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Bioluminescence tomography (BLT) is a promising tool for studying physiological and pathological processes at cellular and
molecular levels. In most clinical or preclinical practices, fine discretization is needed for recovering sources with acceptable
resolution when solving BLT with finite element method (FEM). Nevertheless, uniformly fine meshes would cause large dataset and
overfine meshes might aggravate the ill-posedness of BLT. Additionally, accurately quantitative information of density and power
has not been simultaneously obtained so far. In this paper, we present a novel multilevel sparse reconstruction method based
on adaptive FEM framework. In this method, permissible source region gradually reduces with adaptive local mesh refinement.
By using sparse reconstruction with l1 regularization on multilevel adaptive meshes, simultaneous recovery of density and power
as well as accurate source location can be achieved. Experimental results for heterogeneous phantom and mouse atlas model
demonstrate its effectiveness and potentiality in the application of quantitative BLT.

1. Introduction

In vivo bioluminescence imaging (BLI) is a low-cost, non-
invasive, and valuable tool for studying physiological and
pathological processes at cellular and molecular levels. This
technology has been applied to various biological models
to diagnose disease, monitor therapies, and facilitate drug
development [1–5]. However, due to the highly diffusive
nature of the photon propagation in tissue, it is difficult
to recover the depth information accurately from a planar
image. To address the shortcomings of BLI, bioluminescence
tomography (BLT) was developed to restore the 3D distri-
bution of interior bioluminescent source [6]. By combining
multiple BLI acquisition with anatomical structure and the
associated optical properties, BLT attempts to estimate the
source distributions inside a small animal with a recon-
struction algorithm from the signal detected on the external
surface [7].

Mathematically, BLT is a severely underdetermined and
ill-posed problem, which is mainly caused by insufficient

measurement and the highly diffusive nature of the photon
propagation in tissue [8, 9]. There are two commonly used
approaches to deal with this problem: (a) msultispectral
measurement can enhance the stability of the solution
by increasing the measurement information [10–12]; (b)
Permissible source region (PSR) is incorporated to regularize
the problem by restricting the source distribution within a
local region [7, 13, 14]. The existing studies have indicated
that the smaller the PSR is, the more accurate source
position and power can be obtained [7]. However a small
PSR is not available in most cases. For this reason, a
series of reconstructions performed within progressively
reduced PSRs should be a feasible way to improve result of
BLT.

From a computational perspective, the challenge in BLT,
as in many other imaging modalities, is to reach the desirable
resolution within acceptable computational cost. As an
effective numerical method, finite element method (FEM)
has been widely used in BLT reconstruction especially when
the domain is arbitrary geometry [7, 8, 10–14]. When solving
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BLT with FEM, the quality of BLT reconstruction depends
on the discretization of the support domain. Generally, the
finer the discretized mesh is, the better the spatial resolution.
However, over-fine mesh may exacerbate the ill-posedness
of the BLT inverse problem and increase the computational
cost in the meantime. Hence, in [15, 16], adaptive finite
element method was introduced to BLT reconstructions.
Numerical simulations with regular phantom suggest that,
compared with the globally uniform discretization, adap-
tive methods can reduce the data size and improve the
computational efficiency. However, all the previous adaptive
reconstruction algorithms adopt l2 norm regularization,
which tends to yield nonsparse solutions. In order to obtain
a satisfactory result, threshold approach is typically used
to remove those artificialities caused by l2 regularization
[15, 17].

Additionally, quantitative evaluation of the reconstructed
density and power as well as accurate location is necessary
in clinical or preclinical practice. For example, reconstructed
total power can reflect the total tumor cell number, which
is the basis for continuous monitoring but has gained less
attention in most existing BLT studies so far. Especially, accu-
rate quantitative information of density and power has not
been simultaneously obtained so far. Note that the recovered
density and power are associated with not only the mesh
discretizations but also the regularization method used in the
reconstruction. Because of the smooth characteristic of an
l2 regularized solution, it is difficult to yield superior density
and power simultaneously with uniformly fine meshes
[16].

In the past few years, sparse regularization has been
investigated in the area of compressed sensing (CS) for
signal and image processing. According to the theory of CS,
one can reconstruct a sparse or compressible signal from
far fewer samples or measurements than what the Nyquist
sampling theorem demands [18]. Recently, this technique
has been introduced to enhance numerical stability and
efficiency with different photon propagation models in
[19–21]. Preliminary results on regular phantom show the
merits and potential of CS in the application of BLT.

In this paper, inspired by CS, a novel sparse recon-
struction method is proposed based on multilevel adaptive
finite element framework for BLT. During the reconstruction
process, the PSRs gradually shrink with adaptive local mesh
refinement, which can effectively reduce the ill-posedness
of BLT. In view of the characteristic of sparseness and
undersampling in most BLT scenario, sparse regularization
with l1 norm contributes to the enhancement in spatial
resolution and algorithm stability. Numerical phantom and
digital mouse atlas model are employed to validate and
evaluate the performance of the proposed multilevel l1-
regularized reconstruction method.

In Section 2, the diffusion approximation of photon
propagation and its finite element solution are first intro-
duced. Then the formulation of the linear model and
the multilevel l1-regularized adaptive FEM method are
presented. In Section 3, numerical simulations are shown.
Finally, we present the discussions and conclusion in Sec-
tion 4.

2. Methods

2.1. Photon Propagation Model. The radiative transfer equa-
tion (RTE) is regarded as the most accurate model for
the light transport in tissue [19]. However, RTE is com-
putationally inefficient for practical application. Given the
dominance of scattering over absorption for bioluminescent
photon, diffusion equation complemented by Robin bound-
ary condition can provide accurate description of the photon
propagation in tissue [7], which is expressed as

−∇ · (D(r)∇Φ(r)) + μa(r)Φ(r) = S(r)(r ∈ Ω), (1)

Φ(r) + 2D(r)G(r)(v(r) · ∇Φ(r)) = 0(r ∈ ∂Ω), (2)

where r ∈ R3 is the position vector in domain Ω, S(r)
represents the power density of internal bioluminescence
source, Φ(r) denotes the photon fluence rate, ν denotes the
unit outer normal at boundary ∂Ω, G(r) is the internal
reflection parameter at the boundary, D(r) = 1/(3(μa(r) +
μ′s(r))) is the optical diffusion coefficient, with μa(r) being
the optical absorption coefficient and μ′s(r) being the reduced
scattering coefficient, respectively.

2.2. Generation of the Linear Model with FEM. As a powerful
tool, FEM has been widely used for solving diffusion
equations, especially for solving domain with arbitrary
geometries [20]. Assuming that the optical properties of
the underlying medium are given, a matrix equation that
connects the discretized fluence rate Φ and the discretized
source distribution S can be obtained with FEM [7]:

MΦ = FS, (3)

where M is a positive definite matrix, and F is the source
weight matrix. Thus, the photon fluence rate Φ is derived by

Φ =M−1FS = BS. (4)

Note that only partial photon on the boundary can be
captured in BLT experiments Φ is therefore partitioned into
the measurable boundary data Φm and other immeasurable
Φu.

According to the surface photon distribution and
anatomical information, the PSR can be identified as a priori
information to restrict the reconstructed domain, thus only
the source density Sp in PSR is taken into account. By
removing the rows associated with Φu and retaining those
rows corresponding to Sp in the coefficient matrix B, the
following linear relationship is formed as follows:

ASp = Φm, (5)

where A is a typical ill-conditioned matrix.

2.3. Multilevel Adaptive FEM Based Reconstruction with l1-
Regularization. To achieve the necessary resolution within
acceptable computational cost, the domain Ω is dynamically
discretized in several levels rather than a fixed and uniformly
fine mesh in the adaptive FEM based reconstruction process.
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Let {Γ1, . . . ,Γk, . . .} be a sequence of tetrahedral-element
mesh levels of the given domain Ω, where the mesh sequence
changes from coarse to fine with the increase of k. In the
reconstruction procedure, a linear relationship for each mesh
level could be generated as

AkSk = Φm
k . (6)

The multilevel adaptive FEM based reconstruction algo-
rithm includes the following three steps:

(1) the given domain is discretized into a uniformly
coarse mesh Γ1, where the PSR is specified as a priori
knowledge to improve the reconstruction stability. The l1-
regularized reconstruction algorithm is applied to the coarse
mesh to yield a rough estimation of the solution, as will be
shown below.

(2) identify the elements to be refined by threshold of the
solution on the current mesh, and interpolate the local region
to the next finer mesh. Thus, a shrunk PSR is obtained by
such a local mesh refinement.

Ideally, we should conduct the mesh refinement based
on rigorously derived error estimates [21]. In practice, the
decision can be made by simple threshold operations of the
previous solution with respect to the maximal values, that
is, the elements with greater reconstructed value are selected
to be refined [15, 17]. In this work, the elements with the
average value of the four vertices that is no less than 20% of
the maximum value are selected for refinement each time.
The corresponding boundary elements are also selected to
be refined. After the elements are specified, the local mesh
is refined by dividing the tetrahedral element to second
generation elements with the longest refinement method.

When switching a coarser mesh Γk to a finer mesh Γk+1,
the initial value S0

k+1 of the (k + 1)th (k ≥ 1) mesh level
inherits the found solution Skof the kth mesh level by linear
interpolation. The nodal values outside the PSR are each set
to zero;

(3) a subsequent reconstruction procedure is carried out
on the new refined mesh until the stopping criteria are
satisfied. We use the maximum mesh level kmax and the
discrepancy between computational boundary nodal flux
data Φc and the measured data Φm as the stopping criteria
of the multilevel l1-regularized reconstruction procedure.

Note that, the reconstructed result at the previous mesh
level not only guides mesh refinement and provides an initial
value for the refined mesh, but also identifies the PSR for the
subsequent reconstruction. Thus, the preliminary solution
on the initial coarse mesh is very important.

For each mesh level, BLT reconstruction is carried
out by solving problem (6). In the literature, Tikhonov
regularization is typically used to stabilize such problem and
single out a meaningful solution by converting (6) into an
optimization problem [22, 23]:

minΘk

(
S
p
k

)
=
{∥∥∥AkSpk −Φm

k

∥∥∥2

2
+ α
∥∥∥Spk

∥∥∥2

2

}
, (7)

where ‖ · ‖2 denotes l2 norm, and α is a regularization
parameter.

However, due to the inherent characteristic of l2 norm,
the Tikhonov regularized solution is generally nonsparse.

Considering the practice of in vivo BLT studies, the interior
bioluminescence source would have a sparse distribution.
Based on CS theory, l1 regularization is a natural choice for
finding out an approximately sparse solution [24]. Thereby
the objective function at the kth level can be reformulated
with l1 regularization.

minΘk

(
S
p
k

)
=
{

1
2

∥∥∥AkSpk −Φm
k

∥∥∥2

2
+ λ
∥∥∥Spk

∥∥∥
1

}
, (8)

where ‖Spk‖1 = ∑
1≤i≤Np |sik| denotes the l1 norm of the

solution in PSR at the kth mesh level, and λ > 0 is the
regularization parameter.

The objective function in (8) is convex but not differ-
entiable, so solving it is more of a computational challenge
than solving (7). However the simulation results in next
sections will show the improvement of l1 regularization over
l2 regularization in terms of localization and stability in
sparse source case.

In this work, a truncated Newton interior-point method
(TNIPM) is adopted at each mesh level to solve (8) [25]. The
TNIPM is based on the following Lagrange dual problem of
(8):

maxG(ν) = −
(

1
2

)
νTν− νTΦm

k

s.t.
∣∣∣
(
Ak

Tν
)
i

∣∣∣ ≤ λi, i = 1, ...,M.

(9)

The dual problem (9) is a convex optimization problem with
variable ν ∈ RM . We say ν is dual feasible if it satisfies the
constraints of (9). According to the property of (8), from an
arbitrary S

p
k , we can derive an easily computed bound on the

suboptimality of S
p
k , by constructing a dual feasible point

ν = a
(
AkS

p
k −Φm

k

)
,

a = min

⎧⎪⎨
⎪⎩

λ∣∣∣
(
Ak

TAkS
p
k

)
i
−
(
Φm
k

)
i

∣∣∣
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⎫⎪⎬
⎪⎭.

(10)

We can thus define the duality gap

γ = 1
2

∥∥∥AkSpk −Φm
k

∥∥∥2

2
+ λ
∥∥∥Spk

∥∥∥
1
−G(ν). (11)

It is obviously that the duality gap is always nonnegative, and
at an optimal point, the duality gap is zero.

In TNIPM, the l1 -regularized least squares problem (8)
is recast to a convex quadratic problem with linear inequality
constraints:

minΘk

(
S
p
k ,u
)
=
⎧⎨
⎩

1
2

∥∥∥AkSpk −Φm
k

∥∥∥2

2
+ λ

NP∑

i=1

ui

⎫⎬
⎭,

s.t. |si| < ui, i = 1, . . . ,Np,

(12)

where u ∈ RN
p
,Np is the number of nodes in PSR.

And then, adding the constraints into the minimization
problem (12) by a logarithmic barrier function, the objective
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Initialize the parameters: relative tolerance ξ > 0, t = 1/λ, S
p
k = 0, u = 1 = (1, ..., 1) ∈ RN

p
;

repeat
1. Compute the search direction (ΔS

p
k ,Δu) as an approximate solution to the Newton system

(14) by preconditioned conjugate gradient method;
2. Compute the step size a by backtracking line search;
3. Update the iterate by (S

p
k ,u) := (S

p
k ,u) + a(ΔS

p
k ,Δu);

4. Construct a dual feasible point ν from (10);
5. Evaluate the duality gap γ from (11);
6. quit if γ/G(v) ≤ ξ;

7. Update t: t

{
max{μmin{2Np/γ, t}, t}, a ≥ amin

t, a < amin
, where μ > 1 and amin ∈ (0, 1].

Algorithm 1: TNIPM algorithm for BLT reconstruction at the kth mesh level.

Initialize the parameter: set kmax = 4, ε = 1e− 6, η = 0.2, set the initial PSR;
k = 1, discretize the model into a uniformly tetrahedral-element mesh;
Establish the linear system equation A1S1 = Φm

1 , and solve it with TNIPM;
While k < kmax and |Φc −Φm| > ε

Select those elements satisfy si > η‖S‖∞to form the new PSR based on the solution at current
mesh level;
Perform local mesh refinement and interpolate the new PSR to the next finer mesh;
k++; Form and solve the new system equation with TNIPM at the kth mesh level;

End while

Algorithm 2: Multilevel l1-regularized reconstruction algorithm.

function of the optimization is transformed to a differen-
tiable unconstrained problem;

minΘk

(
S
p
k

)
=
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⎩

1
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[
log(ui + si) + log(ui − si)

]
⎫⎬
⎭,

(13)

where parameter t ∈ (0,∞). Next, we solve a sequence of
(13) with increasing t. The detailed TNIPM algorithm for
BLT reconstruction at the kth mesh level is presented in
Algorithm 1, in which a preconditioned conjugate gradient
method is adopted to compute the search direction as an
approximate solution to the Newton system

H

[
ΔS

p
k

Δu

]
= −g, (14)

where H = ∇2 is the Hessian, and g is the gradient at the
current iteration [25].

As suggested by [25], we make the choice of μ =
2, amin = 0.5 in the implementation.

At the end of this subsection, we summarize the multi-
level l1-regularized reconstruction algorithm in Algorithm 2.

3. Experiments and Results

We conducted a set of experiments with a numerical
phantom model and a digital mouse model to validate the
proposed multilevel l1-regularized reconstruction method.
In this section, all the regularization parameters used in
reconstruction were manually optimized.

The qualities of the reconstruction are quantitatively
assessed in terms of location error, relative error (RE) of
source density and power. Here, the reconstructed power is
estimated by computing the integral of the source density
over its support domain, and the corresponding RE of
density and power are calculated by |Srecons. − Sreal|/Sreal and
|Powerrecons. − Powerreal|/Powerreal, respectively.

3.1. Heterogeneous Phantom Validations. A cylindrical
mouse chest phantom with 30 mm diameter and 30 mm
height was employed to evaluate the performance of the
l1-regularized multilevel AFE method. The structure of
the heterogeneous phantom is shown in Figure 1(a). The
specific optical properties of different organs were set as
follows: μa = 0.007 mm−1 and μ′s = 1.031 mm−1for muscle,
μa = 0.023 mm−1 and μ′s = 2 mm−1 for lung, μa = 0.011 mm−1

and μ′s = 1.096 mm−1 for heart, μa = 0.001 mm−1 and
μ′s = 0.060 mm−1 for bone [26].

In the simulations, the phantom was discretized into
a fine tetrahedral-element mesh to generate the synthetic
measurements on the surface using FEM. To simulate
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Table 1: Reconstruction results in single source case on different mesh levels.

Mesh
level

Regular.
method

Number
of nodes

Location center
Error
(mm)

Density
(nW/mm3)

RE of
density

Recon.
power (nW)

RE of
power

1
l1 3623 9.42,1.24,15.02 0.25 0.0434 95.66% 0.3315 36.69%

l2 3623 9.43,−0.16,14.55 1.24 0.0418 95.82% 0.2896 44.69%

2
l1 3924 9.42,1.24,15.02 0.25 0.0942 90.58% 0.4515 13.77%

l2 3960 9.18,0.43,15.26 0.70 0.0522 94.78% 0.3396 35.14%

3
l1 4242 9.42,1.24,15.02 0.25 0.3105 68.95% 0.4537 13.35%

l2 4435 9.83,0.96,15.42 0.54 0.1227 87.73% 0.4185 20.07%

4
l1 4910 9.42,1.24,15.02 0.25 1.0056 5.6% 0.4663 10.94%

l2 5232 9.40,0.54,15.26 0.54 0.3739 62.61% 0.3700 29.34%
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Figure 1: (a) Mouse chest phantom composed of muscle, lungs, heart, and bone, with one source in right lung. (b) The forward discretized
mesh and the photon distribution on the surface. (c) The initial mesh used in the adaptive reconstruction, with average edge size 1.637 mm.

the noise involved in real BLT experiment, 10% random
Gaussian noise was added to synthetic measurements.

3.1.1. Quantitative Reconstruction in Single-Source Case.
Firstly, reconstruction for a single source target was
attempted. A solid spherical source with 0.5 mm radius was
centered at (9.5 mm, 1 mm, 15 mm) inside the right lung.
The initial power source was 0.5236 nano-Watts, and the
power density was 1 nano-Watts/mm3. The forward mesh of
the phantom consisted of 11288 nodes and 62069 tetrahedral
elements with 10832 boundary elements. Figure 1(b) shows
the forward mesh and the photon distribution on the surface.
In the multilevel reconstruction procedure, the initial coarse
mesh contained 3623 nodes and 18526 tetrahedral elements,
as shown in Figure 1(c), which was rather different from the
forward mesh.

PSR strategy was incorporated to the reconstruction
algorithm to decrease the ill-posedness of BLT. As a priori
information of BLT reconstruction, the initial PSR was
defined as {(x, y, z) 8 < (x2 + y2)1/2 < 12, 13.5 < z < 16.5}
[26]. The subsequent PSR of the next level was identified
based on the reconstruction result at the current mesh level.

The reconstruction was carried out using the proposed
algorithm. The maximum mesh level was set to 4. The recon-
structed results with regularization on multilevel adaptive
meshes are shown in Figures 2(a)–2(d). For comparison,
Figures 2(e)–2(h) present the reconstructed results using
method, where a threshold of 50% of the maximum
value was used to remove those artificialities caused by l2
regularization. The quantitative results in single source case
are summarized in Table 1 in detail.

The reconstructed source positions by l1 regularization at
different mesh levels stay at (9.42 mm,1.24 mm,15.02 mm),
with a location error of 0.25 mm. By the adaptive mesh
refinement scheme introduced in Section 2.3, the average
edge size in PSR reduces during the mesh refinement.
Specifically, 1.64 mm on the initial coarse mesh descends to
0.62 mm on the final mesh. The mesh evolution in multilevel
reconstruction process and the reconstructed source is
shown in Figure 3.

It is noted that the quantitative information of source
density and power is remarkably enhanced as the mesh
became finer due to the multilevel meshes strategy. The
final REs of density and power in l1 results are 0.56% and
10.94%, respectively. In the reconstruction procedure with
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Figure 2: Reconstruction results in single source case on different mesh level, where the actual source is drawn as a red sphere. (a)–(d) are
the isosurface of the reconstructed density by regularization from initial level to the final level, respectively. (e)–(h) are the corresponding
results by regularization method, with a threshold of 50% of the maximum value.
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Figure 3: Mesh evolution in the single source case and the regularized solutions on different mesh levels. The green mesh denotes the local
region around the regularized solution in PSR; the black sphere is the actual source. (a), (b), and (c) are the reconstruction by l1 regularization
in the first, the second, and the last level, respectively. (d), (e) and (f) are the corresponding results by l2 regularization.



International Journal of Biomedical Imaging 7

Table 2: Quantitative results and the comparison with the actual sources in multisource case.

Source
Actual

position
Recon.

position
Location

error (mm)
Recon. density

(nW/mm3)
RE of density

Recon. power
(nW)

RE of power

Source-1 (9.5,1,15) (9.42,1.24,15.02) 0.49 1.06 6% 0.4916 6.12%

Source-2 (−9, 1.5,15) (−9.29,1.5,15.06) 0.30 0.5713 42.87% 0.4416 15.66%

Source-3 (−9, −1.5,15) (−9.30, −1.46,15.08) 0.31 0.6205 37.95% 0.4584 12.45%
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Figure 4: Comparison of the regularized solutions on the initial
coarse mesh.

l2 regularization, the location error is up to 1.24 mm at the
initial coarse level. Despite the fact that the position and
shape of reconstructed source with l2 regularization are
improved with the mesh refinement, the final deviations of
density and power from the initial values are comparatively
bigger than those of l1 results.

As aforementioned, compared with l1 regularization, l2
regularization tends to yield a nonsparse solution, which is
demonstrated in Figure 4 by the comparison of the results
on the initial coarse mesh. Furthermore, l1 regularization
method provides a better initial localization than l2 does
at the first mesh level, it thus yields a superior final
reconstruction result to that of l2 method.

3.1.2. Spatial Resolution Evaluations in Multisource Case. In
order to investigate the spatial resolution capability of the
proposed multilevel reconstruction method, we performed
a multisource simulation experiment. Beside the spherical
source located in right lung, two spatially close sources
were added to the previous phantom with their centers at
(−9 mm, −1.5 mm, 15 mm) and (−9 mm, 1.5 mm, 15 mm),
respectively. The two sources located in left lung were 2 mm
apart. The size, density, and power of each source were the
same as in the single source case. The initial PSR was-same
those that of single source case in this experiment. The final

quantitative reconstruction results and the comparison with
the actual sources are summarized in Table 2.

Incorporating PSR into the reconstruction algorithm,
the proposed method can always accurately distinguish
these sources at different mesh levels. The reconstruction
results in Figure 5 witness a remarkable improvement
by the adaptive mesh refinement. During the multilevel
reconstruction process, the reconstructed densities at the
first mesh level are comparatively lower, and the average
RE of power reaches 34.43%; with the mesh evolution, the
average RE of source power falls to 11.41%. But the positions
of the three sources are accurately identified on the initial
coarse mesh by l1 regularization method, which lays a good
foundation for the subsequent reconstruction. The figures
in Table 2 demonstrate that the multilevel l1-regularized
reconstruction method can provide very satisfied results
in terms of spatial resolution and quantitative information
about the sources.

3.2. 3D Digital Mouse Atlas Model Validations. The numer-
ical experiment with a 3D digital mouse atlas was also
performed to further demonstrate the performance of the
proposed reconstruction method on a real animal-shaped
model. A mouse atlas of CT and cryoSection data was
employed to provide anatomical information [27]. The
optical properties of different organs were listed in Table 3
[28, 29]. In our simulations, the torso of the model with a
height of 32 mm was chosen as the region to be investigated.
A cylindrical source with 0.5 mm radius and 1 mm height
was set in the liver with the center at (18.1 mm, 6.3 mm,
15.4 mm), as shown in Figure 6(a). The actual source power
and density were 0.785 nano-Watts and 1 nano-Watts/mm3,
respectively.

This torso model was discretized into tetrahedral-
element mesh to generate the synthetic measurements on the
boundary. The forward mesh consisted of 112795 elements
and 21277 nodes, as shown in Figures 6(b). The initial mesh
used in the reconstruction contained 11243 tetrahedral ele-
ments and 2382 nodes. Combining the photon distribution
on the torso surface and the anatomical information, we
defined {(x, y, z) | 10 < x < 26, 3 < y < 9, 12 < z <
19, (x, y, z) ∈ liver} as the initial PSR.

It took about 120 seconds to complete the multilevel
l1-regularized reconstruction for this mouse atlas model
on a laptop with Intel Pentium M processor (1.7 GHz).
The detailed results on different mesh levels are given
in Table 4. Due to the adaptive local mesh refinement,
the mesh size in PSR reduces gradually, but the total
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Figure 5: Reconstruction results in multiple sources case. (a)–(c) The isosurface of the reconstruction by the proposed method on the first
and the last level, respectively. (b)–(d), The corresponding transverse view of the reconstruction at z = 15 mm, where the small black circles
indicate the real sources.

Table 3: Optical properties for the atlas organs region.

Material Muscle Lung Heart Liver Kidney Stomach

μa[mm−1] 0.23 0.35 0.11 0.45 0.12 0.21

μ′s[mm−1] 1 2.3 1.1 2 1.2 1.7

number of nodes does not increase significantly. Although
the preliminary result on the initial coarse mesh possesses
relative bigger errors in source power and density, the
reconstruction results are improved prominently with the
mesh evolution, as shown in Figure 7 and Table 4. The
final relative errors in power and density are 17.01% and
2.31%.

4. Discussion and Conclusion

In this paper, we present a sparse reconstruction method
based on multilevel adaptive FEM and evaluated its per-
formance in numerical simulation. Numerical simulation
results suggest that the l1 regularization is effective for
sparse source reconstruction. Combined with multilevel
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Figure 6: A 3D digital mouse model. (a) The torso of the mouse model with a cylindrical source in the liver. (b) Forward mesh and photon
distribution on surface.

Table 4: Reconstruction results for 3D atlas model on different mesh level.

Mesh level
Mesh size

In PR
Number
of nodes

Location center Error (mm)
Density

(nW/mm3)
Power

1 1.6833 2382 (17.85,6.22,14.85) 0.61 0.0026 0.0636

2 1.3087 2641 (17.85,6.22,14.85) 0.61 0.0309 0.1951

3 0.8277 3033 (17.99,6.31,15.88) 0.49 0.3080 0.3677

4 0.6181 3908 (17.99,6.31,15.88) 0.49 1.0231 0.6518

adaptive FEM, the image resolution and the quantita-
tive information of source distribution can be remarkably
enhanced.

It is well known that the density as well as position and
shape of reconstructed source are significantly affected by
the degree of discretization [15–17]. The existing adaptive
FEM based reconstructions have demonstrated that adaptive
mesh can obtain more accurate results with less computation
cost compared than fixed mesh. The simulation results in
Section 3 further suggest that the location and quantitative
information of reconstructed source rely on not only mesh
discretization but also the regularization method used in the
reconstruction.

In the existing adaptive FEM based reconstruction meth-
ods, although the source density can be remarkably improved
as the mesh became finer, the reconstructed power tends to
decline. The reconstruction results by using l2 regularization
method in Table 1 also show this trend. The major reason
to cause this phenomenon is that the smooth l2-regularized
solution is commonly remedied by a big threshold.

We observed that relatively accurate power and density
can be simultaneously recovered when the mesh dimension
is commensurate to the source size by the proposed method.
There are two key points contributing to the superior
performance of the proposed reconstruction method: (1)
Multilevel adaptive local mesh refinement and progressively
reduced PSR can avoid the large datasets caused by uniformly
fine mesh and reduce the ill-posedness of BLT, while
retaining the desired accuracy in the region of interest.
(2) In view of the sparsity of the source distribution, l1-
regularized solution on a coarse mesh can provide a good
initial localization with better numerical stability, which
guides the subsequent reconstruction on finer meshes to
obtain more accurate location and quantitative information
of sources.

The experiment on a mouse-shaped model with hetero-
geneous optical properties demonstrates the potentiality for
animal experiments. Physical phantom and in vivo studies
with the multilevel l1-regularized reconstruction method will
be reported in another paper.
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Figure 7: Reconstruction results of 3D digital mouse model on different mesh level. (a)–(d) are the 3D view of the results by the proposed
method from the first level to the fourth level, respectively. (e)–(h) are the corresponding XY view of these results, where the small black
circles indicate the real sources.
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