtb:ΔdosR, fadD22 (Rv2948c, 1.7 fold
up) involved in biosynthesis of phenolic glycolipids (PGLs) and PDIM biosynthesis was upre-
gulated. Similarly following genes involved in lipid metabolism (but different fromWTMtb
dataset) were specifically demonstrated high expression inMtb:ΔdosR infected samples; fadE26
(Rv3504), fadD36 (Rv1193) and fadE29 (Rv3543c) involved in lipid degradation; fadE19
(Rv2005c), in fatty acids metabolism. InMtb:ΔdosS-infected samples following genes of lipid
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Fig 2. Functional categories with significant changes in gene expression in DNAmicroarray andMtb
growth. A. The graph shows the total number of genes (left) changed in DNAmicroarray and mycobacterial
colony-forming units (CFU) in mouse lungs duringMtb,Mtb:ΔdosR,Mtb:ΔdosS andMtb:ΔdosT infection. B.
Functional categories with significant changes in gene expression and number of genes either up or down
(cut off 1.5 fold, P<0.05) are shown in each data set.C. Percentage of genes (obtained from panels A and B)
is shown for each functional category.

doi:10.1371/journal.pone.0135208.g002
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Fig 3. Gene expression in C3HeB/FeJ mouse lungs. The unique genes (on X-axis) expressed (gene
expression obtained in microarray using sigA normalized RNA ofMtb and Dos mutants derived frommouse
lungs compared to in-vitro grown culture are shown on Y-axis) in C3HeB/FeJ mouse lungs infected withMtb
(red circle) orMtb:ΔdosR (black diamond) orMtb:ΔdosS (blue, upright triangle) orMtb:ΔdosT (green,
inverted triangle) are shown. Various functional categories are indicated according to the information
available in the ‘Tuberculist’ database.

doi:10.1371/journal.pone.0135208.g003
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metabolism pathway were expressed; fadE10 (Rv0873) encoding an acyl-CoA dehydrogenase
involved in lipid degradation; fbpA (Rv3804c) necessary for cell wall mycolation and biogenesis
of trehalose dimycolate (cord factor) and to maintain cell wall integrity; fadE22 (Rv3061c) prob-
able acyl-CoA dehydrogenase; pks9 (Rv1664) probable polyketide synthase; fas (Rv2524c) prob-
able fatty acid synthase (fatty acid synthetase); echA7 (Rv0971c) probable enoyl-CoA hydratase;
(enoyl hydrase) (unsaturated acyl-CoA hydratase) (crotonase); cdh (Rv2289) probable CDP-
diacylglycerol pyrophosphatase (CDP-diacylglycerol diphosphatase) (CDP-diacylglycerol phos-
phatidylhydrolase). The gene papA3 (Rv1182) (encodes a polyketide synthase associated pro-
tein) has been reported to be involved in lipid metabolism, glycolipid assembly and possibly
implicated in pathogenesis [27] was also expressed inMtb:ΔdosS infected samples (Fig 3) and
intraphagosomal in-vitro [23], TBDB database, http://www.tbdb.org). Although, we could not
detect any lipid metabolism genes inMtb:ΔdosT dataset, it has been suggested that host lipids
are important sources of carbon and cholesterol required for ATP production in hostile environ-
ment [28, 29]. These observations support our previous findings [11] when numerous choles-
terol clefts were present in mouse lungs infected withMtb and mutant groups.

PE/PPE family
The PE and PPE genes are unique to mycobacteria and are widely speculated to play a key role
in tuberculosis pathogenesis [30, 31]. We examined these genes in all datasets. In WTMtb,
PPE26 (Rv1789) was induced to 1.8 fold, which plays an important role in protective immunity
[32] while p27 (Rv2108, 1.8 fold induction) is in sync with Th1 response againstMtb infection
[33]. Similarly PE15 (Rv1386, 1.9 fold induction) is involved in host-pathogen interactions that
modulate innate immunity and mediateMtb survival in macrophages [34]. InMtb:ΔdosR, fol-
lowing genes were up regulated; Rv3812, 1.72 fold; Rv0915c, 1.75 fold; Rv1807, 1.85 fold;
Rv1788, 1.94 fold; Rv3345c, 4.4 fold. It has been reported that antigen MBT41 encoded by
Rv3812 induces Th1 immune response in C57BL/6 mice infected withMtb [35] and Rv0915c
encodes a protective antigen possibly involved in the early control of infection (‘Tuberculist’).

InMtb:ΔdosS, we also detected PE/ PPE family genes. For example, Rv3873 (1.9 fold induc-
tion) plays an immunomodulatory role in regulating the pathophysiology of mycobacteria [34]
and Rv3021 (induced to 2.0 fold) also expresses under hypoxia [36] and reaeration [37]. InMtb:
ΔdosT, Rv1790, a member of PE/PPE family of which function is unknown was upregulated.

Regulatory proteins
We next examined the expression levels of two-component regulatory system genes implicated
in bacterial virulence in-vivo. InMtb, senX3-regX3 two-component system is involved in the
virulence [38, 39]. Amongst members of this regulon, transcriptional regulator genes Rv2488c,
Rv3060c and Rv1267c were expressed in the lungs of mouse infected with wild typeMtb only.
Rv3060c encodes a fatty acid metabolism regulator (FadR) probably known to regulate the iso-
citrate lyase (ICL), which may enhance the bacterial survival and persistence in-vivo [40, 41].
On the other hand Rv1267c (encodes EmbR) is involved in regulation of biosynthesis of the
mycobacterial cell wall (Tuberculist). We also noted the expression ofmce3R (Rv1963c, 1.8
fold induction), which plays a key a role in the adaptation and survival ofMtb in-vivo [42]. In
Mtb:ΔdosR, several regulatory protein family genes, for example, Rv1129c (1.8 fold induction)
required for intracellular growth in macrophages [43], Rv1151c (2.5 fold induction) required
for intracellular cAMP signaling pathway [44] were detected. The cAMP signaling plays a role
in the interaction of mycobacteria with macrophages during infection [45]. Similarly, Rv0890c
induced to 2.3 fold is an Lrp/AsnC (leucine-responsive regulatory protein/asparagine synthase
C) family transcriptional factor probably required for survival during persistence [46] and
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Rv1103c (1.6 fold induction) is involved in pathogenesis [47]. InMtb:ΔdosS dataset, Rv2779c,
an Lrp/AsnC transcriptional regulator known to be involved in various metabolic processes
including starvation [48], Rv0328 (1.6 fold induction) is also reported to be expressed during
growth in NRP state [24] and thioridazine [49]. In this part of analysis pknJ (Rv2088, 1.5 fold
induction) encoding a transmembrane serine/threonine-protein kinase also expresses during
hypoxia [36, 37], re-aeration [37] and intraphagosomal environment [23]. In particular, many
of the genes required for bacterial persistence e.g. Rv2919c and Rv0744c [7], Rv2989 [50],
Rv0405 [51], Rv3281 [52] etc., down-regulated inMtb:ΔdosS dataset may indicate growth
restriction in mouse lungs (Fig 2). These results also support our previous findings thatMtb:
ΔdosS is attenuated in C3HeB/FeJ mice [11]. InMtb:ΔdosT dataset, Rv0465c was induced
whose expression is high following the nutritional stress [53] and Rv0386 encoding adenyl
cyclase induced to 2.2 fold, is reported to be involved in virulence and may facilitate long-term
intracellular survival of mycobacteria [54].

Virulence, detoxification, adaptation
Various genes involved in virulence, detoxification and adaptation were examined next. InMtb,
mce4A (Rv3499c) required for persistent tubercular infection [55] was expressed to higher levels
(1.8 fold induction).mce4A is a member of kstR (Rv3574) regulon and is involved in lipid catab-
olism [56]. Another genemce1A (Rv0169) involved in host cell invasion byMtb and survival in
human macrophages [55] was expressed inMtb dataset (1.65 fold induction). Similarly, induc-
tion of Rv1996 (1.8 fold), a member of DosR regulon may indicate the persistent infection [13,
57]. InMtb:ΔdosR following genes; Rv3358c, Rv2757c, Rv2596 and Rv1103c which have not
been studied in details but belonging to virulence, detoxification and adaptation functional cate-
gory were upregulated. In Mtb:ΔdosS, vapC36 (Rv1982c) upregulated to 2.9 fold also reported to
be induced under stress conditions such as diamide [58] and hypoxia [36]; vapB33 (Rv1241, 1.9
fold induction) also expresses under hypoxia [36] and inside macrophages [23]; vapb17
(Rv2526, 1.8 fold induction) also expresses under hypoxia [36], reaeration [37] and upon expo-
sure to 0.05% SDS [59]; ephG (Rv2740, 1.6 fold induction), involved in detoxification following
oxidative damage to lipids, is also shown to be expressed during non replicative persistence (bac-
teriostatic) [24]. InMtb:ΔdosT, induction of Rv2190c (1.7 fold) indicates involvement in patho-
genicity as it is required for full virulence ofMtb in mice [60] and Rv3417c, a chaperon
associated with nucleoid [61], may play a role in DNA supercoiling, macromolecular crowding
etc. required during hostile environment. proV (Rv3758c, 2.0 fold induction) mRNA levels were
increased inMtb:ΔdosT infected mouse lungs. ‘proV’ is involved in osmoregulation as bacteria
in the phagosome begin to grow and has been shown to increase during post-phagocytosis in
cultured human macrophages [62] and in lungs of mice infected withMtb [63].

Pathways analyses in-vivo
To understand the functional relevance of mycobacterial genes expressed during infection, we
used IntPath database [50] for pathway enrichment analysis and the enriched (over-repre-
sented) functional categories that are closely related to both pathogen growth and infection
were compared. We were able to identify various pathways representing one or more func-
tional category such as cell wall and cell processes, information pathways, intermediary metab-
olism, lipid metabolism, PE/PPE family, regulatory proteins and ‘virulence, detoxification,
adaptation’ in all datasets (S2 Table). Most of these pathways were differentially expressed in
Mtb vs. Dos mutants during growth in mouse lungs. For example, information pathways e.g.
“DNAmismatch repair”, “RNA polymerase” (S1 Fig) and pathways belonging to lipid metabo-
lism e.g. “Lipopolysaccharide biosynthesis”, "2-Oxobutanoate Degradation I", Carbon fixation
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pathways in prokaryotes, (S2 Fig) and intermediary metabolism pathways e.g. Antigen biosyn-
thesis, sugar metabolism (glycolysis, gluconeogenesis, pyruvate phosphate pathways etc.),
superpathways of chorismate, amino acid biosynthesis (S3 Fig) were significantly changed in
mice lungs infected withMtb. InMtb:ΔdosR, pathways such as “Guanosine nucleotides de
novo pathway of methionine biosynthesis, superpathway of amino acids biosynthesis, nucleo-
tide biosynthesis, TCA cycle, NAD phosphorylation, etc. were significantly changed (S1–S3
Figs). On the other hand,Mtb:ΔdosS exhibited significantly different pathways changed in
mouse lungs. Specifically serine-isocitrate lyase pathway, tryptophan degradation VII (via
indole-3-pyruvate) tyrosine biosynthesis I, Inositol phosphate metabolism, glutamate metabo-
lism, Taurine and hypotaurine metabolism, TCA cycle, nitrogen metabolism in addition to
pathways related to metabolism and respiration etc. (S1–S3 Figs). The mutantMtb:ΔdosT
exhibited following pathways; arginine biosynthetic pathways, citrulline metabolism, entero-
bactin biosynthesis, urea cycle in addition to metabolic pathways, nicotinamide metabolism,
(S1 and S3 Figs). The sulfur relay system pathway involved in cellular functions such as cell
proliferation, apoptosis and DNA repair [64] was changed in bothMtb andMtb:ΔdosT.

Mtb is able to grow on variety of carbon sources, but uses fatty acids as the major sources of
carbon and energy essential for its growth during infection [65]. In summary, these pathways
are closely related to TCA cycle (S1–S3 Figs), which is essential for the growth ofMtb growth
and metabolism [65].

Mycobacterial gene expression inMtb and Dos mutants in mouse lungs
We also applied a hierarchical clustering algorithm [11, 66] to group the genes by expression
patterns (down-, up-regulated or no-change in gene expression) that may reflect similar func-
tion once the bacilli establish the infection and persist in mouse lungs. Hierarchical clustering
supported the gene classes belong to functional categories derived from ‘Tuberculist’ (Fig 4).
We grouped eight such clusters from all four groups and these represent the genes highly
expressed in more than one dataset, confirming their requirement in C3HeB/FeJ mouse lungs
(this study) and BALB/c mice [7]. These clusters included the genes belonging to functional
categories such as information pathways, lipid metabolism, immunomodulation, virulence, etc.
required for survival or persistence. Following to gene expression pattern, the reduction in
bacillary load ofMtb:ΔdosS in C3HeB/FeJ mouse lungs (Fig 2), ref. [11]) thus be explained and
probably indicates the role of following genes in survival of bacilli; for example, the transcrip-
tional regulator glnB (Rv2919c) required for survival of bacilli in mice [7] and macrophages
[67] was up-regulated inMtb but down-regulated inMtb:ΔdosS infected samples indicate its
importance in survival (Fig 2). Another gene, Rv2989 required for survival in macrophages
[50] and during hypoxia [36] was down-regulated inMtb:ΔdosS infected samples only (Fig 4).
Similarly, Rv0744c which upregulates during hypoxia [36] and in mice [7] was downregulated
inMtb:ΔdosS samples (Fig 4), again indicates its role inMtb survival. Similarly Rv0405
required for bacterial resistance in mice [51] and Rv3281 for growth and pathogenesis [52],
were down-regulated inMtb:ΔdosS infected samples. However, Rv0045c, a serine hydrolase
enzyme possibly required for transition between dormant and activeMtb infection [26] and
Rv0166 necessary for the persistence in murine model [68] were not altered in gene expression
duringMtb:ΔdosS growth in mice (Fig 4).

The expression of Rv3585 gene encoding the DNA repair protein ‘RadA’ (Tuberculist) indi-
cates that recombination of genes may occur during mycobacterial growth at these time points.
We did not detect the ‘radA’ levels inMtb:ΔdosS dataset. DNA microarray analysis also lead us
to the identification of variety of other genes that code for the proteins like putative transport-
ers e.g. Rv0283, Rv2320c, Rv1686c etc. and membrane protein Rv1671, Rv0954, Rv0426c etc.
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Fig 4. Hierarchical clustering ofMtb genes expressed in C3HeB/FeJ mouse lungs.Hierarchical
clustering demonstrates the expression of common genes (low, blue to high, orange) in two or more datasets
in C3HeB/FeJ mice. The data was compared to functional categories ofMtb genes described in the
‘Tuberculist’ database.

doi:10.1371/journal.pone.0135208.g004
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whose expression were either upregulated or did not change during course of infection. The
sigma factor sigL dependent transcription of Rv2877c that is believed to be important inMtb
pathogenesis [69] was also noted inMtbWT dataset.

The genes belong to succinate metabolism are important for adaptation ofMtb to hypoxia
[70]. For example DctA, a C4-dicarboxylate-transport transmembrane protein important for
translocation of TCA cycle intermediates e.g. Succinate, fumarate or malate toMtb were either
upregulated (Mtb andMtb:ΔdosR) or their expression levels were unchanged during course of
infection in all dataset. Rv2443 levels have been shown to be upregulated during hypoxia in-
vitro [24] and in mice [7].

At the same time different sets of genes whose function is conserved were expressed in all
datasets e.g. members of the toxin-antitoxin system involved in virulence, detoxification and
adaptation (vapB32/Rv1113, mce3R/Rv1963c, Rv0959, Rv3189 inMtbWT); Rv3181c, vapB46/
Rv3385c, Rv3749c, vapC21/Rv2757c, vapC40/Rv2596, mazE3/Rv1103c inMtb:ΔdosR; vapC36/
Rv1982c, vapC36/Rv1982c, vapB33/Rv1241, vapB17/Rv2526 inMtb:ΔdosS; Rv0060, vapC13/
Rv1838c inMtb:ΔdosT (S1 Table). Similarly, genes changed in hypoxia in-vitro experiments
[13, 24] were also detected in mouse lungs datasets (S3 Table). The hypoxia responsive genes
may contribute to establishment of persistent infection during host environment. The upregu-
lation of dosR regulon genes e.g. Rv0569, Rv1996, Rv0571c, Rv2004 in mouse lungs (S3 Table)
indicate that bug experiences the stress such as hypoxia [13, 24] in hostile environment.

Insights gained from comparison to previous genome-wide expression
studies
We performed a comparative transcriptomics analysis of our datasets (genes detected in
chronic phase of infection) with data obtained from BALB/c mice (early time point) (Fig 5A),
ref. [7], macrophages (Fig 5B), ref. [23] and in-vitro (NRP) conditions (Figs 6 and 7), ref. [24].
Functional grouping of genes based on gene expression profile demonstrated similarity or dis-
similarity among various datasets (Figs 5 and 6 and S1, S3, S4, S5 Tables). Of note Rv0961,
Rv0971c, Rv0966c, Rv0963c, Rv0974c, Rv0975c, Rv0976c and Rv0996 of iVEGI (in-vivo
expressed genomic island) signature in BALB/c mice [7], were also detected in our datasets
(Fig 5A and 6 and S4 Table).

Similarly, an overlap in genes C3HeB/FeJ mouse lungs (this study) vs. macrophages (Fig 5B
and S5 Table), ref [23] indicates their requirement not only in macrophages ex-vivo but also in-
vivo. For example, clpX gene required for stress tolerance [71] and bacterial growth [72] was
upregulated in our datasets (S5 Table). An comparison with ‘NRP’ dataset [24] also showed an
overlap of array of genes e.g. Rv2122c, Rv0045c, Rv0630c etc. (S3 Table). Rv2122c encodes a
phosphoribosyl-ATP pyrophosphohydrolase, required for the growth ofMtb and is a member
of ideR (iron-dependent regulator), probably involved in virulence [73]. The transition between
dormant and activeMtb infection requires reorganization of lipid metabolism and activation
of a battery of serine hydrolase enzymes such as Rv0045c [74]. We found upregulation of
Rv0045c in our datasets that might indicate transition in state of bacilli within host. The pertur-
bation of Rv0630c indicates modification ofMtb genes in hostile environment [54]. Similarly,
upregulation of radA (Rv3585, encodes a DNA repair protein) and Rv3417c expressions indi-
cate DNA modifications during in-vivo growth (Tuberculist) and interactions with Toll like
Receptors respectively [75] (S3 Table). Hierarchical clustering demonstrated an overlap in
genes expressed on C3HeB/FeJ mouse lungs (this study) vs. in-vitro (NRP) conditions (Fig 7).
We grouped the time points NRP day-6, -10, -14, 30, and -80. We considered the time point
NRP day 80 since this represents long-term hypoxia. A gradual increase in gene expression
over 80 days of hypoxia indicates their requirement during both hypoxia in-vitro and chronic
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Fig 5. Scatter plot diagram showing similarity and dissimilarity in gene expression from various datasets. A). Comparison of gene expression in
C3HeB/FeJ mouse lungs infected withMtb strains (red-Mtb; black-Mtb:ΔdosR; blue-Mtb:ΔdosS; green-Mtb:ΔdosT) versus gene expression profile in
BALB/c mice [7] B). Graph shows the bacterial genes and their expression levels in C3HeB/FeJ mouse lungs (this study) compared to infected macrophages
at 4- and 24-hr post infection [23].

doi:10.1371/journal.pone.0135208.g005

Transcriptomics ofMtb and Dos Mutants in Kramnik Mice

PLOS ONE | DOI:10.1371/journal.pone.0135208 August 13, 2015 13 / 25



Fig 6. Validation ofMtb gene expression in mouse lungs by quantitative RT-PCR. The expression of
indicated genes in intracellular bacteria was compared to that of bacteria growing exponentially in 7H9 broth
by RT-PCR. The expression of each gene was normalized to sigA and fold change were calculated from
three biological replicates.

doi:10.1371/journal.pone.0135208.g006
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Fig 7. Hierarchical clustering of bacterial genes expressed in C3HeB/FeJ mouse lungs. A snapshot of few bacterial genes induced in C3HeB/FeJ
mouse lungs upon infection withMtb orMtb:ΔdosR orMtb:ΔdosS orMtb:ΔdosT and their comparison with genes expressed during NRP [24] is shown. A
gradual decrease or increase in color intensity indicates low (blue) or high (orange) expression. For example, a gradual increase in gene expression over 80
days of hypoxia indicates their requirement during both hypoxia in-vitro and chronic phase of infection in C3HeB/FeJ mouse lungs.

doi:10.1371/journal.pone.0135208.g007
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phase of infection in C3HeB/FeJ mouse lungs. InMtb:ΔdosR, the upregulation of Rv0890c,
Rv048c, Rv1515c, Rv1218c etc. in C3HeB/FeJ mouse lungs and gradual decrease in expression
of these genes over 80 days of hypoxia indicates their requirement in chronic phase of infection
only. Similarly inMtb:ΔdosS, a gradual decrease in expression of Rv2585c, Rv0633c, Rv1005c,
Rv2122c etc. over 80 days of long-term hypoxia indicate their requirement in chronic phase of
infection only. InMtb:ΔdosT both, upregulated (Rv3236c, Rv0311, Rv0465c, Rv2044c etc.) and
down-regulated (Rv0045c, Rv3758c, Rv0937c, Rv0060 etc.) genes over 80 days of hypoxia indi-
cate differential gene expression compared to C3HeB/FeJ mouse.

The comparative analysis reveals an overlap in many of the genes and their expression levels
between C3HeB/FeJ and BALB/c mice, which clearly indicates that these genes are required
during both early [7]) and chronic phase (this study) of infection. Similarly, an overlap in gene
expression between C3HeB/FeJ and macrophage or NRP conditions indicated their require-
ment both during in-vivo and in-vitro.

Discussion
The outcome of the host-pathogen interactions is in large part shaped by selective gene expres-
sion during infection [76]. Thus, bacterial gene expression during course of infection has the
potential to provide specific and key knowledge about the physiology og the pathogen within
its intra-granulomatous niche. It is conceivable that this information will generate a list of in-
vivo druggable targets of chemotherapy, which may be otherwise ignored.

Thus, here, we describe the gene expression profile ofMtb strains viz.Mtb,Mtb:ΔdosR,Mtb:
ΔdosS and,Mtb:ΔdosT in the human-like lung lesions of C3HeB/FeJ mice. In particular,Mtb:
ΔdosS is primarily focused. The data presented here provide important new information about
the adaptation of this pathogen inside the host with co-expression of similar (Fig 4) or unique
(Fig 3) genes being detected among these groups. Thus, for example, the co-expression of fol-
lowing genes viz. Rv2488c, Rv3060c, Rv1129c, Rv0890c, Rv0328, Rv2088, Rv0465c in the func-
tional category ‘response regulator’ highlights their importance in regulating gene expression
during in-vivo growth. Specifically Rv0465c encodes a transcription factor designated RamB
[77], which is a key regulator of isocitrate lyase and glyoxylate shunt, a metabolic pathway criti-
cal forMtb persistence [78]. The expression of RamB appears to be regulated by the SigE/SigB
regulatory axis [77], which is itself regulated by SigH [22, 58, 79], PknB [80], ClgR [81, 82] and
other regulatory loops, many of which are known to be induced during macrophage infection
as well as in-vivo [23, 83]. The SigH/SigE/SigB/ClgR regulatory circuit is critical for the patho-
gen to face the host oxidative burst and required for initial infectivity in primate lungs [84]. It
appears that this network is responsible for evasion of antibacterial responses leading to the
prolonged survival ofMtb [85].

Similarly, Rv2088 encodes for a protein kinase PknJ, which is also induced in the lungs of
guinea pigs infected withMtb [86]. Among the various targets that PknJ is experimentally
known to phosphorylate and activate [87], EmbR is a transcriptional factor required for the
expression of the embCAB operon, that encodes the critical cell wall arabinosyl transferases
[88]. This pathway is important for both the acquisition of resistance to ethambutol (a frontline
antimycobacterial drug) and the cell wall Lipoarabinomannan/Lipomannan ratio (that plays a
key role in immune-evasion). Another known PknJ target is the methyl transferase MmaA4/
Hma, which is involved in mycolic acid biosynthesis.

The expression of the transcription factor Rv0328 also appears to be governed by the SigH/
SigE/SigB axis [23, 49] indicating a role in both immune evasion and pathogenesis. Rv1129c
encodes a transcription factor that is essential for the induction of the propionyl-CoA assimi-
lating methyl citrate cycle enzymes [43], which are required for both intra-phagosomal survival
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ofMtb as well as for survival on cholesterol-containing media (which is a key carbon source for
Mtb during intra-phagosomal persistence in lungs [89], as well as for the catabolism of choles-
terol [43]. Rv1129c is also known to be dependent upon SigE for its expression [77]. Rv2488c
encodes a transcription factor that is also known to be induced in guinea pig lungs [86], and is
predicted to be in the SenX3/RegX3 network [38], critical for defense against damage to DNA,
which is experienced byMtb during oxidative stress in-vivo [90, 91]. Thus, transcriptomics
analysis ofMtb derived from human-like caseous lungs lesions in C3HeB/FeJ mice at chronic
stage paints a picture where the pathogen experiences diverse stress conditions including but
not limited to oxidative stress, hypoxia, adaptation to less-preferred carbon and nitrogen
sources aka cholesterol, and damage to cell-surface, DNA and lipids. Hence, gene-expression
modules controlled by these regulators represent important in-vivo targets.

Lipid metabolism plays a key role in theMtb pathogenesis during which bacilli use fatty
acids as a sole carbon source for the survival in-vivo [43]. In addition, cell wall lipids play vari-
ety of roles in physiology and pathogenesis during infection [92]. Many of the genes involved
in lipid metabolism, critical in the cell membrane biosynthesis, sugar metabolism, bacterial
resistance within host, survival, immunomodulation and pathogenesis could be detected in all
datasets. This strongly suggests the requirement of modified lipid metabolism in-vivo, as has
been postulated and studied by others [26, 93, 94]. Recently we have reported thatMtb:ΔdosS is
attenuated in Kramnik mice [11] we, therefore, predicted that the attenuation ofMtb:ΔdosS
mutant may results from lack of expression of bacterial genes required for survival and persis-
tence during infection. Following genes required for survival in mice and macrophages were
downregulated inMtb:ΔdosS dataset; glnB (Rv2919c) [7, 67], Rv2989 [50] Rv0744c [7, 51]
Rv2989 [50], Rv0405 (38) and Rv3281 [52].

Several other genes highly expressed in-vivo, including genes that were shown to be involved
in cell wall biosynthesis (e.g. Rv1350, Rv3840c, Rv3895c etc.), transcriptional regulation (e.g.
Rv2488c, Rv2799c, Rv0329 etc.) may contribute to the establishment of the infection inside the
host. Moreover, we detected differentially expressed genes in all datasets (96–98% genes were
unique). A set of 650 genes inMtb; 255 genes inMtb:ΔdosR, 406 genes inMtb:ΔdosS, 114 genes
inMtb:ΔdosT (Fig 1) were expressed in C3HeB/FeJ mice with at least 36 and not more than 53
genes were common in all datasets. The pathways significantly changed inMtb,Mtb:ΔdosR,
Mtb:ΔdosS orMtb:ΔdosT during growth in C3HeB/FeJ mice lungs were information-, interme-
diary-, and lipid metabolism-pathways (S1–S3 Figs). Genes such as fdxC (Rv1177) induces at
low pH, DNA damage stress [95], and during growth in macrophages [96]. The list of the
genes in our datasets (S4 and S5 Tables) and those induced in macrophages [23] and BALB/c
mice [7] suggests that the host immune response after infection is characterized by macrophage
activation.

A change in the growth-dependent genes and their expression levels e.g. those belonging to
information pathways and intermediary metabolism (different genes but from the same func-
tional category among strains, Fig 3) was observed. An analysis of the transcriptional response
ofMtb genes in Kramnik mice observed in the present study suggests that protective functions
are conserved which could facilitate the adaptation ofMtb in hostile environment. In sum-
mary, transcriptomics analysis ofMtb and Dos mutants also indicates both the macrophage-
like and multiple stress environments that may influence the adaptation and affect the persis-
tence of bacilli intracellularly.

Conclusions
As part of this study we present our analysis of i)Mtb gene expression at the chronic stage of
infection in the C3HeB/FeJ mouse model and ii) present comparisons with the various mutants
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in the hypoxia-sensing regulon controlled by the DosR transcription factor. The expression of
iVEGI genes [7] in our datasets indicates their requirement not only during onset (and the
early stages) ofMtb infection but also their significant contribution during the chronic stages.
In addition, our analysis identified both core gene sets and core categories which were present
in all datasets, as well as specific genes which correlate with the relative attenuation of theMtb:
ΔdosSmutant in this mouse model. Several of these genes are important for lipid metabolism
as well as for survival in the wake of diverse host-generated stress conditions such as hypoxia,
oxidative stress, DNA damage, lack of availability of preferred carbon sources etc. These find-
ings have the potential to allow us to better understand the dynamics of bacilli in C3HeB/FeJ
mice that mimic the pathology of human lung granuloma and may provide the information for
possible drug and/ or vaccine targets. Further, more in-depth studies are required to better
understand as to how these gene signatures correspond to bacterial virulence or control of
infection.
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Supporting Information
S1 Fig. Integration of functional category ‘information pathways’ and its group percentage.
The results obtained are based on an overlap between the total numbers of genes changed in
each of the biological replicate of mice lung samples to the genes in a functional category
assigned in Tuberculist. These numbers were then used to calculate group percentage for func-
tional category ‘information pathway’, changed inMtb or Dos mutants in mouse lung using
IntPath [50].
(TIF)

S2 Fig. Integration of functional category lipid metabolism and its group percentage. The
results summarize the group percentage for functional category ‘lipid metabolism pathways’
based on an overlap between the total numbers of genes changed in each of the biological repli-
cate of mice lung samples to the genes in the functional category ‘lipid metabolism’ assigned in
Tuberculist.
(TIF)

S3 Fig. Integration of functional category intermediary metabolism and its group percent-
age. The group percentage was calculated based on an overlap between the total numbers of
genes changed in each of the biological replicate of mice lung samples to the genes in functional
category ‘intermediary metabolism’ assigned in Tuberculist.
(TIF)

S1 Table. Functional categories and their genes changed inMtb- or Dos mutants-infected
mouse lung samples. The Table summarizes genes identified in various functional categories
based on the information available in the ‘Tuberculist’ database forMtbH37Rv genome.
(XLS)

S2 Table. Enriched biological pathways changed in mouse lungs. Various pathways repre-
senting one or more functional category as per Tuberculist and IntPath [50] database are shown.
(XLS)
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S3 Table. List of genes associated with bacterial persistence. The Table summarizes hypoxia
responsive genes changed in C3HeB/FeJ mouse lungs (this study) versus in-vitro conditions
[24].
(XLS)

S4 Table. Bacterial gene expression in C3HeB/FeJ mouse lungs. Comparison of genes and
their expression in C3HeB/FeJ mice lungs infected withMtb strains (Mtb,Mtb:ΔdosR,Mtb:
ΔdosS,Mtb:ΔdosT) versus genes expressed inMtb infected BALB/c mice lungs [7].
(XLS)

S5 Table. Biological pathways changed inMtb or Dos mutants infected mouse lungs. �The
Table summarizes enriched pathways significantly changed (P<0.05) in mouse lungs infected
withMtb orMtb:ΔdosR orMtb:ΔdosS orMtb:ΔdosT relative to in-vitro grown cultures. The ‘p-
value’ for a pathway is based on IntPath database that uses hyper-geometric test to find most
significant pathways in an input gene list to the number of genes assigned for a functional cate-
gory in the genome [50].
(XLS)
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