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abstract

PURPOSE Although aromatase inhibitor (AI) treatment is effective in estrogen receptor–positive postmenopausal
breast cancer, resistance is common and incompletely explained. Genomic instability, as measured by somatic
copy number alterations (SCNAs), is important in breast cancer development and prognosis. SCNAs to specific
genes may drive intrinsic resistance, or high genomic instability may drive tumor heterogeneity, which allows
differential response across tumors and surviving cells to evolve resistance to treatment rapidly. We therefore
evaluated the relationship between SCNAs and intrinsic resistance to treatment as measured by a poor
antiproliferative response.

PATIENTS ANDMETHODS SCNAs were determined by single nucleotide polymorphism array in baseline and surgery
core-cuts from 73 postmenopausal patients randomly assigned to receive 2 weeks of preoperative AI or no AI in the
Perioperative Endocrine Therapy—Individualizing Care (POETIC) trial. Fifty-six samples from the AI group included
28 poor responders (PrRs, less than 60% reduction in protein encoded by the MKI67 gene [Ki-67]) and 28 good
responders (GdRs, greater than 75% reduction in Ki-67). Exome sequencing was available for 72 pairs of samples.

RESULTS Genomic instability correlated with Ki-67 expression at both baseline (P , .001) and surgery (P ,
.001) and was higher in PrRs (P = .048). The SCNA with the largest difference between GdRs and PrRs was loss
of heterozygosity observed at 17p (false discovery rate, 0.08), which includes TP53. Nine of 28 PrRs had loss of
wild-type TP53 as a result of mutations and loss of heterozygosity compared with three of 28 GdRs. In PrRs,
somatic alterations of TP53 were associated with higher genomic instability, higher baseline Ki-67, and greater
resistance to AI treatment compared with wild-type TP53.

CONCLUSION We observed that primary tumors with high genomic instability have an intrinsic resistance to AI
treatment and do not require additional evolution to develop resistance to estrogen deprivation therapy.
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INTRODUCTION

Estrogen deprivation is the major treatment strategy for
hormone-dependent breast cancer (BC) and typically
involves agents that inhibit aromatase, the enzyme that
catalyzes the conversion of androgens to estrogens.
Despite near-complete suppression of circulating estro-
gen levels by aromatase inhibitor (AI) treatment, acquired
and de novo resistance to AI is common.1 Few pre-
treatment biomarkers exist for AI resistance, and mech-
anisms of resistance are incompletely understood.2

Mutations and somatic copy number alterations
(SCNAs) can play important roles in activating onco-
genes or inactivating tumor suppressors, and BC is
characterized by multiple recurrent SCNAs and few

recurrent mutations.3 We have previously shown that
TP53 mutations (TP53MUT) occur at a higher rate in
tumors with poor response to AI treatment, which
suggests that these patients received less benefit from
AI4 but that SCNAs to specific genes also may play an
important role in AI resistance.5 Nonspecific genomic
alterations, like high genomic instability, are known to
be associated with poor prognosis and probably at
least partly the result of tumor heterogeneity, which
allows some cells to survive and evolve resistance to
treatment.6 There is evidence in other solid tumors of
an association between high genomic instability and
intrinsic resistance to chemotherapy.7 However, few
studies of genomic instability and response to endo-
crine treatment exist. The aim of the current work,
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therefore, was to determine whether genome-wide mea-
sures of SCNAs (ie, genomic instability) and/or focal SCNAs
are associated with intrinsic resistance to AI treatment.

Response to AI treatment can be measured by change in the
proliferation marker protein encoded by the MKI67 gene
(Ki-67) after 2 to 4 weeks of presurgical therapy, and AI re-
sistance in primary tumors can be characterized and defined
by limited or no Ki-67 response to AI treatment.8-10 This
change in Ki-67 has been found to predict benefit from
endocrine therapy better than clinical response.10 We there-
fore extended our earlier study on the relationship be-
tween mutations and resistance to AIs in the presurgical
Perioperative Endocrine Therapy—Individualizing Care
(POETIC) trial. We used single nucleotide polymorphism
(SNP) array technology to identify SCNAs and included
paired baseline and surgery samples to assess the degree of
intratumoral heterogeneity and selection during AI treatment.

PATIENTS AND METHODS

Patients and Tissues

The POETIC trial (CRUK/07/015) is a presurgical, randomized
study with 4,486 postmenopausal patients who received
nonsteroidal AI (anastrozole 1 mg/d or letrozole 2.5 mg/d) or
no treatment (2:1) 2 weeks before surgery.11 The list of
primary investigators is in the Appendix. Core-cut biopsy
specimens (14-G needle) were collected from 15%of patients
into RNAlater (QIAGEN, Sussex, United Kingdom). Whole
blood was collected for germline DNA and used as normal
diploid control for SCNA analysis. The trial was approved by
the London–South East Research Ethics Committee. Patients
gave informed consent for DNA analysis.

Biomarker Analyses

Ki-67 percent staining was centrally analyzed in formalin-
fixed samples as previously described.8 Human epidermal
growth factor receptor 2 (HER2) status was measured
locally.

Sample Selection

DNA was extracted from 192 baseline/surgery samples
from the subset of POETIC ER-positive tumors stored in
RNAlater and matching blood control samples from 73
patients with baseline Ki-67 scores greater than 5%. Poor
responders (PrRs; n = 28) were defined as having a Ki-67
decrease of less than 60% between baseline and surgery
and good responders (GdRs; n = 28) as having a greater
than 75% Ki-67 decrease. Patients with intermediate Ki-67
decrease between 60% and 75% were not considered.
Exome sequencing was available for 72 tumors from a pre-
vious study.4 Samples from 17 patients who received
no AI also were analyzed to ensure that changes in SCNAs
ascribed to AI treatment were not artifactual. Aliquots were
taken from 10 tumor DNA samples and assessed as
technical replicates (Data Supplement).

DNA Extractions

Eight-micrometer sections were taken from RNAlater-
stored core-cuts embedded in optimal cutting tempera-
ture compound (Cryo-M-Bed, Bright Instruments, Luton,
United Kingdom) and stained with nuclear fast red (0.1%
weight-to-volume ratio). Needle microdissection was used
to achieve more than 60% pure tumor cells when nec-
essary. DNA was extracted from the sections using
a DNeasy Blood & Tissue Kit (QIAGEN) and from peripheral
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blood using the EZ1 system (Life Technologies,
Carlsbad, CA).

SNP Array Analysis

Human OmniExpressExome v.3 BeadChip (Illumina, San
Diego, CA) was used to generate genotype and intensity
data for blood and tumor samples, and allele-specific copy
number analysis of tumors (ASCAT)13 was used for the
estimate of ploidy, fraction of tumor cells, and CNAs in the
tumor samples. Two samples did not pass OncoSNP quality
control14 and visual inspection of the SNP array data. Ploidy
and purity using default parameters and a range of higher
segmentation penalties were estimated with ASCAT and
OncoSNP. Either the segmentation penalty in ASCAT was
increased (22 samples) or the estimate of ploidy and purity
from OncoSNP was used in ASCAT (four samples) to
generate SCNA calls that best described the data. For five
samples, germline genotype predictions generated by
ASCAT were the result of contamination or quality control
failure of blood controls. BEDTools multi-intersect15 was
used to identify 47,807 nonoverlapping segments from
all samples. Data have been deposited in the European
Genome-phenome Archive (EGAS00001001940).

Measures of Genomic Instability

Chromosomal gains and losses were determined relative to
estimates of tumor ploidy by ASCAT (sum of major and
minor allele calls minus tumor ploidy rounded to the
nearest integer). Loss of heterozygosity (LOH) was assigned
when the estimated copy number was 0 for theminor allele.
Genomic instability was defined as the percentage of the
genome with SCNAs calculated by summing the total base
pairs of segments with gain, loss, or LOH relative to paired
normal blood control samples for each tumor sample and
dividing by the size of the genome (3 × 109 base pairs).

Intrinsic Subtypes

Prediction analysis microarray 50 intrinsic subtypes were
determined for 36 tumors.12 Details are listed in the Data
Supplement.

Statistical Methods

Mann-Whitney U test, F test, χ2 test, Pearson’s correlation,
Fisher’s exact tests, and multiple correction by Benjamini-
Hochberg method16 (false discovery rate [FDR]) were
carried out using the wilcox.test, var.test, chisq.test, cor.test,
fisher.test, p.adjust functions in R, respectively. Fisher’s
exact tests were one-sided, and the remaining reported P
values were from two-sided tests unless otherwise speci-
fied. Box plots were generated with the boxplot function in
R to show median, interquartile range, and range of values,
excluding outliers.

RESULTS

SCNA Characteristics in the Overall Population

SCNAs were identified in 28 patients with tumors classified
as PrRs, 28 with tumors classified as GdRs, and 17 from the

no-treatment control group with tumors (Fig 1A). The
median percentage of the genome with SCNAs was 46% for
all tumors, with a single representative tumor sample
chosen from matched baseline, surgery, or technical
replicate samples to calculate the median percentage of
SCNAs. The median percentage of the genome with gains
relative to tumor ploidy, losses relative to tumor ploidy, and
LOH was 15%, 16%, and 15%, respectively (Fig 1B).
Highly recurrent SCNAs (gains at 1q, 16p, 20q, and 8q and
losses/LOH at 11q 16q, 17p, and 8p) occurred in more
than 50% of all representative samples. The majority of
sites with losses overlapped with LOH (Data Supplement),
as expected.17,18

Intratumoral Heterogeneity of SCNAs

Overlap of SCNAs between paired core-cuts. Discordance
between baseline and surgery time points was significantly
greater than differences between technical replicate
samples taken from the same DNA extraction (Data Sup-
plement). Discordance in SCNAs was observed in more
than 10% of the genome in only one pair of technical
replicate samples. Of note, these samples had the highest
genomic instability, withmore than 90% of the genomewith
SCNAs (P088 samples).

Overall SCNA calls in baseline and surgery AI pairs were
similar (Data Supplement), with the median overlap for
SCNAs at 87% and 88% for 33 baseline/surgery AI pairs
and 11 no-AI pairs. There was no significant difference
between the frequency of discordant SNCA calls between
baseline and surgery AI pairs after correction for multiple
testing, and only 4% of 47,807 nonoverlapping regions had
greater than 10% more events in baseline or surgery
samples (more than four additional SCNA events in the
baseline or surgery samples in the 33 pairs). Much larger
sample sizes are required to determine whether these
regions are significantly different between baseline and
surgery.

Concordance of SCNAs between paired core-cuts. For pairs
of baseline and surgery samples, the median percentage
of the genome with discordant SCNA calls was 5%
(Fig 1C), and discordance between samples was asso-
ciated with the percentage of the genome with SCNAs.
There was only one paired set of core-cuts in which
discordant SCNAs were greater than the SCNAs shared
between the pair of samples, which suggests two in-
dependently evolved tumors.

Discordance in PrR and GdR paired samples. There was
a trend for PrRs to have more discordant SCNAs between
paired samples than GdRs (PrR average, 10%; GdR av-
erage, 6%), but this difference was not significant. How-
ever, the variance in the percentage of the genome with
discordant SCNAs was significantly greater in PrRs than in
GdRs (P , .001, F test; Fig 1D). These data indicate that
the tumors with the highest topographic heterogeneity in
SCNAs were more frequent among the PrRs.

Genomic Instability and Resistance to AI Treatment
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Intrinsic Subtypes

Prediction analysis microarray 50 intrinsic subtype calls12

were performed on 36 baseline tumors. There was an
enrichment of poor prognosis intrinsic subtypes (PrR
nonluminal/luminal B) in PrR samples (64%) compared
with GdR samples (20%); however, more than 30% of
measured PrR samples were luminal A subtypes, which
suggests that intrinsic subtyping did not fully capture
the higher risk of recurrence in these samples (Data
Supplement).

Intertumoral Heterogeneity in SCNAs

Comparison between PrRs and GdRs in percentage of
genome altered. Given the overall concordance between
baseline and surgery core-cuts in SCNAs and the results of
previous observations of minimal impact of AI treatment on
mutation counts,4 we merged all the SCNA events from
multiple samples from the same tumor to represent the
SCNA events in that tumor (baseline and surgery, 35
events; baseline, surgery, and technical replicates, nine
events; baseline technical replicates, one event). The
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FIG 1. (A) Arrow plot showing the change in the protein encoded by the MKI67 gene (Ki-67) between baseline and surgery for good responder
(GdR), poor responder (PrR), and untreated control samples (Controls as determined by immunohistochemistry scores). (B) Box plot showing
percentage of the genome with somatic copy number alterations (SCNAs), gains relative tumor ploidy, losses relative to tumor ploidy, loss of
heterozygosity (LOH), and homozygous deletion (HD) for 127 tumor samples. (C) Bar plot and (D) box plot showing the average percentage of
genome discordance between pairs of core-cuts (baseline and surgery) for all SCNAs. AI, aromatase inhibitor; IHC, immunohistochemistry.
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genomic instability was higher in the 28 PrR combined
samples than the 28 GdR combined samples (P = .048,
Mann-Whitney U test), and genomic instability was sig-
nificantly correlated with baseline (r = 0.41; P , .001,
Pearson’s correlation) and surgery (r = 0.48; P , .001;
Pearson’s correlation) Ki-67 (Fig 2).

Comparison of SCNAs between PrRs or GdRs. The per-
centage of a chromosomal arm with gains, losses, and LOH
was calculated, and PrRs showed a significantly higher
percentage of gains in 6p; losses in 5q; and LOH in 10q,
17p, and 19p (FDR, 0.1, one-sidedMann-WhitneyU test;
Figs 3A to 3C). The largest difference in percent values
(mean and median) for arms between GdRs and PrRs was
observed in LOH at 17p (Figs 3D to 3G) followed by LOH in
8p and gains in 8q. There were no chromosomal arms with
significantly greater gains, losses, or LOH in GdRs.

Analysis of smaller regions on the basis of the 47,807
nonoverlapping segments revealed that the most significant
differences in gains were observed at 10p12.31 and 10p13
(P, .001, Fisher’s exact test), losses at 5q11.2 (P, .001),
and LOH at 17p13.3 (P , .001). These regions had ap-
proximately 40% more events in PrRs (10 to 13 more SCNA
events in the 28 PrR samples v GdR samples, respectively)
but were not significant after multiple correction.

TP53 Alterations

Occurrence of TP53MUT and LOH in cohort. Our previous
work from exome sequencing showed PrRs and TP53MUT

associated with a higher mutational load and that the
mutational load was correlated with Ki-67 levels at surgery
after 2 weeks of AI treatment.4 We did not observe a sig-
nificant correlation between the percentage of the genome

with SCNAs and mutational load, but we did observe
greater genomic instability in tumors with TP53MUT (Fig 4E).

As expected for a tumor suppressor, LOH at the TP53 locus
in 17p was associated with TP53MUT across all tumors
(which drove loss of the functioning copy of the tumor
suppressor gene; P = .004, Fisher’s exact test). Of the 17
patients with TP53 mutations in baseline or surgery sam-
ples, 15 had LOH at the TP53 locus (nine PrR, five GdR,
and three control samples). All nine PrR samples and three
of five GdR samples with TP53MUT also had LOH at the
TP53 locus. There was a significant enrichment of TP53
genomic alterations in PrRs (P = .03, Fisher’s exact test)
and a significant difference in the distribution of TP53
genetic alterations between PrRs and GdRs (P = .02, χ2

test; Fig 4A).

AI resistance and TP53 status. Within the PrR group,
samples with no LOH and TP53 wild type (TP53WT) had the
best antiproliferative response to AI compared with samples
with TP53WT + LOH and TP53MUT + LOH as measured by
the change in Ki-67 (P = .01 and .05, respectively, Mann-
Whitney U test; Fig 4B). The difference in the change in Ki-
67 between TP53WT + LOH and TP53MUT + LOH was not
significant, but there were significant differences between
TP53WT + LOH and TP53MUT + LOH for baseline Ki-67
scores (P = .02) for surgery Ki-67 scores (P = .04) and for
the percentage of the genome with SCNAs (P , .001; Figs
4B to 4E).

Impact of HER2 status. There were seven HER2-positive
samples in the PrR group and none in the GdR group.
HER2-positive samples had a significantly higher per-
centage of the genome with gains in copy number
compared with HER2-negative PrR samples (P = .03,
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Mann-Whitney U test) but did not have a significantly
higher percentage of SCNAs in general, losses, or LOH. The
results with HER2-negative samples were similar to those
with all samples, with the most significant differences
between PrRs and GdRs being loss at 5q and LOH at 17p
for HER2-negative samples. There was also a significant
enrichment of TP53 genomic alterations in PrRs (P = .02,
Fisher’s exact test) and a significant difference in the
distribution of TP53 genetic alterations between PrRs and
GdRs in HER2-negative samples (P = .03, χ2 test).

DISCUSSION

Our primary goal was to identify global and focal SCNAs that
were associated with the antiproliferative response of ER-
positive BC to short-term estrogen deprivation using AIs.
Our selection of samples from more than 3,000 patients in
the AI group from the POETIC trial aimed to exploit this large

study to understand good/poor response to AI treatment in
a general ER-positive BC population but not to represent
the trial population per se. The sampling of tumors before
and after 2 weeks of AI treatment allowed the impact of tissue
heterogeneity to be assessed, and prior exome sequencing
gave the opportunity to integrate the SCNA and mutation
data to better understand intrinsic resistance. Although the
number studied seems modest, the ability to assess re-
sponse in individual tumors allows much greater confidence
with molecular associations than larger studies with time to
recurrence. HER2 positivity was enriched in the PrRs, as
previously noted,4 but the genomic changes were similar in
HER2-negative patients and the overall population.

The lack of recurrent alterations specific to only baseline or
surgery in AI-treated samples indicates a limited impact
and selection for SCNAs after 2 weeks of AI treatment, in
line with other studies.4,19 Of note, mean tumor volume did
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not change significantly in the nearly 3,000 POETIC AI-
treated patients within the 2-week treatment window (data
not shown), which indicates little opportunity for selection of
resistant cells in that time. Reduced heterogeneity might be
observed from longer treatment.20 These data, therefore,
indicate that a small biopsy sample before or after short-term
AI treatment is likely to be representative of the whole tumor
for most BCs; however, for tumors with high genomic in-
stability and greater heterogeneity, multiple biopsy samples
may be necessary to capture all genomic alterations.

There is a large body of evidence to associate genomic
instability with poor outcomes in solid tumors,6 and in-
corporation of genomic instability scores can greatly im-
prove molecular prognostic models for BC.21,22 It is not
known whether high genomic instability and greater tumor
heterogeneity allow the few surviving tumors to evolve re-
sistance to AI treatment or whether there is intrinsic re-
sistance to AI in these tumors. Our data support the latter,
with tumors with high genomic instability showing de novo
resistance to AI therapy as measured by a poor Ki-67 re-
sponse after 2 weeks of treatment, a validated intermediate
marker of benefit from endocrine therapy.10 This also
suggests that genomic instability not only has prognostic
value but also predicts which postmenopausal ER-positive
primary tumors are likely to be resistant to AI therapy.

The SCNA LOH in 17p was significantly associated with
poor Ki-67 change, and LOH was significantly greater in
PrRs than in GdRs in HER2-negative tumors and the overall
population. This region encodes for several cancer driver
genes, including TP53, a key regulator of cellular processes
that control proliferation and genomic stability. LOH and
mutations in TP53 have been shown to result in worse
outcomes,23 and we have now shown that it is also asso-
ciated with poor antiproliferation response to AI and in-
trinsic resistance to treatment. Other factors besides TP53
can modulate genomic instability and AI resistance, and
genomic instability is significantly inversely correlated with
the average expression of the ER-regulated genes TFF1,
GREB1, PGR, and PDZK1 in ER-positive tumors from
the Molecular Taxonomy of Breast Cancer International

Consortium24 (r = −0.24; P , .001, Pearson’s correlation),
which suggests that other factors besides ER are driving
proliferation and resistance to AI in tumors with high ge-
nomic instability. Even in tumors with high ER expression
and good prognosis, TP53 genomic alterations can result in
worse outcomes.

Work by other groups has associated mutations in DNA
repair pathways25 or mismatch repair pathways19 and co-
amplification of FGFR1 and CCND15 with resistance to AI
treatment, but we have not observed enrichment of these
genomic alterations in our PrRs. This may be the result of
small samples sizes in each study and additional differ-
ences in how AI resistance is classified: We classified
response/resistance on the basis of changes of Ki-67
between baseline and AI-treated tumors because this dy-
namic assessment relates to benefit from treatment. Others
have used the level of residual Ki-67 in AI-treated tumors as
the end point to define resistance, which reflects residual risk
of recurrence while on AIs. Of note, a patient with a large
reduction in proliferation after treatment has clearly
benefited from and responded to AI treatment, regardless of
her residual risk on the basis of Ki-67 measurements at
surgery.26

We conclude that the poor prognosis of ER-positive post-
menopausal tumors associated with high genomic in-
stability, TP53 LOH, and TP53MUT is due at least in part to
intrinsic resistance of these tumors to AI therapy. Short,
2-week AI treatment can reveal poor antiproliferative re-
sponse in these primary tumors, which indicates that they
continue to proliferate in an estrogen-deprived environment
and do not require additional evolution to enable the tumor
to resist treatment. It is not clear whether high genomic
instability or TP53 genomic alterations directly play a role in
AI resistance or whether these are biomarkers for other
drivers of resistance. Additional analysis of the more than
3,000 AI-treated patients from POETIC may reveal addi-
tional links among genomic instability, TP53, and AI re-
sistance and lead to better treatment of those patients with
high genomic instability and intrinsic resistance to AI
treatment.
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APPENDIX
POETIC Trial Members

Member Affiliation

Stephen Johnston Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, and Royal Marsden
Hospital, Sutton, United Kingdom

Radha Todd Royal Marsden Hospital, Sutton, United Kingdom

Kieran Horgan St James’s University Hospital, Leeds, United Kingdom

Stephen Chan Nottingham City Hospital, Nottingham, United Kingdom

Simon D.H. Holt Prince Phillip Hospital, Llanelli, United Kingdom

Marina Parton Royal Marsden Hospital, Sutton, United Kingdom

Ian Laidlaw Frimley Park Hospital, Frimley, United Kingdom

Jayant S. Vaidya Whittington Hospital National Health Service Trust, London, United Kingdom

Tracey Irvine Royal Surrey County Hospital, Guildford, United Kingdom

Fiona Hoar City Hospital, Birmingham, United Kingdom

Ilyas Khattak Ysbyty Gwynedd, Bangor, United Kingdom

Ashutosh Kothari Guy’s Hospital, London, United Kingdom

Lucy Brazil Guy’s Hospital, London, United Kingdom

Nicholas Gallegos Weston General Hospital, Weston-Super-Mare, United Kingdom

Duncan Wheatley Royal Cornwall Hospital, Truro, United Kingdom

Tayo Johnson St Peter’s Hospital, Chertsey, United Kingdom

Geoffrey Sparrow Yeovil District Hospital, Yeovil, United Kingdom

Serena Ledwidge St Bartholomew’s Hospital, London, United Kingdom

Caroline Mortimer Ipswich Hospital, Ipswich, United Kingdom

Marcus Ornstein Homerton University Hospital, London, United Kingdom

Douglas Ferguson Royal Devon and Exeter Hospital, Exeter, United Kingdom

Douglas Adamson Ninewells Hospital, Dundee, United Kingdom

Ramsey Cutress Southampton General Hospital, Southampton, United Kingdom

Richard Johnson Neath Port Talbot Hospital, Port Talbot, United Kingdom

Clare Crowley Salisbury District Hospital, Salisbury, United Kingdom

Zoe Winters Bristol Royal Infirmary, Bristol, United Kingdom

Hisham Hamed Guy’s Hospital, London, United Kingdom

Russell Burcombe Maidstone Hospital, Maidstone, and Tunbridge Wells Hospital, Tunbridge Wells, United Kingdom

Susan Cleator St Mary’s Hospital and Charing Cross Hospital, London, United Kingdom

Muireann Kelleher St George’s Hospital, London, United Kingdom

Jonathan Roberts King’s College Hospital, London, United Kingdom

Sarah Vesty General Hospital, Cheltenham, United Kingdom

Maher Hadaki Maidstone Hospital, Maidstone, United Kingdom

Mary Quigley Queen’s Hospital, Essex, United Kingdom

Julie Doughty Western Infirmary, Glasgow, United Kingdom

Siobhan Laws Royal Hampshire County Hospital, Winchester, United Kingdom

Seema Seetharam Darent Valley Hospital, Dartford, United Kingdom

Amanda Thorne Musgrove Park Hospital, Taunton, United Kingdom

Peter Donnelly Torbay District General Hospital, Torquay, United Kingdom

Abbreviation: POETIC, Perioperative Endocrine Therapy—Individualizing Care.
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