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Abstract: Background: VIM (Verona Integron-encoded Metallo-beta-lactamase) is a member of the
Metallo-Beta-Lactamases (MBLs), and is able to hydrolyze all beta-lactams antibiotics, except for
monobactams, and including carbapenems. Here we characterize a VIM-producing IncA plasmid
isolated from a clinical ST69 Escherichia coli strain from an Italian Long-Term Care Facility (LTCF)
inpatient. Methods: An antimicrobial susceptibility test and conjugation assay were carried out,
and the transferability of the blaVIM-type gene was confirmed in the transconjugant. Whole-genome
sequencing (WGS) of the strain 550 was performed using the Sequel I platform. Genome assembly
was performed using “Microbial Assembly”. Genomic analysis was conducted by uploading
the contigs to ResFinder and PlasmidFinder databases. Results: Assembly resulted in three
complete circular contigs: the chromosome (4,962,700 bp), an IncA plasmid (p550_IncA_VIM_1;
162,608 bp), harboring genes coding for aminoglycoside resistance (aac(6′)-Ib4, ant(3′′)-Ia, aph(3′′)-Ib,
aph(3′)-XV, aph(6)-Id), beta-lactam resistance (blaSHV-12, blaVIM-1), macrolides resistance (mph(A)),
phenicol resistance (catB2), quinolones resistance (qnrS1), sulphonamide resistance (sul1, sul2),
and trimethoprim resistance (dfrA14), and an IncK/Z plasmid (p550_IncB_O_K_Z; 100,306 bp), free of
antibiotic resistance genes. Conclusions: The increase in reports of IncA plasmids bearing different
antimicrobial resistance genes highlights the overall important role of IncA plasmids in disseminating
carbapenemase genes, with a preference for the blaVIM-1 gene in Italy.
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1. Introduction

VIM (Verona Integron-encoded Metallo-beta-lactamase) is a member of the Metallo-beta-Lactamases
(MBLs), and is able to hydrolyze all beta-lactams antibiotics, except for monobactams, but including
carbapenems. The VIM family was first detected and described in Italy from a Pseudomonas aeruginosa
(P. aeruginosa) strain isolated in 1997 [1]; to date, 69 different enzyme variants have been described and
grouped in sub-lineages: VIM-1 like, VIM-2 like, and VIM-7 like [2]. Among MBLs, VIM enzymes
are commonly detected in European/Mediterranean countries such as Italy and Greece. In particular,
VIM-1 and VIM-4 are geographically predominant in Europe, VIM-2 is globally distributed in P. aeruginosa,
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VIM-3 is widespread in Taiwan, VIM-6 in Asia, and VIM-7 in USA [3]. The blaVIM-type genes are often
inserted within class 1 integrons and located on plasmids playing a key role in the interspecies distribution
of such determinants [4]. According to Matsumura et al. (2017), more than 20 different VIM-harboring
integrons have been described [5]. Geographically, In87, In624, and In916 are spread mostly in European
countries and associated with blaVIM-1; In339 is globally distributed and harbors blaVIM-2; In450 in Taiwan
carrying blaVIM-3; and In496, harboring blaVIM-6, circulates across the Asian continent. Moreover, In916 has
been identified in Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), Enterobacter cloacae (E. cloacae),
Klebsiella aerogenes (K. aerogenes), and Klebsiella oxytoca (K. oxytoca); In339 has been reported in P. aeruginosa
and Acinetobacter baumannii (A. baumannii); and In496 in P. aeruginosa and Pseudomonas putida (P. putida) [5].
The blaVIM genes are mainly reported in IncN [6,7], IncY [8], IncR [9], and IncA type plasmids [10]. The IncA
group, once assigned to the IncA/C family, was later allocated to a separate incompatibility group, not yet
well characterized and recently recognized as an alternative reservoir of carbapenemase genes in the
Enterobacterales family [11,12]. Here we characterize a VIM-producing IncA plasmid isolated from a clinical
ST69 E. coli strain from an Italian Long-Term Care Facility (LTCF) inpatient.

2. Materials and Methods

2.1. Case Presentation, Antimicrobial Susceptibility Test and Molecular Investigations

On the 2nd of May 2018, a rectal swab was collected from a female patient, resident in the GP1
ward of the rehabilitation center “Giovanni Paolo II” (Milan, Italy). The swab, collected as part of a
carbapenemase passive surveillance screening, was sent to the Clinical Microbiology Laboratory of
the ASP “Golgi-Redaelli” of Milan for initial phenotypic characterization. Preliminary investigation,
through Vitek-2 (bioMérieux, Marcy-l’Étoile, France) and a phenotypic synergy test, revealed the
presence of a carbapenemase-producing E. coli strain. The isolate was sent to the Microbiology
Laboratory of University of Pavia and to the “Biomedical Center” in Plzen, Czech Republic,
for further molecular investigation. The species identification was confirmed through MALDI-TOF
MS (Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry) using MALDI
Biotyper software (Brucker Daltonics, Bremen, Germany). Carbapenemase production was confirmed
by meropenem hydrolysis assay [13], and antimicrobial susceptibility profiles were obtained by
Microscan AutoScan-4 (Beckman-Coulter, Brea, CA, USA) and interpreted in accordance with
EUCAST 2020 clinical breakpoints (https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/
Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf). Fosfomycin, colistin, and meropenem minimum
inhibitory concentrations (MICs) were confirmed through broth-microdilution. Production of class
B, D, and A carbapenemases was evaluated using disk combination synergy tests with meropenem
and EDTA, temocillin, and phenylboronic acid, as inhibitors [14–16], respectively. The presence
of carbapenemase genes was confirmed by polymerase chain reaction (PCR) as described by
Shirani et al. 2016 [17]. Phylogenetic groups were determined by a two-step triplex PCR as described
by Clermont et al. 2000 [18].

2.2. Conjugation Assay

To test the transferability of the blaVIM-type gene, conjugation experiments were performed
in Mueller Hilton (MH) broth (OXOID, Basingstoke, UK) using E. coli A15rRif as the recipient.
Transconjugant selection was assessed on MH agar (OXOID, Basingstoke, UK) plates supplemented
with rifampicin (100 mg/µL) (Sigma-Aldrich, St. Louis, MO, USA) and ampicillin (50 mg/µL)
(Sigma-Aldrich, St. Louis, MO, USA). The presence of the blaVIM-type gene in the transconjugants was
confirmed through PCR.

2.3. Whole-Genome Sequencing (WGS)

The E. coli strain designated as 550 was subjected to whole genome DNA extraction using the
NucleoSpin Microbial DNA kit (Macherey-Nagel, Duren, Germany). The obtained DNA was sheared
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using Megaruptor 2 using the Hydropore-long (Diagenode). Library preparation of the sheared DNA
was performed in accordance with the manufacturer’s recommendation for microbial multiplexing for
the Express kit 2.0 (Pacific Biosciences, Menlo Park, CA, USA). No size selection was performed during
library preparation. The constructed library was sequenced using long-reads sequencing technology
on Sequel I (Pacific Biosciences, Menlo Park, CA, USA).

2.4. Whole-Genome-Sequencing-Data Analysis

Genome assembly was performed with minimum seed coverage of 30×, using the “Microbial
Assembly” pipeline offered by “SMRT Link v8.0”. Antibiotic resistance genes, plasmid replicons,
virulence factors, serotype, FimH type, FumC type, MLST, pMLST, and phage detection was obtained
through uploading assembled contigs to ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/) [19],
PlasmidFinder (https://cge.cbs.dtu.dk/services/PlasmidFinder/) [20], VirulenceFinder (https://cge.cbs.dtu.
dk/services/VirulenceFinder/) [21], VFDB: Virulence factors database (http://www.mgc.ac.cn/VFs/) [22],
SeroTypeFinder 2.0 (https://cge.cbs.dtu.dk/services/SerotypeFinder/) [23], FimTyper 1.0 (https://cge.cbs.
dtu.dk/services/FimTyper/) [24], CHTyper 1.0 (https://cge.cbs.dtu.dk/services/chtyper/) [25], MLST 2.0
(https://cge.cbs.dtu.dk/services/MLST/) [26], pMLST 2.0 (https://cge.cbs.dtu.dk/services/pMLST/) [20],
and Phaster (https://phaster.ca) [27]. The genome was annotated by the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP). Plasmid comparisons were assessed through the Blast Ring Image Generator
(BRIG) application (http://brig.sourceforge.net) and EasyFig (https://mjsull.github.io/Easyfig/) [28].

2.5. Nucleotide Accession Numbers

The chromosome sequence of 550 and the plasmid sequences of p550_IncA_VIM_1 and
p550_IncB_O_K_Z were deposited in GenBank under the accession numbers CP058223, CP058224,
and CP058225, respectively.

3. Results

The strain showed a multi-drug resistance (MDR) profile, expressing resistance against
ampicillin, piperacillin, 3rd and 4th generation cephalosporins, ertapenem, gentamycin, tobramycin,
and trimethoprim-sulfamethoxazole, yet remained susceptible to amikacin, colistin, fosfomycin,
meropenem, imipenem, ciprofloxacin, and tigecycline (Table 1). The E. coli 550 strain was identified
as an MBL producer by disk combination synergy test, and as blaVIM-1 positive through PCR
and sequencing. A conjugation assay confirmed the transferability of the plasmid carrying the
carbapenemase gene (Table 1).

Whole-genome sequencing revealed the presence of three contigs: a complete circular chromosome
with a size of 4,962,700 bp, and two complete circular contigs corresponding to two different plasmids of
162,608 bp and 100,306 bp in size. The isolate belonged to the serotype O15:H18, uropathogenic sequence
type ST69 (Achtman scheme), phylogenetic group D and CH-Type FumC35/FimH27 (fimbrial adhesion
gene fimH with allele 27 and fumarate hydratase class II gene fumC with allele 35). Moreover, the strain’s
chromosome harbored several virulence genes involved in: adhesion (hemorragic E. coli pilus, EaeH,
Type I fimbriae), autotransporter (ag43: autoaggregation and flocculation of E. coli cells in static
cultures [29], cah: carbonic anhydrase, air: enteroaggregative immunoglobulin repeat protein, vat:
vacuolating autotransporter gene which contributes to uropathogenic E. coli (UPEC) fitness during
systemic infection, invasion (ibeB and ibeC facilitates invasion of brain endothelial cells), iron uptake
(chu: Hemin uptake, sit: Iron/manganese transport and Yersiniabactin siderophore), secretion (Type III
secretion system), and toxin production (clyA: expressing the pore-forming hemolytic and cytotoxic
cytolysin A). Additionally, the chromosome harbored an antibiotic resistance gene (mdf(A)) coding for
macrolides resistance and two phages free of antibiotic resistance genes (Table 2).
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Table 1. Antimicrobial susceptibility profile of E. coli A15, E. coli 550, and the transconjugant A15*E. coli 550 MIC (minimum inhibitory concentration, mg/L).

AMP AMS ATM CTX FEP CAZ CIP CO FOS ETP MP IMP CN TOB TGC TMX

E. coli A15 2 S 2 S ≤0.125 S ≤0.068 S ≤0.125 S ≤0.25 S ≤0.068 S ≤0.5 S ≤0.125 S ≤0.032 S ≤0.125 S ≤0.125 S ≤0.25 S ≤0.125 S ≤0.125 S ≤0.068 S

E. coli 550 >128 R >128 R 16 R >8 R 16 R >16 R 0.25 S 0.25 S 8 S 1 R 1 S 2 S 1 S 4 R 0.25 S >4 R

A15* E. coli 550 128 R 128 R 16 R >8 R 8 R >16 R 0.25 S 0.25 S 8 S 0.38 S 1 S 2 S 0.5 S 2 S 0.12 5S >4 R

MIC, minimum inhibitory concentration: ampicillin; AMP, ampicillin/sulbactam; AMS, aztreonam; ATM, cefotaxime; CTX, cefepime; FEP, ceftazidime; CAZ, ciprofloxacin; CIP, colistin; CO,
fosfomycin; FOS, ertapenem; ETP, meropenem; MP, imipenem; IMP, gentamycin; CN, tobramycin; TO, tigecycline; TIG; TMX, trimethoprim/sulfamethoxazole. R-resistant, S-susceptible.

Table 2. Antibiotic resistance genes and virulence determinants detected on the chromosome and the plasmid of the isolate 550.

Position Antibiotic Resistance Adhesion Autotransporter Invasion Iron Uptake Secretion Toxin

Chromosome mdf(A) Pilus, EaeH, Type I fimbriae ag43, cah, air, vat ibeB, ibeC chu, sit Type III Secretion System clyA

p550_IncA_VIM_1

aac(6′)-lb4, ant(3′′)-Ia, aph(3′′)-lb,
aph(3′)-XV, aph(6)-ld, blaSHV-12,

blaVIM-1, mph(A), catB2, qnrS1, sul1,
sul2, dfrA14
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The second contig belonged to an IncA plasmid (p550_IncA_VIM_1: 162,608 bp) and pMLST
IncA/C 12. The plasmid harbored genes coding for aminoglycoside resistance (aac(6’)-Ib4, ant(3′′)-Ia,
aph(3′′)-Ib, aph(3’)-XV, aph(6)-Id),β-lactam resistance (blaSHV-12, blaVIM-1), macrolides resistance (mph(A)),
phenicol resistance (catB2), quinolones resistance (qnrS1), sulphonamide resistance (sul1, sul2),
and trimethoprim resistance (dfrA14) genes. p550_IncA_VIM_1 shared high identity scores with
the pGA_VIM plasmid (182,016 bp) collected from a clinical ST12 E. coli strain in Italy (MN783743.2 [10];
100% sequence and identity), pFDL-VIM plasmid (164,903 bp) isolated from a clinical K. oxytoca in
Italy (MN783744.1 [10]; sequence coverage 100%, sequence identity 99.99%), pIBAC_IncA/C plasmid
(145,294 bp) isolated from a clinical Citrobacter freundii (C. freundii) isolated in Italy (MH594477.1 [11];
84% sequence coverage, 99.99% sequence identity), and pIBAC_Incx3_A/C plasmid (192,802 bp) isolated
from a clinical C. freundii in Italy (MH594478.1 [11]; 87% sequence coverage and 100% sequence identity)
(Figure 1). p550_IncA_VIM_1 backbone harbored conjugal transfer genes (tra), a replication initiation
gene (repA), maintenance and stability genes (parA, parM), genes coding for mercuric uptake system
(mer), and toxin/antitoxin system (HigB/HipA). Moreover, the plasmid contained three antimicrobial
resistance islands (ARIs); ARI-I (12,914 bp) flanked by IS26 on both ends in opposite orientation
and harbored sul-2, aph(6)-Id and qnrS1 genes. When blasted, ARI-I showed perfect identity with
pKC-BO-N1-VIM found in a Kluyvera cryocrescens collected from a rectal swab from Italy (MG228427.1;
query cover 100%, identity 100%). ARI-II (11,263 bp), flanked by an IS4321R and an IntI1 in the
same orientation, and harbored an In916 integron with a cassette containing sul2, catB2, ant(3′′)-Ia,
aph(3′)-XV, aac(6′)-Ib4 and blaVIM-1 genes. When blasted, the region shared high identity score with
pKC-BO-N1-VIM (MG228427.1; query cover 100%, identity 100%). Moreover, a mercury uptake system
region separated the two ARIs. ARI-III, of 4895 bp, contained just the blaSHV-12 gene, flanked by
an IS6-like element and an IS26 in opposite orientation. This region revealed high identities with
pFDL-VIM found in K. oxytoca from Italy (MN783744.1; query cover 100%, identity 100%).
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Figure 1. Circular map of p550_IncA_VIM_1 against pGA_VIM (pink), pFDL-VIM (turquoise),
pIBAC_IncA/C (violet), and pIBAC_Incx3_A/C (yellow). At the outer curved segments; red, yellow,
black, green, purple and blue corresponds to ARIs, In916, blaVIM-1, tra region, maintenance and stability
region, and repA.
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p550_IncA_VIM_1 shared most of the IncA backbone with pGA_VIM, pFDL-VIM, pIBAC_IncA/C,
and pIBAC_Incx3_A/C. Nevertheless, regarding ARIs, p550_IncA_VIM_1 and pGA_VIM shared
most of the region; both plasmids shared the ARI-I region but in the opposite direction. Conversely,
pGA_VIM harbored two copies of ARI-II while sharing one copy with p550_IncA_VIM_1 but in the
opposite orientation. Moreover, the ARI-III region was also shared by both plasmids in opposite
directions except for the IS26. In pGA_VIM, the “mercury system region” directly flanked the first
copy of the ARI-II region, whereas in p550_IncA_VIM_1 it separated ARI-I and ARI-II, maintaining the
same orientation. The orientation of the mercury system region and the opposite orientation of ARI-II
in p550_IncA_VIM_1 suggests a recombination event responsible for the genetic restructuring of this
region (Figure 2).
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and pIBAC_Incx3_A/C. Replicons, partitioning genes, mobile elements, conjugal transfer genes,
antibiotic resistance, and other remaining genes are designated by blue, purple, yellow, green, red,
and orange, respectively. Gray shaded area shows nucleotide similarity.

The third contig belonged to an IncK/Z plasmid (p550_Inc_B_O_K_Z; 100306 bp) and did not
harbor any antibiotic resistance gene.

4. Discussion

Here, we report the first detection of a VIM-producing ST69 E. coli strain in Italy. E. coli ST69 is
a member of the extraintestinal pathogenic E. coli (ExPEC) group, mostly involved in urinary tract
infections (UTIs). It was first detected in 1999, in a study conducted in California, among 255 E. coli
collected from urine of women with UTIs [30]. The ST69 lineage is part of the phylogenetic group D
and belongs to the clonal group A (CGA) [31]. This group reported several serotypes such as O11, O15,
O86, O125ab, and O25b [32]. ST69 has been associated with high virulence and pathogenicity, due to
several virulence genes content coding for adhesins, toxins, autotransporters, and siderophores [33].
It has often been associated with trimethoprim-sulphametoxazole resistance and to the expression of
CTX-M and TEM type enzymes. Recently, sporadic cases of ST69 E. coli, expressing several hydrolyzing
enzymes, such as KPC-3 [34], NDM-1 [35] and mcr-1, have been reported [36]. Moreover, Fibke et al.
identified a possible link between acquisition/infection with ST69 and travel histories. Additionally,
the consumption of high-risk foods such as raw meat or vegetables, undercooked eggs, and seafood
could play a role in the acquisition/infection with ST69 [37]. These data support the definition of ST69
as a high-risk clone, with increased ability for antimicrobial resistance genes acquisition. Moreover,
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the presence of type 1 fimbriae (fimH27), has been correlated with persisting colonization and bacteremia
in patients [38].

VIM-type enzymes are widely detected in Italy and in Europe [39,40], harbored predominantly
on IncN plasmids [6,7]. The expression of a VIM-1 enzyme by a high-risk ST69 clone, can represent
a challenge, limiting the therapeutic options. In particular, the spread of VIM enzymes reduces the
efficacy of the recently introduced therapeutic options such as ceftazidime-avibactam (CAZ-AVI).
According to Arcari et al. the rise of MBL-producer circulation could be facilitated by extending the
CAZ-AVI usage for treatment of KPC-producing-strains [10].

IncA plasmids are highly conjugative plasmids which are not yet well characterized. Recently,
studies have suggested that IncA plasmids could act as carbapenemase reservoirs in different
Enterobacterales species [6,11,41]. Few reports of complete closed IncA plasmids have been reported in
the NCBI database. Nevertheless, from the plasmids discussed in Figure 2, IncA plasmids maintained
a relatively stable backbone. The aforementioned ability could be explained by the presence of different
integrative hotspot regions in the IncA plasmid backbone, particularly IS26, IS6, and IntI1 elements,
as described by Johnson et al. 2012 [42].

In conclusion, the high identity with other IncA plasmids highlights the predisposition of the IncA
group to acquire several antimicrobial resistance genes. These data emphasize the overall important
role of IncA plasmids in disseminating carbapenemase genes and, in particular, the blaVIM-1 in Italy [10].
The ability of these plasmids to accumulate different antibiotic resistant determinants in a high-risk
clone, poses a health threat that might be difficult to control.
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