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Building an optimal predictive model for imputing
tissue-specific gene expression by combining
genotype and whole-blood transcriptome data
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Summary
Accurate imputation of tissue-specific gene expression can be a powerful tool for understanding the biological mechanisms underlying

human complex traits. Existing imputation methods can be grouped into two categories according to the types of predictors used. The

first category uses genotype data, while the second category uses whole-blood expression data. Both data types can be easily collected

from blood, avoiding invasive tissue biopsies. In this study, we attempted to build an optimal predictive model for imputing tissue-spe-

cific gene expression by combining the genotype and whole-blood expression data. We first evaluated the imputation performance of

each standalone model (using genotype data [GEN model] and using whole-blood expression data [WBE model]) using their respective

data types across 47 human tissues. The WBE model outperformed the GEN model in most tissues by a large gain. Then, we developed

several combined models that leverage both types of predictors to further improve imputation performance. We tried various strategies,

including utilizing a merged dataset of the two data types (MERGEDmodels) and integrating the imputation outcomes of the two stand-

alonemodels (inverse variance-weighted [IVW]models). We found that one of theMERGEDmodels noticeably outperformed the stand-

alone models. This model involved a fixed ratio between the two regularization penalty factors for the two predictor types so that the

contribution of the whole-blood transcriptome is upweighted comparedwith the genotype. Our study suggests that one can improve the

imputation of tissue-specific gene expression by combining the genotype and whole-blood expression, but the improvement can be

largely dependent on the combination strategy chosen.
Introduction

Transcriptomics has provided important information for

understanding the physiological mechanisms involved

in human traits and diseases.1,2 As gene expression is

associated with cellular activity and the environment, in-

dividual-level transcriptome profiles can be used for

various research purposes.3,4 Because of the complex ge-

netic regulatory mechanisms that govern gene expres-

sion, transcriptome profiles vary greatly among different

organs and tissues.5 For this reason, an accurate assess-

ment of the transcriptome profile of the relevant tissue

is necessary when used for clinical purposes. However,

obtaining tissue-specific transcriptome data most often

involves an invasive biopsy of target tissues, which is

not feasible for many inaccessible tissues, such as the

brain.

Recently, several methods for imputing the transcrip-

tome profile of a specific tissue have been proposed.

These methods can be divided into two main categories

according to the types of predictors used. The first cate-

gory of methods imputes tissue-specific gene expression

using genotype data as predictors.6–8 These studies have

shown that genetic variants have tissue-specific effects
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on gene expression and can therefore be used as predic-

tors for imputing the tissue-specific transcriptome pro-

file. With these methods, the upper bound of imputation

accuracy is determined by the heritability of the expres-

sion trait. Most of these methods use cis variants close to

a gene rather than exploiting genome-wide variants to

reduce computational costs and risk of overfitting. The

second category of methods imputes the gene expression

levels of target tissues using the whole-blood transcrip-

tome profile as a predictor.9–11 The process of collecting

the whole-blood transcriptome is much less invasive

than biopsy of major tissues. Basu et al.11 constructed a

model that uses the genotype data and the whole-blood

transcriptome data, primarily to examine how helpful

the genotype data would be when added to the whole-

blood transcriptome data in predicting tissue-specific

gene expression.

In this study, we aimed to build an optimal predictive

model for imputing the transcriptome profile of inacces-

sible tissues using the genotype data and the whole-

blood expression data. We first evaluated the imputation

performance of the standalone predictive model using

the genotype data (GEN model) as predictors and the

standalone predictive model using the whole-blood
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expression data (WBE model) as predictors. In our anal-

ysis, we used regularized linear regression to impute tis-

sue-specific gene expression. We assessed the imputation

performance using the mean R2, considering all available

genes in each of the 47 GTEx tissues. We found that the

WBE model outperformed the GEN model by a large gain

across the 47 tissues. Then, we attempted to combine the

two standalone models (the GEN model and the WBE

model) into one through several different strategies.

Our strategies can be grouped into two categories. In

the first category, we merged the genotype data and the

whole-blood transcriptome data into one large dataset

and used this merged dataset as a predictor (MERGED

models). In the second category, we used the inverse

variance-weighted (IVW) polymerization method to

combine the imputation outcomes of the two standalone

models (IVW models). We investigated whether these

combined models would improve the overall perfor-

mance for imputation of tissue-specific gene expression

compared with the standalone models. We found that

different combination strategies can give different per-

formance outcomes. Notably, we observed a considerable

improvement when we used the MERGED model that in-

corporates all available predictors and employs a fixed ra-

tio between the two regularization penalty factors for the

two types of predictors. This approach upweights the

contribution of the whole-blood transcriptome data

compared with the genotype data through the fixed ratio

parameter. Our results suggest that one can indeed

improve imputation performance by utilizing two types

of data simultaneously, but the combination strategy

can be an important factor that affects the final

performance.
Material and methods

Data collection and preprocessing
We accessed all genotype data and transcriptome data used in

this study from the GTEx v.7 database (dbGaP Accession

phs000424.v7.p2).12 The genotype data originally consisted of

635 whole-genome sequencing (WGS) samples that passed the

quality control procedure according to the standard protocol

described in the GTEx portal.12 The samples were aligned against

the human reference genome panel of GRCh37 (hg19). The tran-

scriptome data consisted of the gene expression profiles from 714

donors, which were obtained via bulk RNA sequencing (RNA-seq)

on 52 tissues. The number of samples available varied from tissue

to tissue. We transformed the gene expression data into tran-

scripts per million (TPM). We removed samples with missing

data on either the genotype or the whole-blood transcriptome

profile so that we could appropriately compare the imputation

accuracy of the models based on the two data types. Of 52 tissues

provided by GTEx, we excluded five of them that contained fewer

than 40 samples and were left with 47 tissues. For the genes in

the 47 tissues, we included only the autosomal protein-coding

genes while excluding pseudo-genes, mitochondrial genes, and

genes in sex chromosomes. Table S1 illustrates the summary of

the data we generated and used for our study.
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Regularized linear model for gene expression

imputation
The standalone imputation model based on a single data type can

be expressed as

y ¼ Xbþ e;

where y denotes a N31 vector of the expression level of a target

gene, adjusted for non-genetic covariates (Figure S1); X denotes a

N3M matrix of the predictors, either the genotype or the tran-

scriptome profile of the whole-blood tissue; b denotes the effect

size of the predictors; and e denotes residual error. We normalized

y and each column of X by subtracting the mean and dividing by

the standard deviation.

For both predictor types, we found that the number of predic-

tors was much greater than the number of samples. In such a

case, the general linear regression model can become vulnerable

to collinearity, which can make the effect size estimates by the or-

dinary least squares (OLS) unreliable. In addition, interdepen-

dence between multiple predictors is highly likely to prevail

within the genotype data because of linkage disequilibrium (LD).

To ameliorate these problems, we adopted regularized regression

as our predictive method. We tried three well-known regulariza-

tion methods: least absolute shrinkage and selection operator

(LASSO), ridge regression, and elastic net. The analysis was done

using the R-glmnet package v.4.1.2.13

As shown under results, we found that the three regularization

methods showed a similar imputation accuracy (mean R2). We

decided to use ridge regression as our regularizationmethod because

ridge yielded the minimal number of uninformative models (the

models whose coefficients of predictors are all zero). The objective

function of ridge regression can be expressed as follows:

bb ¼ min
b

(XN
i¼1

�
yi � bTXi

�2 þ l
XM

j¼1
b2
j

)
;

where l denotes a penalty term for the number of predictors. The

optimal l is manually selected after trying the values in a range

(10�3, 103) in a way that minimizes the mean squared error via

the 10-fold cross-validation (CV).

With the estimated effect sizes bb, we could build the standalone

imputation model to impute the individual-level transcriptome

profile of genes belonging to a tissue of interest. We define the

standalonemodel based on the genotype data as the ‘‘GENmodel’’

and the standalone model based on the whole-blood expression

data as the ‘‘WBE model.’’ Let XGEN be the matrix of the genotype

data, and let XWBE be the matrix of the whole-blood transcriptome

data. The imputed gene expression from each type of predictors

can be expressed as follows:

byGEN ¼ XGENbbGEN ;

byWBE ¼ XWBEbbWBE

In our imputation, we split the entire data into the training set and

test set with an 8:2 ratio. We fitted regularized regression using the

training set and imputed the transcriptome profile of target tissues

using the test set.
Using the merged dataset for gene expression

imputation
We developed combined models that leverage the genotype data

and the whole-blood transcriptome data. Our first attempt was
023



to merge the datasets of the two predictor types and use this

merged dataset for gene expression imputation. To account for

the difference in the contribution of the two predictor types, we

implemented separate regularization penalty factors. Specifically,

we assumed a ratio 4 between the two regularization penalty fac-

tors. We define this strategy as the MERGED model. To find the

optimal form of the MERGED model, we generated and tested

four different approaches. These four approaches differed by (1)

whether we performed feature selection on the genotype predic-

tors to reduce overfitting and simplify the model and (2) whether

we fixed 4 to a predefined value or flexibly searched for the best 4

for each gene.

The first approach, referred to asMERGED_fixed, uses themerged

dataset including all available predictors of both predictor types. It

employs a fixed ratio 4 between the two regularization penalty fac-

tors for the two types of predictors. The second approach, referred to

asMERGED_fixed_filtered, is similar toMERGED_fixed but uses the

merged dataset that has undergone feature selection on the geno-

type predictors. The third approach, referred to as MERGED_flexi-

ble, flexibly searches for the best ratio 4 for each gene while using

all available predictors of both predictor types. The fourth approach,

referred to as MERGED_flexible_filtered, is similar toMERGED_flex-

ible but uses the merged dataset that has undergone feature selec-

tion on the genotype predictors. A summary table of model abbre-

viations used in our study is provided in Figure S9.

Now we describe the type of feature selection we performed for

pre-filtering the genotype predictors (in models with postfix

‘‘_filtered’’). We fitted LASSO using the training set of the genotype

data. Then we only kept the SNPs that were not discarded by

LASSO. Because LASSO applies stronger regularization than ridge,

this feature selection allowed us to focus on a smaller set of SNPs.

We applied this feature selection only to the genotype data

because the effect of the feature selection was only marginal in

the WBE model compared with the GEN model.

Below, we describe how we applied the separate regularization

penalty factors to each data type. The objective function for the

approaches that apply separate penalty factors to two data types

can be expressed as follows:

bb ¼ min
b

(XN
i¼1

�
yi � bTXi

�2 þ l
XMWBE

p¼1
b2
p þ l4

XMGEN

q¼1
b2
q

)
;

where 4 denotes the regularization ratio parameter supplied only to

the genotype predictors to differentiate the regularization penalty

applied to each predictor type. We considered a value of 4 from

the set {10�2, 10�1, 1 , 101, 102}. For the models that implemented

a fixed value for 4 (models with postfix ‘‘_fixed’’), we denoted the

fixed value of 4 in the model’s name by appending an additional

postfix. For example, MERGED_fixed_100 indicates that 4 was set

to 100. Because 4 can be thought of as the ratio of the penalty (l)

for the two data types, a large value of 4 means that we penalize

the genotype datamore so that the contribution of the whole-blood

transcriptome data is upweighted. We also tried a flexible model

that determines the best 4 for each gene separately using the valida-

tion data (models with postfix ‘‘_flexible’’).
Using the weighted sum of the imputation outcomes of

the two standalone models
As another attempt to develop a combinedmodel, we integrated the

imputation outcomes of the GENmodel and WBE model using the

IVW polymerization method. We define this strategy as the IVW

model. IVW is a widely used method for integrating the estimates
Human
from different sources because weighting the estimates with the in-

verse of their variances can minimize the variance of the final inte-

grated estimate.14 To find the optimal form of the IVW model, we

generated and tested four different approaches. These four ap-

proaches differed by (1) whether we tried to conditionally integrate

the outcomes of the two standalone models for the genes for which

the GENmodel outperformed theWBEmodel according to the vali-

dation set and (2) whether we calculated the inverse variance

weights using the 10-fold CV method or bootstrap method.

The first approach, referred to as IVW_CV, integrates the impu-

tation outcomes of the two standalone models for all available

genes and calculates the inverse variance weights using the

10-fold CV. The second approach, referred to as IVW_CV_cond,

integrates the imputation outcomes of the two standalone models

only for genes for which the GEN model outperformed the WBE

model according to the validation set and calculates the inverse

variance weights using the 10-fold CV. The third approach,

referred to as IVW_Bootstrap, integrates the imputation outcomes

of the two standalone models for all available genes and calculates

the inverse variance weights using the bootstrap method. The

fourth approach, referred to as IVW_Bootstrap_cond, integrates

the imputation outcomes of the two standalone models only for

genes for which the GENmodel outperformed the WBE model ac-

cording to the validation set and calculates the inverse variance

weights using the bootstrap method.

We employed the empirical approaches (10-fold CV or boot-

strap) to obtain the variance of the imputation outcomes needed

for IVW. This was because analytically obtaining the actual vari-

ance of the estimates was challenging, particularly for regularized

regression.13

When using the 10-fold CV, we calculated the difference be-

tween the true gene expression and the imputed expression across

samples and obtained the variance of these differences. Then, we

averaged the results over 10 folds to get the final variance estimate.

The estimated variance for gene i can be expressed as follows:

bs2
i ¼ 1

10

X10
K¼1

var
�
yK;i � byK;i

�
;

where yK;i is the actual gene expression level of gene i for the K th

set of the 10-fold CV, and byK;i is the imputed value from the corre-

sponding predictor set XK.

When using the bootstrap, we calculated the difference between

the true gene expression and the imputed expression across sam-

ples and obtained the variance of these differences. Then, we aver-

aged the results over 40 samplings to get the final variance esti-

mate. The estimated variance for gene i can be expressed as

follows:

bs2
i ¼ 1

40

X40
B¼1

var
�
yB;i � byB;i

�
;

where yB;i is the actual gene expression level of gene i for the Bth

sampled set, and byB;i is the imputed value from the corresponding

predictor set XB.

Now, let byGENi and byWBE
i be the gene expression estimates of the

GEN model and WBE model, respectively, for gene i. The com-

bined gene expression estimate, byIVWi , is then calculated as follows:

byIVW

i ¼
byGEN

i

1bs2GEN

i

þ byWBE

i

1bs2WBE

i

1bs2GEN

i

þ 1bs2WBE

i

;
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where bs2GEN

i and bs2WBE

i are the empirically estimated variances for

weighting byGENi and byWBE
i , respectively.
Preparing two sets of genes based on tissue specificity of

expression
Highly tissue-specific genes

We used the same procedure as Basu et al.11 for obtaining highly

tissue-specific genes for each of the 47 tissues. For each gene in a

target tissue, we calculated its tissue specificity score as the log2
of ratio of its mean gene expression in the target tissue to its

mean gene expression in the rest of the tissues. Then, for each tis-

sue, we obtained genes with tissue specificity scores in the top

20th percentile.

Highly conserved genes

For each gene, we calculated the variance of its mean gene expres-

sion across the 47 tissues. Then we obtained genes with variances

in the bottom 20th percentile.
Results

Optimal regularization method for each type of

predictor

We first attempted to figure out an optimal predictive

method for each type of predictor (genotype and the

whole-blood transcriptome) for imputing tissue-specific

gene expression. The number of samples in the genotype

dataset and the whole-blood transcriptome dataset was

the same because we collected samples for which the ge-

notype data and the transcriptome data were available

(Table S1). Figure S1 illustrates the summary of the data

used in our study. The number of genes with available

transcriptome profiles varied across tissues in a range

from 13,533 (skeletal muscle, the minimum) to 21,343

(testis, the maximum) (Figure S1). Each gene differed in

the number of cis variants located around it, the minor

allele frequencies of its cis variants, and the gene length

(Figure S1). Because the GTEx project collected multiple

tissues from the same individual, tissue datasets had sam-

ple overlap (Figure S1). For the GEN model, we included

SNPs within the 1-Mb window of a target in the predictor

set. For the WBE model, we included all available genes

from the whole-blood tissue in the predictor set. The

simplest form of the WBE model could be constructed

by using only the matched gene from the whole-

blood tissue as a predictor for imputing the expression

of the corresponding gene in a target tissue. Yet,

the imputation performance of this simplest form was

significantly lower compared with using all available

genes from the whole-blood tissue as predictors

(Figure S2; Table S2).

Because our datasets had far more predictors than sam-

ples, we decided to use regularized regression to reduce

overfitting and make the regression fit stable. LASSO,

ridge regression, and elastic net are three widely used

regularized regression methods, and we tested these three

for imputing tissue-specific gene expression using either

the genotype data or the whole-blood transcriptome
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data. For this analysis, we split the data into a training

set and a test set with an 8:2 ratio so that we fit regression

using the training set and imputed the gene expression

levels of the 47 tissues in the test set. The regularization

parameter (l) was optimized within the training set

via CV.

Figure 1 illustrates the comparison of the three regulari-

zation methods on the imputation of gene expression

across the 47 tissues using either the genotype data or

the whole-blood transcriptome data as predictors. For the

metric of imputation accuracy, we calculated the mean of

R2 between the true expression level and imputed expres-

sion level across samples over all available genes belonging

to each tissue (mean R2; Figure 1A). We observed that the

three regularization methods showed a similar imputation

accuracy when the genotype data were used as predictors

(Figure 1A; Table S3). The tissue-wise average of the mean

R2 over the 47 tissues was 0.064 for all three regularization

methods. In contrast, we observed that ridge performed

slightly better than LASSO and elastic net when the

whole-blood transcriptome data were used as predictors

(Figure 1A; Table S3). The tissue-wise average of the mean

R2 over the 47 tissues was 0.118 for LASSO, 0.120 for elastic

net, and 0.129 for ridge. Ridge outperformed LASSO and

elastic net in 39 of 47 tissues and 38 of 47 tissues, respec-

tively, with the whole-blood transcriptome data. Ridge is

known to penalize the parameters less strictly than

LASSO. Therefore, the superior performance of ridge

regression in the WBE model may suggest that the predic-

tive information of the whole-blood transcriptome on tis-

sue-specific gene expression might be dispersed over many

different genes.

Aside from the mean R2, we also assessed for how

many genes each regularization method resulted in an

informative or uninformative model. Regularization

methods can result in a model where the regression coef-

ficients of all predictors are shrunk to zero. Then, the

imputed gene expression levels of such a model are no

longer influenced by the predictors and thus can be

considered uninformative. LASSO and elastic net tended

to produce uninformative models for a large proportion

of genes across the 47 tissues in the GEN model (44.1%

and 42.3% on average, respectively), possibly because

of their stronger penalization than ridge (Figure 1B;

Table S3). This phenomenon was more severe in the

GEN model but still observed in the WBE model when

LASSO or elastic net was used (16.1% and 15.5% on

average, respectively). On the contrary, ridge did not pro-

duce any uninformative model for either predictor type

(Figure 1B; Table S3).

We wanted to consider the mean R2 and the proportion

of the uninformative model when selecting the best regu-

larization method for the GENmodel andWBE model. For

the GEN model, although the three regularization

methods showed the same imputation accuracy across all

47 tissues, LASSO and elastic net produced a large number

of uninformative models. For the WBE model, ridge was
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A

B

Figure 1. Comparison of three regularized regressionmethods for the imputation of tissue-specific gene expression using each type
of predictor
Shown are imputation performance reports for the three regularized regression methods (ridge regression, LASSO, and elastic net) using
either the genotype or whole-blood expression.
(A) The bar plots show the imputation accuracy of ridge, LASSO, and elastic net for gene expression across the 47 tissues, using each type
of predictor. The metric for imputation accuracy is mean R2. We used different color schemes for ridge (blue), LASSO (pink), and elastic
net (yellow).
(B) The pie charts show the proportion of the informative models and the uninformative models that resulted from each regularized
regression method using each type of predictor.
superior to LASSO and elastic net in terms of the mean R2

and the proportion of the uninformative model. Summing

these up, we decided to use ridge regression for the geno-

type data and the whole-blood expression data in our sub-

sequent analyses.

Here the question arose whether the genes for which

LASSO or elastic net produced the uninformative models
Human
are truly uninformative. To this end, we tested how ridge

performed for genes that resulted in uninformative models

by LASSO. The imputation accuracy of ridge on those

genes was relatively low compared with the rest of the

genes, but the mean R2 was significantly greater than

zero (Figure S3). This result suggested that, even for those

genes, ridge had predictive power.
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Figure 2. Comparison of the GEN model and WBE model
Shown are imputation performance reports for the GEN model and WBE model.
(A) The bar plots show the imputation accuracy of the GENmodel andWBE model for gene expression across the 47 tissues. The metric
for imputation accuracy is mean R2. We used a different color scheme for the GEN model (blue) and WBE model (red).
(B) The dot plot shows the relationship between the imputation results of the GEN model and WBE model across the 47 tissues. The
imputation results for 13 brain-related tissues are indicated in red. The dark blue line represents the y¼ x line. Many of the brain-related
tissues (red dots) are near the y ¼ x line, indicating that the performance difference between the GEN model and WBE model was rela-
tively small for these tissues.
(C) The dot plot shows the relationship between the variance of R2 and the mean R2 across the 47 tissues for the GEN model (blue) and
WBE model (red). For the variance of R2, we calculated the variance of R2 values over all genes in each tissue.
Comparing two types of predictors: Genotype and

whole-blood expression

Using ridge regression as the common regularization

method, we wanted to see which type of predictors would

result in better imputation performance and how large

the performance difference would be, considering all
6 Human Genetics and Genomics Advances 4, 100223, October 12, 2
available genes in the 47 human tissues. Figure 2 illus-

trates the comparison between the imputation perfor-

mance of the GEN model and WBE model across the 47

tissues. We observed that the WBE model considerably

outperformed the GEN model in 41 of 47 tissues, and

the difference in performance of the two models was large
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in many tissues (>2-fold difference in mean R2 in 22 of 47

tissues; Table S4). The tissue-wise average of the mean R2

over the 47 tissues was 0.129 for the WBE model. In

contrast, the tissue-wise average of the mean R2 over the

47 tissues was only 0.064 for the GEN model, which

was lower than half that of the WBE model. The tissue-

wise average of the differences of the mean R2 between

the GEN model and WBE model over the 47 tissues was

0.068 (Table S4). The difference was the largest in ‘‘Heart

Left Ventricle’’ (GEN, 0.030; WBE, 0.267) and the smallest

in ‘‘Brain Spinal Cord’’ (GEN, 0.118; WBE, 0.117). There

were 6 cases where the GEN model outperformed the

WBE model, but the difference was small in these cases,

with the tissue-wise average of the differences being

only 0.009. 3 of 6 cases where the GEN model outper-

formed the WBE model were found in brain-related tis-

sues (‘‘Brain Anteriorcingulate Cortex,’’ ‘‘Brain Hypothala-

mus,’’ and ‘‘Brain Spinal Cord’’; Table S4). When we

examined 13 brain-related tissues, the performance differ-

ence between the GEN model and the WBE model was

relatively small compared with other tissues, with the tis-

sue-wise average of the differences being 0.030 (Figure 2B;

Table S4). The variance of R2 over all genes in each tissue

tended to increase according to their mean for the GEN

model and WBE model (Figure 2C).

These results were based on a single split of the training

(80%) and the test (20%) set. Because how the data were

split could affect the imputation results, we further

randomly split the entire data into 5 folds and measured

the performance of the GEN model and WBE model over

the 5 trials, using each fold as the test set. We found the

consistent result that the WBE model outperformed the

GEN model by a large gain (Figure S4) across the 5 trials,

suggesting that how the data were split did notmuch affect

our results. We found that the tissue-wise averages of the

standard error of the mean R2 over the 5-fold CV were

small enough (GEN, 0.001; WBE, 0.001; Figure S4;

Table S5) to exclude the possibility that the observed differ-

ence between the GEN model and WBE model was due to

the sampling error.

Gene-specific penalization for the GEN model

Before proceeding to build a combined model, we

wanted to try gene-specific penalization in the GEN

model. In contrast to the WBE model whose predictors

are the same for all target genes, in the GEN model,

the predictors (cis SNPs) are different across genes.

Thus, the optimal regularization method may vary

from gene to gene. We attempted to build a gene-specific

GEN model by allowing the model to select the optimal

regularization method (LASSO, ridge, or elastic net) for

each target gene according to the validation set (1/4 of

the training set). In such a way, the model may well

reflect the unique genetic architecture of the cis SNPs

of a given gene. We found that this gene-specific

approach (‘‘gene_specific_penalization’’) did not improve

the imputation performance of the original GEN model
Human
(Figure S5). The tissue-wise average of the mean R2 over

the 47 tissues was 0.064 for this approach, consistent

with using ridge alone (Table S6).

Combined models using both types of predictors

Because the genotype data and the whole-blood transcrip-

tome data could present independent information,

combining these two data sourcesmight provide an oppor-

tunity to further improve imputation performance. To

leverage the genotype data and the whole-blood transcrip-

tome data, we considered several approaches that can be

grouped into two categories.

The first category used the merged dataset of the geno-

type data and the whole-blood transcriptome data for

gene expression imputation (MERGED model). We gener-

ated and evaluated four different approaches of the

MERGEDmodel (MERGED_fixed, MERGED_fixed_filtered,

MERGED_flexible, and MERGED_flexible_filtered; mate-

rial and methods). The four approaches either included

all available predictors of the genotype data or only some

selected genotype predictors (‘‘_filtered’’ postfix). Also,

they either used a fixed value for the regularization ratio

parameter 4 (‘‘_fixed’’) or flexibly selected a value of 4 for

each gene based on the validation data (‘‘_flexible’’). A

detailed description of the four approaches is provided in

material and methods.

The second category integrated the imputation out-

comes of the GEN model and WBE model using the IVW

polymerization method and used this weighted sum as

the final estimate for gene expression imputation (IVW

model). Here again, we generated and evaluated four

different approaches of the IVW model (IVW_CV,

IVW_CV_cond, IVW_Bootstrap, and IVW_Bootstrap_-

cond; material and methods). The four approaches inte-

grated the imputation outcomes of the two standalone

models either for all available genes or only for the genes

for which the GEN model outperformed the WBE model

according to the validation set (‘‘_cond’’ postfix). Also,

they calculated the inverse variance weights using either

the 10-fold CV (‘‘_CV’’) or the bootstrap (‘‘_Bootstrap’’). A

detailed description of the four approaches is provided in

material and methods.

Figure 3 illustrates the imputationperformanceof all com-

binedmodels evaluated inour studyacross the47 tissues.We

observed that imputation performance greatly varied de-

pending on the combination strategy chosen. Notably, the

MERGEDmodel thatusedall availablepredictorsofbothpre-

dictor types and employed a fixed value of 100 for the regu-

larization ratio parameter 4 (MERGED_fixed_100) showed a

noticeable improvement in imputation performance. The

MERGED_fixed_100 model outperformed the WBE model

in 43 of 47 tissues. The tissue-wise average of the mean R2

over the 47 tissues was 0.136 for the MERGED_fixed_100

model, which was greater than 0.129 of the standalone

WBE model (Figure 4A; Table S7). The top tissues for which

the MERGED_fixed_100 model yielded the largest perfor-

mance gain over the WBE model were ‘‘Cells Transformed
Genetics and Genomics Advances 4, 100223, October 12, 2023 7



Figure 3. Comparison of the WBE model and various combined models
Shown are imputation performance reports for the standalone WBE model and all combined models evaluated in this study. The bar
plots show the imputation accuracy of the WBE model, four different approaches of IVW models, and four different approaches of
MERGED models for gene expression across the 47 tissues. The metric for imputation accuracy is mean R2. We used a different color
scheme for each different model, as indicated in the legend.
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Figure 4. Overall imputation performance of the WBE model and various combined models and comparison of MERGED_fixed
models with varying fixed values of the regularization ratio parameter 4
(A) The violin plot shows the distribution of mean R2 over the 47 tissues for the WBE model and all combined models evaluated in this
study. The crossbar in the boxplot indicates the average of the mean R2 values over the 47 tissues (tissue-wise average).
(B) The bar plot shows the tissue-wise average of the imputation accuracy over the 47 tissues for five variations of MERGED_fixedmodels
with varying fixed values of the regularization ratio parameter 4. The plot also includes the imputation performance of the WBE model
and MERGED_flexible model.
Fibroblasts’’ (approximately 32% increase from 0.019 to

0.025 inmeanR2), ‘‘BrainPutamen’’ (approximately 29% in-

crease from 0.129 to 0.166 in mean R2), and ‘‘Brain Hippo-

campus’’ (approximately 23% increase from 0.052 to 0.064

in mean R2). The MERGED models that flexibly selected

the best regularization ratio parameter 4 (MERGED_flexible

and MERGED_flexible_filtered) did not outperform the

WBEmodel. All IVWmodels failed to outperform the stand-

aloneWBEmodel (Figures 3 and 4A; Table S7). The two stra-

tegies for determining inverse weights (10-fold CV and the

bootstrap)didnotnotably change the resultsof IVWmodels.

In the MERGED_fixed model, we considered a fixed

value of 4 from the set {10�2, 10�1, 1, 101, 102}. A larger

ratio value of 4 indicates a larger regularization penalty

applied to the genotype predictors compared with the

whole-blood expression predictors. After evaluating each

value in the set, we observed that a larger value of 4 was

associated with higher imputation accuracy (Figure 4B;

Table S8). This suggested that upweighting the contribu-

tion of the whole-blood expression data was effective in

enhancing imputation accuracy because whole-blood

expression may have more predictive information

compared with the genotype.

An approach that selects the optimal model for each

gene

Previously, when imputing gene expression levels, a single

model was consistently used for all genes in a target tis-

sue. Here, we explored an additional approach that selects

the most suitable model for each gene based on validation

accuracy. For each gene, we evaluated four different

models (the GEN model, WBE model, IVW_CV model,

and MERGED_fixed_100 model) using the validation set,
Human
which was a subset of the original training set, and

selected the model with the best validation performance

for imputing the expression level. We found that this

approach of choosing the optimal model for each gene

(‘‘Best_on_validation’’) did not show better imputation

performance compared with the vanilla MERGED_

fixed_100 model (Figure 5A). The tissue-wise average of

the mean R2 over the 47 tissues was 0.124 for this addi-

tional approach (Table S9), which was lower than 0.136

of the MERGED_fixed_100 model. We found that the Bes-

t_on_validation model selected the MERGED_fixed_100

model for approximately 35% of all available genes in

the 47 tissues (Figure 5B; Table S9).

Model evaluation considering tissue specificity of gene

expression

So far, we have assessed the imputation performance of our

models across all available genes in the 47 tissues. Here, we

wanted to evaluate the imputation performance of the

models by considering the tissue specificity of gene expres-

sion. Some genes are very tissue specific in that they are ex-

pressed only in specific tissues, carrying out tissue-specific

functions. In contrast, some genes are consistently ex-

pressed across all tissues, carrying out basal cellular func-

tions required for the survival of cells. Therefore, it is worth

evaluating the imputation performance of the models as a

function of tissue specificity of gene expression. To this

end, we prepared two sets of genes based on their tissue

specificity. The first set consisted of genes whose expression

was highly tissue specific, while the second set consisted of

genes whose expression was highly conserved across the 47

tissues. The procedure for obtaining these two sets of genes

is described in material and methods. According to our
Genetics and Genomics Advances 4, 100223, October 12, 2023 9
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Figure 5. Imputation performance of the approach that selects the optimal model for each gene
(A) The violin plot compares the approach that selects the optimal model for each gene (‘‘Best_on_validation’’) with some other models.
It shows the distribution of mean R2 over the 47 tissues for eachmodel. The crossbar in the boxplot indicates the average of the mean R2

values over the 47 tissues (tissue-wise average). The Best_on_validation model is indicated in green.
(B) The bar plot shows the overall distribution of the candidate models selected by the Best_on_validation model based on validation
accuracy. For each candidate model, we calculated the sum of all frequencies over all genes in the 47 tissues.
results, the WBE model and MERGED_fixed_100 model

performed better for the tissue-specific genes than for the

conserved genes (Figure S6). For the WBE model, the

tissue-wise average of the mean R2 over the 47 tissues was

0.141 for the tissue-specific genes and 0.130 for the

conserved genes. For the MERGED_fixed_100 model, the

tissue-wise average of the mean R2 over the 47 tissues was

0.149 for the tissue-specific genes and 0.140 for the

conserved genes. In contrast, the GEN model performed

slightly better for the conserved genes than for the tissue-

specific genes (Figure S6). For the GEN model, the tissue-

wise average of the mean R2 over the 47 tissues was 0.063

for the tissue-specific genes and 0.066 for the conserved

genes. These results may suggest that the genotype and

whole-blood transcriptome profile can have slightly

different contributions to the imputation of genes that

are conserved across various tissues and genes that are spe-

cific to a particular tissue.
Discussion

In this study, we wanted to build the most accurate model

possible for imputing the transcriptome profile of inacces-

sible tissues, leveraging the genotype and whole-blood

expression. Tissue-specific transcriptome profiling often

requires a biopsy of a target tissue, which is invasive and

costly because of the limited accessibility. With an

increasing amount of genotype data and RNA-seq profiles

available, a suitable strategy using these sources would

allow an accurate imputation of the tissue-specific tran-

scriptome profile and facilitate transcriptome-wide associ-

ation studies (TWASs). With our investigation, we suggest
10 Human Genetics and Genomics Advances 4, 100223, October 12,
that one can improve imputation performance by utilizing

the genotype and whole-blood transcriptome, but the

choice of strategy for combining them matters.

One concern of our study is that the imputation out-

comes of the GEN model and WBE model cannot be inter-

preted from the same perspective. The expression estimate

obtained using the GENmodel represents genetically regu-

lated expression. Also, the R2 between the expression esti-

mate from the GEN model and the true expression can be

interpreted as an estimate of the heritability of the gene

expression trait. However, the expression estimate ob-

tained using the WBE model cannot provide the same

interpretation. In our study, because the main purpose

was to maximize imputation performance, we treated the

two types of predictors the same regardless of the differ-

ence in their interpretation.

We evaluated many different strategies for combining

the two data sources in our study. One method we tried

was IVW, which combined the imputation outcomes of

the two standalone models using the variance estimates

as the weights. This approach assumed that the variance

estimates of the two models are compatible. However,

the variance estimates of the two models may not be inter-

preted similarly because of the model differences. If that is

the case, then ignoring the variances and simply averaging

the point estimates might work better. We tried this strat-

egy as well, but we observed that its imputation accuracy

was lower than the imputation accuracy of the IVW strat-

egy (Figure S7).

One limitation of our study is that we only considered

one tissue (whole-blood expression) as a predictor along

with the genotype. If another tissue is also easily accessible,

then we may consider it as our predictor. We additionally
2023



leveraged the expression data of skin because skin is easily

accessible using a relatively noninvasive process, like the

whole-blood tissue. We obtained the skin expression data-

sets from the GTEx v.7 database. The imputation models

using skin expression as predictors showed performance

comparable with the WBE model across the 47 tissues

(Figure S8; Table S10), suggesting that use of skin expres-

sion can also be considered when imputing the transcrip-

tome profile of inaccessible tissues. Moreover, we used a

single data source (GTEx) for the whole-blood transcrip-

tome data, and these data are postmortem. Therefore, our

investigation has a limitation in that it may lack robust-

ness across multiple data sources and may not be general-

ized well to living-donor samples.

Another limitation of our study is that we assumed a spe-

cific set of values for the regularization ratio parameter 4;

namely, {10�2, 10�1, 1, 101, 102}. It is possible that there

could be better options for the value of 4 other than those

numbers. Finding the optimal value of 4 from the entire

range of real numbers would not be computationally

feasible, though.

In the MERGED_flexible model, we chose the optimal

regularization ratio parameter 4 for each gene based on

the validation data. Contrary to our expectations, the MER-

GED_flexible model did not outperform the standalone

WBE model. The value of 4 selected by the MERGED_flexi-

ble model based on the validation data was not consistent

with the optimal value of 4 for the test data in approxi-

mately 73.7% of all genes across the 47 tissues (Table S11).

Because the validation data and test data were chosen

randomly, the disparities between the two datasets seem

to stem from the small sample size. If the sample size to

fit model increases in the future, then we expect that the

performance of the MERGED_flexible method will increase.

Althoughwe triedmanydifferent approaches inour study,

we clearly could not try all possible methods, and thus there

can be other possible strategies that can outperform our

methods.Weused regularized linear regression for the impu-

tation of tissue-specific gene expression in our study. Some

existing methods used approaches other than regularized

linear regression. Bayesian functional genome-wide associa-

tion study (bfGWAS) used Bayesian variable selection

regression (BVSR) to construct a model for gene expression

imputation,15 while transcriptome-integrated genetic asso-

ciation resource (TIGAR) used Bayesian Dirichlet process

regression to construct a model for gene expression imputa-

tion.16 BVSR is known to perform well when true causal

expression quantitative trait loci (eQTLs) are sparse and

have relatively large effect sizes,whileBayesianDirichletpro-

cess regression is preferred when true causal eQTLs exist in a

large number and manifest small effect sizes.17 Using a

different approach for the genotype data depending on the

scenario of genotypic effect may improve the imputation

performance of the GEN model as well as the combined

models. Existing gene expression imputation methods that

use the genotype data rely on the cis-eQTLs within the small

window around the transcription start site because of
Human G
computational burden. If a suitablemethod that can exploit

trans-eQTL information becomes readily available, then it

would provide an opportunity for improving the current

level of gene expression imputation methods.
Data and code availability

We released the imputation models (in Rdata files) of

MERGED_fixed_100 for 45 out of 47 tissues in our

ZENODO repository (https://doi.org/10.5281/zenodo.

8097305). Because of the file size limit (50 GB) of the

ZENODO repository, we were unable to release our imputa-

tion models for 2 tissues (‘‘Skin Not Sun Exposed’’ and

‘‘Skin Sun Exposed’’). We will be glad to share these

omitted files with interested readers upon request.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.xhgg.2023.100223.
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