)
BNVIC Neurology Biomed Cenr

Research article

Neuropathological findings processed by artificial neural networks
(ANNs) can perfectly distinguish Alzheimer's patients from
controls in the Nun Study

Enzo Grossi*!, Massimo P Buscemat?, David Snowdon'3 and

Piero Antuono’4

Address: 'Bracco SpA Medical Department, Milan, Italy, 2Semeion Research Center Sciences of Communication, Rome, Italy, 3Sanders Brown
Center on Aging and Department of Neurology, University of Kentucky, Lexington, Kentucky, USA and *Department of Neurology, Medical
College of Wisconsin, Milwaukee, USA

Email: Enzo Grossi* - enzo.grossi@bracco.com; Massimo P Buscema - m.buscema@semeion.it;
David Snowdon - DSnowdon@NunStudy.mi8.com; Piero Antuono - antuono@mcw.edu

* Corresponding author tEqual contributors

Published: 21 June 2007 Received: 18 September 2006
BMC Neurology 2007, 7:15  doi:10.1186/1471-2377-7-15 Accepted: 21 June 2007
This article is available from: http://www.biomedcentral.com/1471-2377/7/15

© 2007 Grossi et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Many reports have described that there are fewer differences in AD brain neuropathologic lesions
between AD patients and control subjects aged 80 years and older, as compared with the considerable differences
between younger persons with AD and controls. In fact some investigators have suggested that since neurofibrillary
tangles (NFT) can be identified in the brains of non-demented elderly subjects they should be considered as a
consequence of the aging process. At present, there are no universally accepted neuropathological criteria which can
mathematically differentiate AD from healthy brain in the oldest old.

The aim of this study is to discover the hidden and non-linear associations among AD pathognomonic brain lesions and
the clinical diagnosis of AD in participants in the Nun Study through Artificial Neural Networks (ANNs) analysis

Methods: The analyses were based on 26 clinically- and pathologically-confirmed AD cases and 36 controls who had
normal cognitive function. The inputs used for the analyses were just NFT and neuritic plaques counts in neocortex and
hippocampus, for which, despite substantial differences in mean lesions counts between AD cases and controls, there
was a substantial overlap in the range of lesion counts.

Results: By taking into account the above four neuropathological features, the overall predictive capability of ANNs in
sorting out AD cases from normal controls reached 100%. The corresponding accuracy obtained with Linear
Discriminant Analysis was 92.30%. These results were consistently obtained in ten independent experiments. The same
experiments were carried out with ANNs on a subgroup of 13 non severe AD patients and on the same 36 controls.
The results obtained in terms of prediction accuracy with ANNs were exactly the same.

Input relevance analysis confirmed the relative dominance of NFT in neocortex in discriminating between AD patients
and controls and indicated the lesser importance played by NP in the hippocampus.

Conclusion: The results of this study suggest that: a) cortical NFT represent the key variable in AD neuropathology; b)
the neuropathologic profile of AD subjects is complex, however, c) ANNs can analyze neuropathologic features and
differentiate AD cases from controls.
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Background

Both Neurofibrillary tangles (NFT) and neuritic plaques
(NP) are the primary neuropathologic markers of Alzhe-
imer's disease (AD), although they are highly prevalent in
normal brain aging [1-4].

Many reports have described that there are fewer differ-
ences in AD brain neuropathologic lesions between AD
patients and control subjects aged 80 years and older, as
compared with the considerable differences between
younger persons with AD and controls [5,6]. While there
are dramatic differences in neuropathologic lesion counts
between middle-aged AD cases and controls, the differ-
ence in lesion counts, while significant, is of lesser magni-
tude in older adult AD cases and controls|[5].

Advanced age at death is associated with somewhat less
severe dementia and fewer senile plaques and neurofibril-
lary tangles[6].

Presently there is not a consensus on whether NFT consti-
tute a specific effect of the disease or result, in part, from a
non-specific age related process.

In fact, some investigators [7] have suggested that, since
the NFT are very prevalent in the brains of non-demented
older adults, the presence of NFT in the brain is not, by
itself, diagnostic of AD, and that NFT should be viewed as
a later occurrence in the pathological progression of the
disease.

Overall, the exact role of NFT to AD, aging, and dementia
remains unclear. Even universally accepted neuropatho-
logical criteria for Alzheimer's disease differ on the diag-
nostic role of NFT.

The current approach of determining different cut-off
points for NFT and NP density and regional distribution
do not allow a 100% sensitivity and specificity in discrim-
inating between AD brains and control subjects with nor-
mal cognitive function.

Recent studies further suggest that NFT have a stronger
correlation to cognitive function than NP, not only in AD
but also in normal aging and mild cognitive impairment
[1,3,8]. The degree of cognitive impairment is a function
of the distribution of NTF within the brain [7]. In particu-
lar, the presence of high NFT density in the entorhinal and
hippocampus neurons is strongly correlated to reduced
cognitive performance in normal aging, whereas NFT for-
mation in neocortical areas is associated with clinically
overt AD [2-4,9].

Neuropathologic studies [2-4,9] have shown that the dis-
tribution of NFT in the human brain follows, in general, a
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predictable and hierarchical pattern whereas the distribu-
tion of NP varies among individuals. Neurofibrillary
pathology is initially limited to the hippocampus and the
entorhinal cortex [3,9]. As the number of NFT increases in
these areas, neurofibrillary pathology extends into the
temporal cortex. Finally, tangles emerge and spread to the
neocortical areas of the brain.

In a previous study [10] we have shown that Artificial
Neural Networks analysis applied to demographic, clini-
cal and genotype descriptors allowed a better prediction
of the number of NFT in the neocortex and hippocampus
than the number of NP in the same areas. These results
indicate that a non-linear analysis of complex data is a
valid approach in highlighting on the role of NP and NFT
in the development of a degenerative process leading to
AD. This supports the concept that the presence of NFT in
aging may represent one of its earliest pathological sub-
strates and play a significant role in the initial stages of
memory impairment, confirming the findings [3,9] by
other authors.

An important way to challenge this hypothesis is to eval-
uate the predictive role of NFT and NP in two critical brain
regions, i.e. neocortex and hippocampus, in distinguish-
ing between normal subjects and those with AD.

The aim of this study is to discover the hidden and non-
linear associations among Alzheimer's disease pathogno-
monic brain lesions and the clinical diagnosis of Alzhe-
imer's disease in participants in the Nun Study.

Methods

Subjects

Subjects in the study were selected from a cohort of 117
participants in the Nun Study who had donated their
brains [10]. The Nun Study was approved by the Univer-
sity of Kentucky's Institutional Review Board. In order to
select control subjects with normal cognitive function we
excluded non-demented subjects with a MMSE score
equal or less than 24 and/or the concomitant presence of
mild cognitive impairment of the amnesic type [11].

Thirty six subjects matched these criteria. Six of them were
ApoE4 positive (16.6%).

Selection criteria for pure AD patients was the presence of
clinical dementia and values of NFT and NP in the neocor-
tex and hippocampus above the following cut-off:

Neurofibrillary Tangles in Neocortex: average value of neo-
cortical NFT per mm2 > 1.0;

Neurofibrillary Tangles in Hippocampus: average value of

hippocampal NFT per mm?2 > 10;
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Neuritic Plaques in Neocortex: maximum number of NP in
the neocortex >1.5;

Neuritic Plaques in Hippocampus: maximum number of NP
in the hippocampus >1.5.

These cut-off derive from a previous mathematical valida-
tion of neuropathological values distribution observed in
a previous study [10].

Twenty six patients fulfilled these criteria and they consti-
tute the AD cases in this analyses. Nine of them were
ApoE4 positive (34.6%).

Artificial neural networks analysis

ANN: s structure and architecture

ANNs models were constructed by using non commercial
programs developed by Semeion Research Center [12-17].
In this experiment several ANN architectures with differ-
ent learning rules were assessed, all of them sharing the
following structure: the input vector had number of nodes
equal to the number of independent variables, the output
vector had two nodes corresponding to the two different
outcomes (AD cases vs normal controls), and a single
layer of hidden units

ANNs with Back Propagation learning rule were
employed sharing the following structure: the input layer
had a number of nodes equal to the number of independ-
ent variables, the output layer had two nodes correspond-
ing to the target (AD cases/normal controls), and the
inner layer had four hidden units.

Results obtained with those neural networks have been
compared with a linear statistical model: the Linear Dis-
criminant Analysis (LDA) (Software SPSS®) using the
same training and testing subsets.

During the training phase the input relevance of each var-
iable was assessed. The so called "input relevance" is a
parameter expressing the magnitude of the activation of a
given node during the training phase. The magnitude of
the activation is arbitrarily expressed with a number
which ranges from zero to infinity.

In technical terms, the "Input Relevance" is the Fan-out of
every input when the ANN is trained:

J

1 K N
Ri = E |:§ Z wC,j,i;
where:

R; is the mean relevance of the i-th input variable of the
dataset;
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K is the number of classifiers used in the training phase;

N is the number of hidden units of the K classifiers
trained;

w,;;1s the trained weight of the c-th classifier, connecting
the i-th input to the j-th hidden unit.

The Validation Protocol

The validation protocol is a fundamental procedure to
verify the models' ability to generalize the results reached
in the Testing phase of each model. The application of a
fixed protocol measures the level of performance that a
model can produce on data that are not present in the
Testing and/or Training sample. Different types of proto-
col exist in the literature, each presenting advantages and
disadvantages.

The protocol, from the point of view of a general proce-
dure, consists of the following steps:

1. subdividing the database in a random way into two
subsamples: Subsets A and B;

2. train an ANN on Subset A; in this phase the ANN learns
to associate the input variables with those that are indi-
cated as targets;

3. at the end of the training phase the weight matrix pro-
duced by the ANN is saved and frozen together with all
the other parameters used for the training;

4. with the weight matrix saved, Subset B, which it has not
seen before, is shown to the ANN, so that in each case the
ANN can express an evaluation based on the previous
training; this operation takes place for each input vector
and every result (output vector) and is not communicated
to the ANN; the ANN is in this way evaluated only in ref-
erence to the generalization ability that it has acquired
during the Training phase;

5. anew ANN is constructed with identical architecture to
the previous one and the procedure is repeated from point
1; but this time the ANN will be trained on Subset B and
blindly tested on the Subset A.

This general training plan has been further articulated
with the aim of increasing the level of reliability in terms
of generalization of the processing models. More specifi-
cally we employed the so-called 5 -2 cross-validation pro-
tocol [13]. In this procedure the study sample is randomly
divided ten times into two sub samples, always different
but containing a similar distribution of cases and con-
trols: the training one (containing the dependent varia-
ble) and the testing one. During the training phase the
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ANN learns a model of data distribution and then, on the
basis of such a model, classifies subjects in the testing set
in a blind way. The training and testing sets are then
reversed and consequently 10 analyses for every model
employed are conducted. To compare the ANNs perform-
ances, the same protocol was used with the same data dis-
tribution to validate the Linear Discriminant Analysis
(LDA).

Results
Table 1 shows the descriptive variables of the subjects
included in this study according to the above criteria.

As one can see, even if the average difference between the
neuropathological lesion load in the two groups was sub-
stantial, a marked overlap of values was present for NFT in
hippocampus, NP in neocortex, and NP in hippocampus.

A good linear relationship between each of the 4 selected
input variables and the target of the study (AD cases/nor-
mal controls) was present: for Neurofibrillary Tangles in
Neocortex, r-squared = 0.50; Neurofibrillary Tangles in Hip-
pocampus, -squared = 0.50; Neuritic Plaques in Neocortex, 1-
squared = 0.50; Neuritic Plaques in Hippocampus respec-
tively. r-squared = 0.32 ;

By taking into account all the four recorded neuropatho-
logical features, the overall predictive capability of ANNs
in sorting out AD from normal amounted consistently to
100% (table 2).

These results were consistently obtained in ten separated
experiments performed on different training and testing
subsets. The corresponding results obtained with LDA

Table I: Characteristics of the sample under evaluation
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were good but not excellent; in fact the mean accuracy rate
was 92.30%.

Since some AD patients had severe cognitive impairment,
in further experiments, we excluded from the analysis AD
patients with MMSE score below 4.

A subset of 13 AD patients was obtained with a mean
MMSE equal to 15.

The average values of pathological markers didn't differ
between these two subgroups with the exception of NFT
in neocortex (Table 3). We repeated the same predictive
experiments on a new data set composed of these 13 mild
AD patients and the same 36 controls obtaining identical
results.

In order to assess the relative importance of the four neu-
ropathological AD markers in developing the model build
by ANNSs, in the ten experiments we evaluated the so
called "input relevance " of each markers during the train-
ing phase of the neural network.

Figure 1 shows the average input relevance of each varia-
ble in the ten independent training sessions. As one can
see, NFT Neocortex accounted for the highest input rele-
vance followed by NFT Hippocampus, NP Neocortex, and
lastly by Max NP Hippocampus.

Discussion
Artificial neural networks have shown optimal perform-
ance on various medical applications because of their
capacity to learn how to identify complex relationships
among data.

AD (n=26) Normal (n = 36)

Feature Range Range

mean min max SD mean min max SD
Age at last exam 89.73 79.27 100.65 5.07 83.72 76.24 101.09 6.07
Education years 14.85 8.00 18.00 3.31 16.44 8.00 18.00 2.25
ADL 1.73 0.00 5.00 2.09 4.6l 0.00 5.00 I.15
WRCL 0.23 0.00 2.00 0.59 6.58 4.00 9.00 1.27
CNPR 4.19 0.00 11.00 4.36 10.11 5.00 11.00 1.24
BOST 4.31 0.00 14.00 4.60 12.42 0.00 15.00 2.76
VRBF 2.96 0.00 14.00 3.94 14.00 8.00 23.00 391
MMSE 7.62 0.00 23.00 8.74 27.83 25.00 30.00 1.36
Mean NFT neocortex 22.03 1.47 61.99 16.85 0.29 0.00 4.88 0.83
Mean NFT Hippocampus 48.53 12.80 94.90 23.71 9.36 0.00 59.73 15.41
MaxNP neocortex 10.79 3.83 21.28 431 3.13 0.00 11.06 343
Max NP Hippocampus 6.02 1.70 13.62 3.66 1.45 0.00 15.74 3.09

WRCL: Delayed Word Recall score; CNPR: Constructional Praxis score; BOST : Boston Naming score; VRBF: Verbal Fluency score; MMSE: Mini-

Mental State Examination
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Table 2: Performance of the ANNs in discriminating AD cases from normal controls. The analysis was carried out on all 4
neuropathologic variables registered in the original database of patients in ten separated experiments with different training and
testing subsets. Linear Discriminant Analysis [LDA] results on the same subsets are shown for comparison.

Tr and Ts subsets ANN LDA
AD Normal Mean accuracy AD Normal Mean accuracy

FF_Bp*(4 x 2)la 100.00% 100.00% 100.00% 100.00% 87.50% 93.75%
FF_Bp(4 x 2)1b 100.00% 100.00% 100.00% 100.00% 91.67% 95.83%
FF_Bp(4 x 2)2a 100.00% 100.00% 100.00% 100.00% 72.73% 86.36%
FF_Bp(4 x 2)2b 100.00% 100.00% 100.00% 100.00% 88.89% 94.44%
FF_Bp(4 x 2)3a 100.00% 100.00% 100.00% 100.00% 87.50% 93.75%
FF_Bp(4 x 2)3b 100.00% 100.00% 100.00% 100.00% 83.33% 91.67%
FF_Bp(4 x 2)4a 100.00% 100.00% 100.00% 100.00% 72.73% 86.36%
FF_Bp(4 x 2)4b 100.00% 100.00% 100.00% 95.00% 100.00% 97.50%
FF_Bp(4 x 2)5a 100.00% 100.00% 100.00% 100.00% 91.67% 95.83%
FF_Bp(4 x 2)5b 100.00% 100.00% 100.00% 100.00% 75.00% 87.50%
Average 100.00% 100.00% 100.00% 99.50% 85.10% 92.30%

* Feed Forward Back Propagation Neural Network
Tr: Training set; TS: Testing set

At variance with statistical linear methods, ANNs are able
to reproduce the dynamic interaction of multiple factors
simultaneously, allowing the study of complexity; they
can also draw conclusions on an individual basis and not
as average trends.

In a previous paper [10] we have shown that ANNs can be
used to predict the results of post-mortem brain evalua-
tions from cognitive performance data among 117 partic-
ipants in the Nun Study.

That is, we determined how demographic data and cogni-
tive and functional variables of each subject during the
last year of her life could predict: a) the presence of brain
pathology expressed as Braak stages of AD pathology, NFT
and NP count in the neocortex and hippocampus; and b)
brain atrophy, a highly prevalent neuropathologic feature
of AD.

Table 3: Comparison between severe and non severe AD
patients.

Variables Mean SD Mean SD pvalue
Age at last exam. 91.63 588 88.69 4.14 n.s.
Education years 15.69 2.8l 1400 3.65 ns.
ADL 323 188 023 083 <0.00l
WRCL 046 078 0.00 0.00 <0.00l
CNPR 785 264 054 1.94  <0.001
BOSTON 8.31 295 03l 0.85 <0.00l
VRBF 592 366 000 000 <0.00I
MMSE 1500 636 023 060 <0.00l
Mean NFT neocortex 2931 1724 1474 1339 <0.001
Mean NFT Hippocampus 5031 2299 46.75 25.22 ns.

11.65 4.8l 992 373 n.s.
534 412 671 3.15 ns.

Max NP neocortex
Max NP Hippocampus

In this study our goal was to understand what constitutes
the relevant neuropathological pattern differentiating AD
from normal control subjects, an issue which, so far, has
never been solved.

Thanks to the ANNs analysis we succeeded in reaching a
perfect distinction between the two groups which
remained unchanged even when we analyzed only the
clinically mild and moderate AD patients. Input relevance
analysis confirmed the relative dominance of NFT in the

18.00

16.00
14.00

12.00

10.00
8.00

6.00
4.00 4
2.00

0.00 ,_‘

Mean NFT Mean NFT Max NP
neocortex hippocampus hippocampus

Max NP neocortex

Figure |

Mean input relevance* of neuropathological markers
in ANNs experiments. * Input relevance refer to the
ranking of each variable in term of relative importance within
the model created by artificial neural networks. The higher
the value, the higher the importance of the variable.
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neocortex in discriminating between normal controls and
AD cases and indicated the low importance played by NP
in hippocampus.

Input relevance is a practical way to open the so called
"black box" of ANNSs, allowing one to discover the role
played by each variable in the developing the data model
during the training phase. The numerical value of this
parameter is proportionally related to the "weight" of a
given variable in the model.

Another major challenge in comparing the prevalence of
AD lesions in old individuals with AD and non-demented
control subjects is the selection of appropriate criteria for
excluding mild dementia in the controls. In fact, as
regards to non-demented people most of the studies rely
on the interview of a knowledgeable informant after the
subject death, rather than direct observation of the control
subject, according to the same protocol used to assess AD
patients One example is the study published by Berg and
co-workers in 1998 [5], in which experienced nurses or
physicians interviewed informants and reviewed the
records of previous clinical assessments to define the Clin-
ical Dementia Rating score of controls. In addition, some
controls were excluded because of neocortical senile
plaques densities that met neuropathological criteria for
AD, introducing in this way a circular reasoning.

A possible limitation of our analysis is linked to the rela-
tive small sample size. This issue can be considered at two
different levels: the statistical and epidemiological one.

From a pure statistical point of view we can say that the
small number of variables considered guarantees a bal-
anced ratio between variables and records. In addition the
use of a rigorous validation protocol with many training
and testing procedures should protect against statistical
imbalances.

From an epidemiological point of view we can't regard the
26 patients in this study as a representative population of
AD patients. Therefore it is clear that the results presented
in the paper are only valid for this particular environment
and cannot be generalized. One should anyway consider
the extreme scarcity in the general literature of autopsy
data in groups of aged people with a substantial propor-
tion of individuals without dementia symptoms.

Another potential limitation of our paper is that the mark-
ers that might best correlate with cognitive status (i.e. syn-
aptic markers) are not included in the dataset ;
nonetheless, we think that the information carried out by
NFT and NP is sufficiently specific to make a considerable
contribution to the understanding of pathology-clinical
relation.

http://www.biomedcentral.com/1471-2377/7/15

Conclusion

In conclusion, the results of this study confirm that the
neuropathologic profile of AD subjects is complex but
specific and thanks to ANNSs it can be conveniently differ-
entiated from that of normal subjects. Cortical NFT repre-
sent the key variable more likely related to the patho-
physiology of the disease than the NP.
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