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Abstract: Recent technological innovations in the field of mass spectrometry have supported the
use of metabolomics analysis for precision medicine. This growth has been allowed also by the
application of algorithms to data analysis, including multivariate and machine learning methods,
which are fundamental to managing large number of variables and samples. In the present review,
we reported and discussed the application of artificial intelligence (AI) strategies for metabolomics
data analysis. Particularly, we focused on widely used non-linear machine learning classifiers, such
as ANN, random forest, and support vector machine (SVM) algorithms. A discussion of recent
studies and research focused on disease classification, biomarker identification and early diagnosis is
presented. Challenges in the implementation of metabolomics–AI systems, limitations thereof and
recent tools were also discussed.

Keywords: metabolomics; artificial intelligence; machine learning; precision medicine; biomarkers

1. Introduction
1.1. Machine Learning and Metabolomics

The use of metabolomics for personalized medicine is a rapidly emerging field. This
growth has been supported by recent technological innovations that allow for the quantita-
tive analysis of hundreds to thousands of molecules in a single sample and the application
of advanced statistical and classification techniques. To deal with a large number of vari-
ables, feature selection and classification methods such as partial least-squares discriminant
analysis (PLS-DA), principal component analysis (PCA), and machine learning have been
largely employed [1–5]. The use of these methods is especially necessary for diagnostic
models [6,7].

Machine learning, which is a sub-domain of artificial intelligence, can be divided
into three categories: (1) supervised learning, (2) unsupervised learning, and (3) semi-
supervised learning. Supervised machine learning algorithms utilize intensively statistical
approaches to train a model on labeled data and make predictions about unknown (un-
labeled) data. By contrast, unsupervised models deal with unlabeled data for training.
Machine learning is the most ideal application for mass spectrometry data owing to its
ability to cope with both linear and non-linear data. However, using machine learning
for mass spectrometry applications is not a novel concept; an early study in the 1990s
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demonstrated the performance of artificial neural networks (ANNs) in classifying mass
spectra [8]. Afterward, many other supervised algorithms were applied to mass spectrome-
try data to improve the classification of mass spectra [9]. In the twenty-first century, mass
spectrometry diagnostic research using machine learning began to grow.

In the early 21st century, one of the most significant studies on the combination of ma-
chine learning and mass spectrometry data showed early promise for disease diagnosis [10].
The ability of ANNs to measure protein expression levels in cancer patients was investi-
gated. Authors obtained 98% accuracy using surface-enhanced laser desorption/ionization
time of flight mass spectrometry technology [10]. Several other studies [11–13] have demon-
strated that machine learning algorithms can enable personalized therapy through the
analysis of omics data (Figure 1).
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Figure 1. Machine learning model training and prediction of new sample using metabolomics
analysis of biological samples with mass spectrometry and nuclear magnetic resonance.

Today, machine learning excels at object classification, reasoning, and complicated
decision making. DeepMind’s AlphaGo recently demonstrated stunning performance,
proving that machine learning algorithms can manage complicated decisions when applied
to real-world circumstances [14]. For example, a study by Li et al. [15] showed that machine
learning can be used to detect focal nodular hyperplasia and atypical hepatocellular carci-
noma from ultrasonic data. The authors found that machine learning algorithms achieved
higher scores when the feature selection was assisted by radiologists, suggesting the use of
the algorithm to support clinical decision making.

Two well-known machine learning techniques for biomarker discovery and patient
classification are feature selection algorithms and supervised classifier algorithms. The
dataset must first be subjected to a feature selection approach in order to eliminate redun-
dant and irrelevant information, as well as noise and computational burden. Following
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the feature selection step, which identifies the most discriminating subsets of features, a
classifier algorithm is used to learn patterns from samples and predict unknown samples,
which serves as the diagnostic model of disease. A machine learning application using a
stepwise process for biomarker discovery and diagnostic modeling is illustrated in Figure 2.
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diagnostic modeling. The machine learning process begins with input of dataset generated by various
platforms; data are then subjected to a feature selection algorithm to reduce dimensionality and
obtain optimal subsets of features to build a robust classification model and to discover biomarkers.

In the following sections, we present and discuss the application of machine learning
strategies to metabolomics data. In particular, we focus on widely used non-linear machine
learning classifiers, such as ANN, random forest, and support vector machine (SVM)
algorithms. Recently published reviews discussed the application of deep learning and non-
linear machine learning algorithms mainly focusing on data processing of metabolomics
data and on the identification of molecules including pathway analysis. Corsaro et al.
focused their work more on a wide range of statistical approaches to elaborate NMR–
metabolomics data from biomedical to food data, while Chen and coauthors discussed
various strategies for expanding metabolite coverage, chemical derivatization, sample
preparation, clinical disease markers, and machining learning for disease modeling [16,17].
However, the objective of the current review is to address the use of ML algorithms to
obtain biomarkers and diagnostic models. A discussion on most recent tools for ML, on
technical limitations and on future challenges is also reported. All the most recent strategies
and approaches used to identify biomarkers and to classify patients based on metabolomic
profiles of biofluids are reported and discussed.

1.2. Biomarkers

In biomedical science, there is a constant demand for new biomarkers to enable
accurate diagnosis, therapy, and monitoring of the patient’s response. According to the
National Institutes of Health Biomarkers Definitions Working Group, a biomarker is defined
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as “a characteristic that is objectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacologic responses to a therapeutic
intervention” [18]. Body fluids such as urine, saliva, sputum, and sweat may include
biomarkers that could be detected and investigated for indicators of normal or abnormal
conditions. Emerging omics technologies for the quantification of thousands of molecules,
together with the sophisticated development of artificial intelligence algorithms, can now
accelerate biomarker discovery.

1.3. Metabolomics

Metabolomics is the large-scale study of small molecules such as bile acids, carbohy-
drates, amino acids, lipids, and organic acids, which are commonly known as metabolites.
Metabolomics is particularly suitable for the characterization of biological samples since small
molecules reflect the disease phenotype. In addition, the high reproducibility reached using
internal standards, normalization procedures, and new instrumentations has allowed for
highly accurate simultaneous analyses of hundreds of molecules in large-scale studies [19,20].
This has brought new challenges to precision medicine but also new opportunities, especially
in the application of algorithms for data analysis. It has already been demonstrated that the
use of multiple biomarkers can improve the accuracy of diagnostic tests [21]. The combination
of metabolomics analysis and machine learning techniques could lead to the development of
new approaches to perform more accurate and early diagnoses.

Metabolites can be used as biomarkers and to better understand the pathophysiology of
many diseases [22]. Studies have found altered metabolites levels in diseased states [23,24].
The integration of metabolomic technology with machine learning can have the potential to
greatly enhance diagnosis, identify more effective therapy targets, and permit more precise
disease outcome prediction. Significant advances in technology, including techniques such as
mass spectrometry, chromatography, and nuclear magnetic resonance (NMR) spectroscopy,
have boosted the efficiency and reliability of metabolic profiling to the point that it is now
recognized as a critical platform in the medical sector [25].

However, some limitations are present. Metabolomics data are characterized by intrin-
sic difficulties due to the nonlinear and linear correlations between metabolites, demanding
constant algorithm refinement to obtain biological information. The tremendous com-
plexity of metabolomics data (e.g., peak counts compared to samples), as well as missing
values, batch effects during quantification, data noise production, and reproducibility,
are all important issues. As a result, the metabolomics community is looking to machine
learning approaches to overcome these obstacles [26,27].

2. Dimensionality and Features Selection

As previously discussed, metabolomics data include hundreds of features. Conse-
quently, it is critical to reduce the dimensionality of the data to remove redundant and
irrelevant information, improve the findings, and save computational time and resources.
Three categories of feature selection algorithms are commonly found in the literature: filter,
wrapper, and embedded methods [28].

2.1. Filter Methods

Filter methods are algorithm-independent and operate on statistical methods (e.g.,
ANOVA or Chi-squared tests). The dataset’s properties, such as the distance between
two classes, and its statistical methodologies, such as correlations and coefficients, guide
the filter method’s selection of features [29]. When compared to wrapper and embedded
feature selection methods, filter techniques are faster and less computationally expensive.
Nonetheless, filter feature selection methods have some disadvantages; for example, they
do not take into account the interaction of features between them [30].
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2.2. Wrapper and Embedded Methods

Unlike filter methods, wrapper methods use a predefined algorithm. The wrapper
method searches through the feature space and generates an optimal feature subset through
a search methodology, which is evaluated by training and testing criteria using a classifier
algorithm. This procedure is performed until the selected feature subset satisfies the criteria.
Nevertheless, although the wrapper technique has several benefits over the filter method,
it also has some drawbacks. It is computationally expensive and difficult to implement
with high-dimensional data. Additionally, selecting the best feature based on its predefined
algorithm may increase the risk of overfitting [31]. Embedded feature selection differs from
wrapper and filter methods in that the learner algorithm is not used by the filter method to
select the best candidate, while it is used by the wrapper method to select the best features.
However, unlike the filter and wrapper methods, the embedded system must carry out the
process of learning and selecting features simultaneously, and thus selected features cannot
be used by other classifiers [32].

The ideal feature selection method to build diagnostic models and to identify relevant
biomarkers should be able to select the most discriminative features while minimizing the
number of irrelevant ones. Today, thanks to the great availability of computational power,
the use of hybrid or ensemble methods is strongly suggested. The potential of this last
approach has been already demonstrated by several studies [33,34].

3. Machine Learning Applications for Biomarker Discovery

The process of identifying biomarkers using machine learning is not a simple task, as
it entails various difficulties due to the correlation of variables. Numerous studies have
shown the potential of feature selection algorithms to unravel the presence of disease
biomarkers using metabolomics data. For example, researchers used random forest with
a feature importance function to identify the most discriminating features to be used as
potential biomarkers [35,36]. They calculated the importance score assigned to features
according to the Gini index formula, and then they used the top-ranking features to train
the classifier model.

Another study investigated the possibility of identifying biomarkers for lung cancer
disease from plasma samples analyzed using targeted metabolomics. Fast correlation-based
selection algorithms identified five top-performing biomarkers that could discriminate
between healthy and lung cancer patients [37].

Bifarin et al. [38] performed urine sample analysis using liquid chromatography–mass
spectrometry and NMR and designed a biomarker panel of 10 metabolites for predicting
renal cell carcinoma status, utilizing recursive feature selection and the PLS regression
algorithm. Features were chosen based on how often they appeared in both feature selection
algorithms, and finally 10 metabolites were selected for training the classification model.

In another study, the authors evaluated the performance of multivariate methods with
unbiased variable selection (MUVR) assessing serum samples analyzed by high-resolution
mass spectrometry-based metabolomics. The MUVR approach selected 13 metabolites that
produced excellent results using random forest, SVM, and logistic regression methods and
established a panel of candidate biomarkers that have the ability to distinguish gout from
asymptomatic hyperuricemia [39].

Furthermore, PLS-DA has been employed to determine the most discriminant lipids
and metabolites to distinguish serum metabolomic and lipidomic profiles of patients with
rheumatoid arthritis from healthy controls [35]. The authors proposed 26 molecules as
candidate biomarkers for rheumatoid arthritis, and the chosen features were evaluated
using three classifier algorithms: logistic regression, random forest, and SVM. In another
study, 16 metabolites were obtained using recursive feature elimination combined with
SVM (SVM-RFE) to discriminate epithelial ovarian cancer and age-matched control women.
Samples were then projected to oPLS-DA containing 16 metabolites, for which classifier
achieved 96.8% accuracy [40]. Table 1 presents recent diagnostic studies performed using
metabolomics and machine learning.
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Table 1. Recent studies carried out to discover biomarkers combining metabolomics data and machine
learning algorithms. Feature selection algorithms, number of purposed biomarkers, and type of
disease are reported.

Feature Selection Algorithm Number of Purposed
Biomarkers Study Diseases

Random Forest
(VIP score)-based features 18 metabolites as biomarker [36] Weight gain (Metabolomic disorder)

Fast correlation-based feature
selection (FCBS) 5 biomarkers [37] Lung cancer

Recursive feature elimination and
PLS regression 10 metabolites as biomarker [38] Renal cell carcinoma

MUVR algorithm 13 metabolites [39] Gout and asymptomatic hyperuricemia

PLSDA 26 Metabolites and lipids [40] Rheumatoid arthritis

SVM-RFE (Recursive feature
elimination) 16 Metabolites [41] Epithelial Ovarian cancer

In our experience, the selection of candidate biomarkers is the most important task,
not only in developing a model for the diagnosis of a diseases, but also in describing the
biological features that characterize that specific disorder. Although most of the reported
research employed single strategies to select the most important variables, we think that
the use of different algorithms to search for important markers might improve the machine
learning performances. Another important factor that could affect the results is the number
of selected biomarkers. In fact, the number of biomarkers could range from few to several
tens. The definition of the optimal number of biomarkers is impossible to give, although
we believe that a higher number of variables is always preferable. Indeed, metabolomics is
particularly suitable to perform multi-analyte quantifications.

4. Application of Machine Learning for the Diagnosis of Diseases

Since the turn of the century, there has been a marked increase in the number of studies
on metabolomics that have made use of machine learning techniques. Many studies have
shown that machine learning can discriminate between healthy and disease, groups as
well as identify important biomarkers for use in clinical decision making in a variety of
settings [42,43]. The following sections present the most recent applications of supervised
machine learning for the diagnosis of diseases.

4.1. Random Forest

Random forest is one of the most widely used supervised machine learning algorithms
for mass spectrometry data due to its ability to cope with missing values, data noise, and
reduced overfitting risk [44]. Random forest is a classification and regression technique that
includes ensemble method of decision trees to predict classes. The algorithm establishes the
outcome based on the predictions of the decision trees. For classification tasks, the output
of the random forest is the class selected by most trees, where each tree can be described as
an uncorrelated model.

Decision trees contain nodes which are structured in a hierarchical fashion from the
top to the bottom, connected with branches. A logical query is present in each node, and
it is sent downward via one of the two branches (binary split): the node is then linked to
another node, proceeding in this manner until reaching the final node, which will ultimately
determine the classification. Usually two-third of original samples are used for training of
trees, while the remaining samples are utilized to evaluate the tree performance, in what
are called OOBs (out-of-bag samples). While building the classification model, the rate at
which OOB samples are misclassified across several classes, or the OOB error, can be used
to quantify the prediction performance of the model. In the regression task, mean-squared
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error (MSE) metric can be used to calculate the average distance between OOB predictions
and the actual continuous response variable.

Random forest was shown to be more efficient at diagnosing colorectal cancer (with
100% accuracy) using metabolomics data as well as choosing putative biomarkers, stability,
prediction ability, and overfitting in comparison with other classifier models [45].

Melo et al. [35] showed the resilience and superior performance of random forest in
contrast to other classifier models to identify Zika virus by employing metabolomics data,
demonstrating that random forest outperforms other classifier models. The model was
developed using 42 features and evaluated to differentiate between groups. Lima et al. [46]
reported 97% accuracy in diagnosing paracoccidioidomycosis, using a combination of
random forest and metabolomics data.

Recent research demonstrated the identification of malignant mesothelioma using
random forest and metabolomics data with 92% accuracy in the validation dataset [47].
Twenty dysregulated features that distinguished the malignant mesothelioma group from
others were investigated. Among the 20 features, biliverdin and bilirubin were shown to
have diagnostic potential. Additionally, random forest ranked biliverdin as the fourth-most
significant variable in terms of overall significance, demonstrating how random forest can
be used to select the best potential biomarkers. However, study limitations, like a smaller
number of classes and sample numbers, were also reported in order to get an accurate
image of the diagnostic model.

In a study focusing on diagnosing irritable bowel syndrome, Fukui et al. [48] used a
combination of logistic regression and random forest to obtain a better score in terms of
sensitivity and specificity than if either of the algorithms had been performed individually.
Other researchers trained four classifier models—a generalized linear regression model,
PLS-DA, PCA linear discriminant analysis, and random forest—on metabolomics data [49].
The models were trained using two approaches. In the first approach, the models were
trained using all the metabolites. In the second approach, the models were trained with
only pre-selected metabolites. Random forest with pre-selected variables was the most
effective model, with an AUC score of 72%.

Thanks to the availability of several free tools (see chapter 6), today, RF is largely used
for the classification of patients based on metabolomic profile.

4.2. Support Vector Machine

Today, SVM classification is the most frequently used machine learning technique in
precision medicine. SVM is a model that uses “support vectors” to construct a decision
boundary (hyper-plane) in a high-dimensional feature space. Support vectors are data
points that are positioned close to the hyperplane, and hence aid to optimize the hyperplane
itself [50].

The objective of hyperplane is to maximize the distance between two classes, while
placing as few data points as possible on the incorrect side of the decision boundary [51,52].

For a given training samples, a hyperplane is generated to maximize the distance,
which can be mathematically defined as:

WTX + b = 0

where W is the weight matrix, X represents the dataset and b is constant term.
SVM can also be used to classify non-linear data through process called kernel trick.

There are several types of kernel trick used for different problems such as the polynomial
kernel, Gaussian kernel, Gaussian radial basis function (RBF), Laplace RBF, sigmoid kernel,
hyperbolic tangent kernel, linear splines kernel in one dimension. Nonetheless, radial
basis function (RBF) is the first choice among other kernels and it is also widely used for
non-linear task in metabolomics.

Regarding the application of SVM, in a recent study, the algorithm was used as a
classifier alongside random forest and logistic regression to identify gout from asymp-
tomatic hyperuricemia. The author stated that SVM outperformed the other classifiers in
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terms of getting a higher area under curve score in the validation set, while random forest
achieved higher score in the training set but lower in the test set, indicating overfitting by
the classifier model [39].

Song et al. [53] used SVM to identify an early biomarker of diabetic cognitive impair-
ments in a mouse model. SVM achieved 91.66% accuracy in identifying two groups of
samples based on seven features, and the authors proposed biomarkers that play a role in
pathogenesis, such as the metabolism of nicotinamide and glutathione as well as tryptophan
and sphingolipids. In another recent study, SVM was used to classify benzylpenicillin and
multidrug resistance in Staphylococcus aureus [54]. The authors performed matrix-assisted
laser desorption/ionization–time of flight mass spectrometry to identify signature profiles
of antibiotic resistance in S. aureus isolates. In terms of accuracy, specificity, and sensitivity,
SVM showed better performance than random forest, multilayer neuron perceptron neural
network, and naive Bayes classifiers.

Another interesting study used SVM with a radial basis function kernel and three
feature selection algorithms for the diagnosis of intrauterine growth restriction [55]. The
authors performed mass spectrometry and NMR analysis on cord blood serum, obtain-
ing an AUC of 91% with correlation-based feature selection (CFS). In terms of sensitiv-
ity and specificity, the CFS-selected features achieved lower scores than those of other
feature selection algorithms. The final model was built using overlapping features—
including creatinine, acetyl carnitine, butyryl carnitine, three lysophosphatidylcholines,
and a phosphatidylcholine—of the three feature selection algorithms, obtaining an accuracy
of 88%.

Zheng et al. [56] used the least-squares SVM (LS-SVM) with three kernel functions—
linear, polynomial, and radial basis—to diagnose major depression. In the test dataset, LS-
SVM with the radial basis function outperformed the other kernel functions and achieved
96% accuracy. The classifier was built with glucose–lipid signaling features such as poly-
unsaturated fatty acids, lipids with acetoacetate, very low-density lipids/low density lipids,
lipids with N-acetyl, glucose, adipic acid, and sugars with amino acids.

As shown in all the reported research, SVM is a very attractive algorithm to perform
precision medicine studies and to identify potential metabolic biomarkers. In addition,
SVM is particularly suitable when the number of biological replicates or patients is low.

4.3. Artificial Neural Networks

Like the human brain, ANNs can handle complicated (non-linear) elements inside
information and predict future situations. Humans learn by making modest alterations to
synaptic interconnected neurons, whereas ANNs learn by adjusting the interconnections
between the processing components that make up the network structure.

In 1943, McCulloch and Pitts [57] defined artificial neurons as a mathematical function
developed by mimicking natural biological neuron processes. The number of hidden
layers and neurons in each layer is proportional to the situation’s complexity. A vector of
predictor variables, each represented by a node, is sent to the input layer by the external
system. These data are then multiplied by a set of weights in the first hidden layer (hence
modified). To produce an axon-like output, these products are added together and fed
through a non-linear transfer function (sigmoid, hyperbolic tangent). Weights are modified
in ANN-supervised learning so that they approximately represent each target as a nonlinear
function of the inputs. The ability to iterate an approximation without knowing the precise
shape of the ideal nonlinear function beforehand is a significant benefit of ANN learning.
During the supervised process of learning, a series of case pairings are given to the network,
each of which consists of a collection of input values and a target value. The goal is to
optimize the weight values in such a way as to create an output for each situation that is as
near to the actual class. Predictions are then compared with actual class and inaccuracy
assessed to a cost function.

In a metabolomics study performed on plasma samples from Parkinson’s disease
patients, ANNs with 13 input layers, seven hidden layer units, and an output layer with
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a back propagation algorithm were used for the diagnosis [58]. The neural network
algorithm showed 97.14% accuracy in the detection of disease progression. However, one
misdiagnosed case was also reported.

Another study profiled the metabolites in sputum from patients with lung cancer and
age-matched smokers as a control using flow infusion electrospray ion mass spectrome-
try [59]. The metabolomic profiles were then analyzed using ANNs in order to perform the
diagnosis of lung cancer, specifically small-cell lung cancer (SCLC) and non-small-cell lung
cancer (NSCLC). The authors were able to classify SCLC with 100% specificity and 80%
sensitivity. Six metabolites were identified as candidate biomarkers between the NSCLC
and SCLC groups: phenylacetic acid, L-fucose, caprylic acid, acetic acid, propionic acid,
and glycine.

ANNs were also used to elaborate metabolite abundances obtained from dried blood
spots analyzed with direct infusion mass spectrometry [60]. The authors compared acute
cerebral infarction and intracerebral hemorrhage. Using an external validation set, they
achieved more than 70% accuracy in diagnosing intracerebral hemorrhage from acute
cerebral infarction. They used ANNs with 11 units and 10 hidden layers of neurons, and
they identified 11 significant metabolites using stepwise regression, on which the ANN
model was trained.

Finally, ANNs were applied to predict a wide range of autoimmune diseases, in-
cluding rheumatoid arthritis, thyroid disease, multiple sclerosis, vitiligo, psoriasis, and
inflammatory bowel disease [61]. The authors performed targeted metabolomic analysis of
serum total fatty acids using gas chromatography mass spectrometry. The metabolomic
results were analyzed with an ANN model using two hidden layers of neurons and 11
variables. The ANN model obtained 76.2% accuracy in the classification of the groups. The
features that made a major contribution to the development of the classifier model were
cis-11-eicosenoic, lauric acid, erucic acid, cis-10-pentadecanoic acid, stearic acid, myristic
acid, heptadecanoic acid, and palmitic acid. Table 2 presents recent studies performed
using metabolomics and machine learning for the diagnosis of diseases.

Table 2. Recent application of machine learning algorithms coupled to metabolomics for the diagnosis
of diseases. The diseases, the best-performing algorithm and the samples analyzed are reported.

Diseases Best-Performing
Algorithms Other Models References Sample Collection

Zika virus RF

SVM (Sequential minimal
optimization) and (Iterative

single data algorithm),
Decision Trees

[35] Serum

Colorectal cancer RF PLS, LDA, SVM [44] Urine

Paracoccidioidomycosis RF N/A [46] Serum

Malignant Mesothelioma RF N/A [47] Plasma

Diabetic cognitive impairments SVM N/A [53] Urine

Benzylpenicillin and multidrug
resistance of

Staphylococcus aureus

SVM (Radial basis function),
Logistic regression,

Neural network

Random Forest, Linear SVM,
ADA Boost, Quadratic

discriminant analysis (QDA)
and linear discriminant

analysis (LDA), Naïve Bayes,
Decision Tree

[54] Milk

Intrauterine growth restriction SVM (Radial basis function) N/A [55] Cord blood serum

Parkinson Disease Neural Network N/A [57] Plasma from Blood

Small-cell lung cancer (SCLC) and
non-small-cell lung cancer Neural Network N/A [59] Sputum

Lung cancer Naïve Bayes
Random Forest, SVM,

Neural Network, KNN,
AdaBoost

[37] Plasma
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Table 2. Cont.

Diseases Best-Performing
Algorithms Other Models References Sample Collection

Renal Cell Carcinoma Status
Prediction

KNN
(k-nearest neighbor)

Random forest (RF), linear
kernel support vector
machine (SVM-Lin)

[38] Urine

Gout from asymptomatic
hyperuricemia SVM Logistic regression, Random

Forest [39] Serum

Irritable Bowels Syndrome Combination of Logistic
regression and Random Forest

Random Forest, Logistic
regression [48] Faecal samples

Autoimmune diseases Artificial neural network and
Logistic regression NA [61] Plasma

Multiple sclerosis Random Forest GLM, PLS-DA, PCA-LDA [49] Plasma

Intracerebral hemorrhage from
Acute Cerebral Infarction Neural Network N/A [60] Dried blood spot

(DBS)

Although today ANNs are widely used for classification purposes, non-linear models
may not be appropriate for every type of research and the issue of interpretability of the
models and of selected biomarkers remains a major challenge.

4.4. Other Supervised Learning Algorithms

Apart from random forest, SVM, and ANN, numerous other types of supervised
algorithms have been applied to metabolomics data for the diagnosis of diseases. For
example, Goutman et al. [62] compared regularized logistic regression (RLR) with elastic
net regularization to random forest and SVM for the prediction of amyotrophic lateral
sclerosis. The authors performed untargeted plasma metabolomics, and the best classifi-
cation performances were obtained with RLR, with an AUC score of 98%. Another study
used metabolomics data to identify lung cancer using five supervised machine learning
algorithms: ada boost, ANN, naive Bayes, random forest, and SVM. In the training set,
artificial neural networks and naive Bayes achieved 100% accuracy, however ANN failed
to get a comparable result in the validation set. While using naive Bayes, authors were able
to distinguish between healthy and lung tumor patients with 100% accuracy [37].

Huang et al. [63] proposed an interesting use of pathway-based metabolomic features
as robust biomarkers for breast cancer. The authors developed a new computational method
that uses personalized pathway dysregulation scores for disease diagnosis and applied
the method, in combination with CFS and classification methods, to predict breast cancer
occurrence. Three classifiers were compared, and the model was tested using data from
plasma samples, serum samples, and age-matched breast cancer RNA-seq. In terms of
accuracy, the logistic regression surpassed both random forest and SVM, and it achieved
an AUC score of 98%. In the next step, the logistic regression was applied to the three
remaining test datasets (external to the model), which included the 20% hold-out plasma
testing samples, the complete serum sample collection, and the RNA-seq data from the
TCGA, obtaining AUC scores of 0.9230, 0.9950, and 0.9946, respectively. Recently, a study
was carried out with utilization of k-nearest neighbors (KNN), random forest and SVM
with linear and nonlinear kernel support vector machine to predict the status of renal cell
carcinoma. K-nearest neighbors outperformed other classifiers with Mass spectrometry
generated metabolomics data with 10 selected metabolites and achieved accuracy of 81%
with 96% AUC value [38].

Tong et al. [64] evaluated the performances of linear and non-linear models (e.g., logis-
tic regression and SVM) using a variety of parameters for diagnosing interstitial cystitis
(IC). In terms of diagnosing IC, the logistic regression model surpassed SVM with an AUC
score of 90%. SVM, however, outperformed the logistic regression model with a polynomial
kernel degree of 5. This research had several drawbacks, including an imbalanced class
dataset (43 IC patients and 16 healthy controls) as well as a limited number of samples.
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The k-nearest neighbors machine learning algorithm can be considered as a read-across
strategy [65], as it requires experimental observations of only a few neighbors (similar patients
metabolomics profile) of the query patients with unknown classification, in order to compute
the endpoint of interest prediction. The KNN methodology is a “lazy” learning technique that
classifies an instance based on the majority vote of the k-closest training examples (neighbors).
EnaloskNN (developed by NovaMechanics as a new node in KNIME) [66] predicts the
unknown endpoint based on the k (k = 1, 2, 3, . . . )-nearest neighbor’s characteristics in the
training set, in the features space Rn where n is the total number of patients metabolomics
profile used for the prediction. Where the endpoint has a numeric class, the prediction
is the distance weighted average of the endpoint of the selected neighbors. An optimal
k-value is selected based on the calculated Euclidean distance between all instances and as
weighting factors the inverse distances are used [67–69]. In the case of a categorical endpoint
each instance is assigned to the class indicated by the weighted majority vote of the k-
closest neighbors. Another important aspect of the analysis—apart from the simple endpoint
prediction—is the possibility to observe the groups of k-neighbors of each test patients, and
therefore to specify and map the analogous space. This is a prerequisite of the read-across
framework, and which can be used to support the justification of the read-across hypothesis.
The EnaloskNN node has the benefit of providing not only the predictive results, but also the
specific neighbors along with their Euclidian distances, as well allowing the visualization of
the entire patient’s predictive space. Thus, this algorithm could be particularly suitable for
the analysis of metabolomics data.

5. Factors Influencing Biomarker Selection through Machine Learning

Today, there are several concerns from metabolomic community about using machine
learning algorithms, mainly due to the lack of explanation on the selection of biomarkers
that a machine learning algorithm can provide. However, by using recently developed
methods for interpretation of the ML model, for example LIME (local interpretable model-
agnostic explanations) and Shapley additive explanation (SHAP) analysis, this issue can be
partially addressed [70–72]. In a clinical setting, there are several aspects that must be con-
sidered to analyze the performances of a potential biomarker such as its positive or negative
prediction value, the ROC (receiver operating characteristic curve) and AUC values [73].
Biomarker selection can be influenced by a variety of factors, like class imbalance, which
can lead to uncorrected results. Fu. et al. proposed an approach based on the embedded
feature selection method LASSO (least absolute shrinkage and selection operator), rather
than using oversampling method to balance data [74]. The LASSO method was used also
by Fukui et al. [48] on a class-imbalanced dataset composed of 85 patients with irritable
bowels syndrome and 26 healthy subjects. Authors were able to obtain a high AUC score
of 90% [48,75,76]. The batch effect also influences the selection of biomarkers and can affect
the prediction of the classifier model, as addressed by Kehoe et al. [77]. Indeed, the authors
showed that when training and test data are collected within the same batch of analysis,
the classification models are more accurate, but they failed to achieve the same level of
accuracy with data generated in a different session of analysis. To address this problem, the
authors developed a pipeline using an sSVM (sparse support vector machines) approach
to sequester batch effects in the selection of biomarkers. Another restraint is the number
of samples for training and validation of ML models. The metabolomics community has
conducted a substantial number of studies using fewer than 100 samples [49,51,53]. Models
built and validated on a small number of cases can raise the possibility of misdiagnosing
individuals. This can be reduced by using a nested cross-validation approach [78].

6. Machine Learning Tools for Metabolomic Analysis

ML is advancing rapidly, and today offers a wide range of algorithms to handle chal-
lenging issues in the metabolomics field as well as to discover potential biomarkers. In
the fields of NMR and mass spectrometry, ML has already been used to improve data-
processing methods [79]. Many of the ML-based tools such as WEKA, KNIME, Orange
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data mining [80–82] have an intuitive user interface, no programming skills are required,
and the tools are open source [83]. Other popular open-source libraries include Scikit-learn
(also known as sklearn) for implementation of machine learning algorithms in Python [84],
and TPOT, which provides an automated pipeline of machine learning algorithms that uses
genetic programming stochastic global search approach to sort out top-performing ML mod-
els [85]. Caret library in R provides a plethora of machine learning algorithms and feature
selection methods [86]. In addition, the use of ANN-based data analysis tools like PyTorch,
Keras, and TensorFlow is growing in the metabolomics field [85]. However recently de-
veloped automated machine learning and deep learning pipelines such as AutoGluon,
AutoPrognosis, H2O, PennAI have not yet been examined with metabolomics data [87,88].
In Table 3 are reported the most widely used tools and libraries in metabolomics studies.

Table 3. Tools and libraries used by metabolomics studies for the application of machine
learning algorithms.

Tools/Libraries Purpose of Use in Studies Programing Language Programing Skills
Requirement

Metabolomic
Studies

Weka Classification/feature selection Java No [83,87]

KNIME Data processing Java No [89,90]

Orange data mining Classification Python, Cython, C++, C No [91]

Scikit-learn Data processing/Classification Python Yes [38,92]

TPOT Classification/feature selection Python Yes [93]

Caret Classification/feature selection R Yes [62,94]

Keras and Tensor flow Data processing/Peak identification Python, R Yes [95]

7. Limitations

Despite advancements in machine learning in the health care sector, several obstacles
remain unresolved. The first difficulty in developing a machine learning-aided diagnostic
model using metabolomics is determining the minimum necessary data to represent a
specific biological problem/disease. It is not easy to generate datasets that properly rep-
resent the population’s variance while at the same time including a sufficient number of
samples for training and evaluating a robust model on an independent dataset. In addition,
the quality of metabolomics data may vary according to experimental procedure biases.
Often, machine learning models are trained on a small number of datasets, resulting in
model failure when applied to more diverse data. Another problem related to machine
learning models is the reproducibility of findings and the capacity of the algorithms to
explain the results; as datasets get larger, it becomes more difficult to explain the logic
behind algorithmic decisions [96]. Numerous algorithms are considered “black boxes”
owing to the lack of information underpinning the mathematics of prediction. This aspect
of machine learning is a major disadvantage when it comes to incorporating it into clinical
decision making.

As shown in previous sections, several classifiers have been used for both biomarker
discovery and the diagnosis of diseases. Random forest is usually less prone to overfitting,
but it requires intensive computational power for huge datasets. On the other hands,
SVM is very effective with high-dimensional data, but it can easily result in overfitting.
Finally, ANNs are particularly suitable for huge datasets, but they are ineffective with small
amounts of data.

8. Challenges in the Implementation of Metabolomics–AI Systems

The introduction of artificial intelligence in the clinic is a challenge that can be over-
come only through the strong collaboration between clinicians, computational and labora-
tory scientists. In fact, artificial intelligence needs the access to large cohorts of patients,
but also the biomarkers or the combination of markers should be measurable in a repro-
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ducible and easy manner. Lastly, the computational algorithms should be engineered in a
user-friendly manner, especially in the setting of a busy practice.

The performances of a metabolomics–AI system strongly depend on the patients used
to develop the models. The provenance of source data, such as patients from a different
health system or a population different from the one used to develop AI models, can affect
the diagnostic performances. To this aim, the use of large-scale multi-center cohorts can
reduce the risk of using a poorly described panel of patients for the development of the
AI model. In addition, all the clinical data should be considered while building the model.
Another important aspect is to make the results clinically meaningful. The selection of
appropriate patient-oriented endpoints and metrics to assess the performances of the model
should be performed. This phase should be always developed focusing on the outcomes
reported by clinicians. Knowing why an algorithm predicts a decision is very important for
clinicians but also for patients, especially in case there is disagreement between human and
AI prediction.

The challenge of delivering personalized care is also strictly correlated to the employ-
ment of adequate and reliable measurement of biomarkers. The analytical reproducibility is
one of the most important issues for high-throughput technologies used for metabolomics
analysis. This is particularly important when hundreds of samples are analyzed and
elaborated using artificial intelligence algorithms. In fact, the quantification of molecules
is affected by several factors such as the sample preparation, laboratory operators, the
instrumentation used for the analysis, and biological variables. Although the use of
spiked standards can reduce the sample preparation and instrumental variability, the repro-
ducibility of untargeted metabolomic approaches is still limited, especially when different
instruments are used. On the other hands, targeted metabolomics is characterized by a
higher reproducibility, but at the same time the number of molecules that can be quantified
is reduced, thus limiting its use in combination with AI algorithms.

Finally, the AI structure should be engineered in a manner that facilitates the integra-
tion of the AI models into the clinical decision, avoiding the use of stand-alone decision
points. In addition, systems that require manual work to enter data should be avoided.

It is thus clear that the development of metabolomics–AI approaches for precision
medicine and diagnostics is still far from the routine clinical use, although every year
tens of research works on the development and application of pipelines that use statistical
models for the diagnosis of diseases are published.

9. Conclusions

Artificial intelligence is a widely used approach in metabolomics and other high-
throughput technologies, especially for performing early diagnosis. Recent studies have
established several strategies for disease classification based on metabolomics profiles,
demonstrating the potency of machine learning in the medical science field. Nonetheless,
there are considerable drawbacks to overcome yet, including the interpretation of machine
learning models and the development of robust models to account for disease and popula-
tion heterogeneity. In fact, to date, with a given, specific dataset there is no gold standard
for the selection of the optimal algorithm to be used. In fact, minimum changes in the
dataset structure may result in significantly diverse outcomes as a function of the chosen
algorithm. Further research should be conducted to better understand how algorithms
interact with the characteristics of datasets.
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metabolomics: A methodological perspective. Brief. Bioinform. 2020, 22, 1531–1542. [CrossRef]
87. Casadei-Gardini, A.; Del Coco, L.; Marisi, G.; Conti, F.; Rovesti, G.; Ulivi, P.; Canale, M.; Frassineti, G.L.; Foschi, F.G.; Longo, S.; et al.

1H-NMR Based Serum Metabolomics Highlights Different Specific Biomarkers between Early and Advanced Hepatocellular Carcinoma
Stages. Cancers 2020, 12, 241. [CrossRef]

88. Manduchi, E.; Romano, J.D.; Moore, J.H. The promise of automated machine learning for the genetic analysis of complex traits.
Hum. Genet. 2021, 141, 1529–1544. [CrossRef]

89. Liggi, S.; Hinz, C.; Hall, Z.; Santoru, M.L.; Poddighe, S.; Fjeldsted, J.; Atzori, L.; Griffin, J.L. KniMet: A pipeline for the processing
of chromatography–mass spectrometry metabolomics data. Metabolomics 2018, 14, 52. [CrossRef]

90. Verhoeven, A.; Giera, M.; Mayboroda, O.A. KIMBLE: A versatile visual NMR metabolomics workbench in KNIME. Anal. Chim.
Acta 2018, 1044, 66–76. [CrossRef]

91. Coelewij, L.; Waddington, K.E.; Robinson, G.A.; Chocano, E.; McDonnell, T.; Farinha, F.; Peng, J.; Dönnes, P.; Smith, E.; Croca, S.; et al.
Using serum metabolomics analysis to predict sub-clinical atherosclerosis in patients with SLE. medRxiv 2020. [CrossRef]

92. Evans, E.D.; Duvallet, C.; Chu, N.D.; Oberst, M.K.; Murphy, M.A.; Rockafellow, I.; Sontag, D.; Alm, E.J. Predicting human health
from biofluid-based metabolomics using machine learning. Sci. Rep. 2020, 10, 17635. [CrossRef] [PubMed]

93. Orlenko, A.; Kofink, D.; Lyytikäinen, L.P.; Nikus, K.; Mishra, P.; Kuukasjärvi, P.; Karhunen, P.J.; Kähönen, M.; Laurikka, J.O.;
Lehtimäki, T.; et al. Model selection for metabolomics: Predicting diagnosis of coronary artery disease using automated machine
learning. Bioinformatics 2020, 36, 1772–1778. [CrossRef] [PubMed]

94. Chen, H.; Wang, Z.; Qin, M.; Zhang, B.; Lin, L.; Ma, Q.; Liu, C.; Chen, X.; Li, H.; Lai, W.; et al. Comprehensive Metabolomics
Identified the Prominent Role of Glycerophospholipid Metabolism in Coronary Artery Disease Progression. Front. Mol. Biosci.
2021, 8, 110. [CrossRef] [PubMed]

95. Wang, D.; Greenwood, P.; Klein, M.S. Deep Learning for Rapid Identification of Microbes Using Metabolomics Profiles. Metabolites
2021, 11, 863. [CrossRef] [PubMed]

96. Holzinger, A.; Biemann, C.; Pattichis, C.S.; Kell, D.B. What do we need to build explainable AI systems for the medical domain?
arXiv 2017, arXiv:1712.09923.

http://doi.org/10.1038/s41551-018-0304-0
http://www.ncbi.nlm.nih.gov/pubmed/31001455
http://doi.org/10.1016/j.ebiom.2021.103546
http://www.ncbi.nlm.nih.gov/pubmed/34419924
http://doi.org/10.1136/bmj.i3139
http://doi.org/10.1002/cem.3177
http://doi.org/10.1021/ac051495j
http://www.ncbi.nlm.nih.gov/pubmed/16408941
http://doi.org/10.1007/s11306-011-0366-4
http://doi.org/10.1038/s41598-022-05451-0
http://www.ncbi.nlm.nih.gov/pubmed/35087163
http://doi.org/10.1371/journal.pone.0224365
http://www.ncbi.nlm.nih.gov/pubmed/31697686
http://doi.org/10.1016/j.patter.2020.100192
http://doi.org/10.1145/1656274.1656280
http://doi.org/10.1093/bioinformatics/btz470
http://doi.org/10.18637/jss.v028.i05
http://doi.org/10.1093/bib/bbaa204
http://doi.org/10.3390/cancers12010241
http://doi.org/10.1007/s00439-021-02393-x
http://doi.org/10.1007/s11306-018-1349-5
http://doi.org/10.1016/j.aca.2018.07.070
http://doi.org/10.1101/2020.08.11.20172536
http://doi.org/10.1038/s41598-020-74823-1
http://www.ncbi.nlm.nih.gov/pubmed/33077825
http://doi.org/10.1093/bioinformatics/btz796
http://www.ncbi.nlm.nih.gov/pubmed/31702773
http://doi.org/10.3389/fmolb.2021.632950
http://www.ncbi.nlm.nih.gov/pubmed/33937325
http://doi.org/10.3390/metabo11120863
http://www.ncbi.nlm.nih.gov/pubmed/34940621

	Introduction 
	Machine Learning and Metabolomics 
	Biomarkers 
	Metabolomics 

	Dimensionality and Features Selection 
	Filter Methods 
	Wrapper and Embedded Methods 

	Machine Learning Applications for Biomarker Discovery 
	Application of Machine Learning for the Diagnosis of Diseases 
	Random Forest 
	Support Vector Machine 
	Artificial Neural Networks 
	Other Supervised Learning Algorithms 

	Factors Influencing Biomarker Selection through Machine Learning 
	Machine Learning Tools for Metabolomic Analysis 
	Limitations 
	Challenges in the Implementation of Metabolomics–AI Systems 
	Conclusions 
	References

