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Background. Lung cancer is one of the leading diagnosed cancers worldwide, and microRNAs could be used as biomarkers to
diagnose lung cancer. hsa-miR-195 has been demonstrated to affect the prognosis of NSCLC (non-small-cell lung cancer) in a
previous study. However, the diagnostic value of hsa-miR-195-5p in lung cancer has not been investigated. Methods. To evaluate
the ability of hsa-miR-195-5p to diagnose lung cancer, we compared the expression of hsa-miR-195-5p in lung cancer patients,
COPD patients, and normal controls. Receiver operating characteristic (ROC) curve analysis was performed to investigate the
sensitivity and specificity of hsa-miR-195-5p. Coexpression network and pathway analysis were carried out to explore the
mechanism. Results. We found that hsa-miR-195-5p had lower expression in lung cancer and COPD patients than in normal
controls, and the AUC was 0.92 for diagnosing lung cancer. hsa-miR-143 correlated with hsa-miR-195-5p, and by combining
these two microRNAs, the AUC was 0.97 for diagnosing lung cancer. Conclusions. hsa-miR-195-5p may act as a biomarker that
contributes to the diagnosis of lung cancer and the detection of its high-risk population.

1. Background

Lung cancer is one of the leading diagnosed tumors with high
mortality worldwide [1] and China [2]. It is estimated 2.09
million new lung cancer cases and 1.96 million lung cancer
deaths worldwide in 2018 [1]. The 5-year survival estimates
in lung cancer range from 73% in stage IA to 13% in stage
IV [3]. Unfortunately, around 80% of patients with lung can-
cer have stage III or IV disease at presentation [4]. Surgery,
radiotherapy, chemotherapy, target therapy, and immuno-
therapy significantly improve the survival and quality of life
of lung cancer patients [5], especially in early-stage lung can-
cer [6]. However, only some subsets of patients in certain
tumor types are suitable for target therapy [7] and drug
resistance remains a big challenge [8]. Early diagnosis and

detection of lung cancer are effective strategies for prevention
and treatment [9]. Low-dose computed tomography is a
common and effective early screening method for lung can-
cer [10]. However, lung cancer screening with low-dose com-
puted tomography has some limitations including increased
costs, high rate of nodule detection, overdiagnosis [11], and
radiation exposure [12]. It is accepted that biomarkers for
early diagnosis could help reduce mortality for lung cancer
[13]. The identification of genomic biomarkers such as the
epidermal growth factor receptor (EGFR) and anaplastic
lymphoma kinase (ALK) has improved the current clinical
practice [14]. Despite most published guidelines relating to
the diagnosis and management of patients with lung cancer
do not recommend any serum biomarker, serum biomarker
assays are performed in some European and Asian countries
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[15]. A number of diagnostic biomarkers for lung cancer have
been suggested, including carcinoembryonic antigen (CEA),
neuron-specific enolase (NSE), cytokeratin 19 (CYFRA-
21-1), alpha-fetoprotein (AFP), serum carbohydrateantigen-
125 (CA-125), carbohydrate antigen-19.9 (CA-19.9), and
ferritin [14, 16]. Biomarkers as a safe and efficient way to com-
bine with low-dose computed tomography and other methods
can improve the early diagnosis of lung cancer [17]. COPD
(chronic obstructive pulmonary disease) shares many high-
risk factors with lung cancer, and COPD itself is a risk factor
for the development of lung cancer [18].

In lung cancer, many biomarkers have been discovered
and reported to predict lung cancer risk or diagnose lung
cancer. Epigenetic changes, protein and proteomic signa-
tures, gene mutations, RNA expression levels, and loss of
gene heterozygosity all can serve as biomarkers of lung can-
cer [19]. Of these biomarkers, microRNAs are a class of short
RNAs that regulate gene expression and have been widely
investigated as potential biomarkers in lung cancer [20].

In a previous study from our research group [21], we
found that microRNA hsa-miR-195-5p suppresses NSCLC
(non-small-cell lung cancer) and predicts lung cancer prog-
nosis. In addition to our research, previous studies have
shown aberrant hsa-miR-195-5p expression in multiple
cancer types, such as prostate cancer [22], hepatocellular car-
cinoma [22], and cervical cancer [23]. However, the expres-
sion level of hsa-miR-195-5p in normal controls, lung
cancer patients, and COPD patients, who have a high risk
for developing lung cancer, has not been investigated, and
the diagnostic ability of hsa-miR-195-5p in lung cancer has
not been evaluated. Therefore, we carried out this study to
investigate these factors.

2. Methods

2.1. Data Source.All datasets were obtained fromGEO (Gene
Expression Omnibus) [24] and TCGA (The Cancer Genome
Atlas) [25] databases with open access. We searched for data-
sets that had at least two types of people, either lung cancer or
COPD patients and normal controls, in the GEO database.
We selected datasets that had more than thirty participants
in the study, for the next step of the analysis. All the GEO
datasets contained noncoding RNA profiling by array using
different platforms. The TCGA database had LUAD (lung
adenocarcinoma) and LUSC (lung squamous cell carcinoma)
microRNA data. The LUAD dataset had 46 normal controls
and 456 lung cancer patients. The LUSC dataset had 45 nor-
mal controls and 342 lung cancer patients. We also combined
mRNA data of TCGA-LUAD and TCGA-LUSC in a coex-
pression analysis. The details of these datasets are summa-
rized in Table S1.

2.2. Coexpression Network. We merged microRNA and
mRNA data from the TCGA data and combined the LUAD
and the LUSC samples. Then, we calculated a correlation
matrix based on the Pearson correlation coefficient. We
selected microRNAs directly linked with the hsa-miR-195-
5p microRNA with cutoffs of R2 > 0:5 and p < 0:05. To
determine other microRNAs that were indirectly linked with

hsa-miR-195-5p in the network, we set cutoffs of R2 > 0:7 and
p < 0:05 between indirectly linked microRNAs. We used a
network diagram to show this coexpression network.

2.3. Statistical Analyses. All datasets were normalized using
zero-mean normalization. A t-test was used to evaluate dif-
ferent expressions between different types of samples, and a
p value < 0.05 was considered statistically significant. When
showing the expression of hsa-miR-195-5p in the bar chart,
the expression of the control group was set to one and the
fold changes of other groups were calculated. Receiver oper-
ating characteristic (ROC) curves and area under the curve
(AUC) were conducted to evaluate the ability of biomarkers
to distinguish between lung cancer or COPD patients and
normal controls. All statistics were performed using R soft-
ware (version 3.4.1, URL: https://cran.r-project.org/bin/
windows/base/old/3.4.1/).

2.4. Pathway Analysis. We uploaded the microRNA
data from the coexpression network to IPA (Ingenuity Path-
way Analysis, URL: https://www.qiagenbioinformatics.com/
products/ingenuity-pathway-analysis/) to explore the mech-
anism and function of miRNAs. In the pathway enrichment
and function analysis, we selected significant pathways and
functions depending on p < 0:05.

3. Results

3.1. The Expression of hsa-miR-195-5p in Lung Cancer
Patients, COPD Patients, and Normal Controls. Among the
datasets, GSE15008, GSE62186, GSE64519, TCGA-LUAD,
TCGA-LUSC, and GSE17681, which contained lung cancer
patients and normal controls, hsa-miR-195-5p showed lower
expression in lung cancer patients compared with normal
controls (p < 0:05). In the dataset GSE49881, which had
COPD patients and normal controls, hsa-miR-195-5p pre-
sented lower expression in COPD patients compared with
normal controls (p < 0:05). The GSE31568, GSE61741, and
GSE24709 datasets contained lung cancer patients, COPD
patients, and normal controls, among which lung cancer
and COPD patients had lower expression of hsa-miR-195-5p
than normal controls (p < 0:05). However, there were no
differences between lung cancer and COPD patients in
hsa-miR-195-5p expression. Figure 1 shows the details of
these analyses.

3.2. The Association of hsa-miR-195-5p with Smoking Status
and Sex. Smoking status and sex information can be found
in the TCGA-LUAD and TCGA-LUSC GSE62182 and
GSE64591 datasets. The dataset GSE29135 only had infor-
mation regarding the sex of patients. GSE62182 and
GSE64591 datasets included both lung cancer patients and
normal controls. Among lung cancer patients and normal
controls, there were no differences between nonsmokers
and smokers with regard to hsa-miR-195-5p expression
(p > 0:05). All datasets showed no differences between males
and females in hsa-miR-195-5p expression (p > 0:05), except
for the TCGA-LUAD dataset. In the TCGA-LUAD dataset,
females had a much higher hsa-miR-195-5p expression than
males (p < 0:01). Figure 2 shows the details of these analyses.
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3.3. ROC Curve for Distinguishing Lung Cancer Patients,
COPD Patients, and Normal Controls Using hsa-miR-195-5p
Expression. ROC curves were performed to evaluate the abil-
ity of hsa-miR-195-5p to distinguish lung cancer and COPD
patients from normal controls using the GSE24709,
GSE61741, and GSE31568 datasets, which included lung can-
cer patients, COPD patients, and normal controls. Above all,
hsa-miR-195-5p expression was able to distinguish well lung
cancer patients and normal controls in three datasets
(AUC > 0:65, p < 0:05). In distinguishing COPD patients
and normal controls using hsa-miR-195-5p expression,
the GSE31568 and GSE24709 datasets, but not the GSE61741
dataset, showed statistical significance (AUC > 0:70, p < 0:01).
Using hsa-miR-195-5p expression to distinguish COPD and
lung cancer patients, only the GSE61741 dataset showed sig-
nificant differences (AUC = 0:60, p < 0:05), and another two
datasets did not reach a significant difference (p > 0:05).
The results from these analyses are shown in Figure 3.

3.4. Coexpression Network of hsa-miR-195-5p in the TCGA
Lung Cancer Patients. Depending on the TCGA lung cancer
dataset, microRNA and mRNA expression data were
merged. The genes directly linked to hsa-miR-195-5p with
an R2 > 0:5 were selected as directly associated genes. In the
network of these genes, which were not directly linked to
hsa-miR-195-5p, the cutoff was R2 > 0:7. Thirteen genes were
directly associated with hsa-miR-195-5p expression. IPA
analysis was performed using directly associated genes
together with another indirectly linked gene. The IL-8 signal-
ing pathway was the most important pathway in this network
and plays a key role in lung cancer patients (Figures 4(b)
and 4(c)). Among thirteen genes, the microRNA hsa-miR-
143 was selected as a candidate for further analyses; this
miRNA has been widely reported to be associated with lung
cancer. The results are shown in Figure 4(a).

3.5. ROC Curve for hsa-miR-195-5p Combined with hsa-miR-
143 to Distinguish Lung Cancer Patients and Normal
Controls. The GSE72526 was a dataset using microRNA to
predict ALK, EGFR, and KRAS statuses in lung cancer
patients and to use ALK, EGFR, and KRAS as biomarkers to
diagnose lung cancer. The sensitivity and specificity of this
dataset were 0.64 and 1.00, respectively. In this dataset, hsa-
miR-195-5p was used to predict lung cancer with a sensitivity
and a specificity of 0.79 and 1.00, respectively (AUC = 0:92,
p < 0:05). When hsa-miR-195-5p was combined with hsa-
miR-143, the sensitivity and specificity were 0.99 and 0.83,
respectively (AUC = 0:97, p < 0:05). Table 1, Figure 4(d),
and Figure 4(e) show the parameters of these analyses.

4. Discussion

For lung cancer screening, large research studies have been
carried out. The Prostate, Lung, Colorectal and Ovarian Can-
cer Screening Trial (PLCO) is a cancer screening trial to
determine whether a screening procedure reduces the mor-
tality of PLCO cancers [26]. Based on this trial, researchers
found that age, race or ethnicity, education, body mass index,
COPD, personal history of cancer, family history of lung can-
cer, smoking status, smoking intensity, smoking duration,
and smoking quit time influenced lung cancer morbidity
[27]. This model can be used to assess the risk of lung cancer.
The National Lung Screening Trial (NLST) is a multicentre,
randomized clinical trial comparing low-dose helical com-
puterized tomographic scanning (CT) with chest radiogra-
phy in screening smokers for early detection of lung cancer
[28]. A risk model was also made on the risk of lung cancer
diagnosis. In this model, age, sex, race, smoking pack-years,
emphysema on T0 CT, self-reported history of COPD, and
family history of lung cancer were included [29]. Chronic
obstructive pulmonary disease (COPD) is the fourth most
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Figure 1: Expression of hsa-miR-195-5p in lung cancer patients, COPD patients, and normal controls. All datasets show higher expression of
hsa-miR-195-5p in lung cancer and COPD patients compared with normal controls. Because of the absence of samples, some datasets do not
contain all three population types.
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common cause of death and smoking-related disorders [30].
COPD shares many risk factors with lung cancer, including
smoking exposure, underweight, and low education [31,
32], and COPD itself is a risk factor for lung cancer [27].
Some lung cancer risk models considered COPD as a
component [27].

In addition to these models comprised of classical pheno-
types, some researchers discovered biomarkers to improve

the prediction accuracy of the models [33]. The ITALUNG
biomarker panel (IBP) combined with low-dose computed
tomography achieved good performance for the identifica-
tion of lung cancers at baseline screening, with a sensitivity
of 90.0% and specificity of 89.0% [34]. A study suggested that
a panel of four biomarkers composed of prolactin, CRP, NY-
ESO-1, and HGF to screen for lung cancer. Combining this
panel with sex, age, and smoking status, this analysis can
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Figure 2: Expression of hsa-miR-195-5p in different sexes and smoking statuses among lung cancer and COPD patients. In most datasets,
sex and smoking status of patients do not affect the expression of hsa-miR-195-5p. The expression of hsa-miR-195-5p is higher in females
than in males.
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achieve 86.96% sensitivity and 98.25% specificity for detect-
ing lung cancer patients [35]. A study of a panel of transcript
expressions of 14 antioxidants, DNA repair, and transcrip-
tion factor genes in normal bronchial epithelial cells showed
an AUC of 0.87 [36]. A lung cancer diagnostic panel consist-
ing of APOA1, CO4A, CRP, GSTP1, and SAMP expression
levels reached 95% sensitivity and 81% specificity [37].
Similarly, a panel of four biomarkers (α-2 macroglobulin,
haptoglobin, ceruloplasmin, and hemopexin) was able to dis-
criminate COPD patients and controls [38]. Sawa et al.
reported that the frequency of the PIK3CA mutation
increased in parallel with COPD severity, and the PIK3CA
mutation is a genetic feature of patients with non-small-cell
lung cancer (NSCLC) with COPD, regardless of age, smok-
ing, pathological stage, and histology [39]. These bio-
markers could improve the detection of lung cancer and
COPD patients (the high-risk population for developing
lung cancer).

MicroRNAs are a type of very short noncoding RNA. It is
well known that miRNAs can bind to complementary sites in

the 3′-untranslated region (UTR) of target mRNA, leading to
posttranscriptional gene silencing. Many miRNAs have been
discovered as biomarkers for the diagnosis of lung cancer and
for stratifying lung cancer subtypes [40]. Jin et al. reported
that miR-181-5p, miR-30a-3p, miR-30e-3p, miR-361-5p,
miR-10b-5p, miR-15b-5p, and miR-320b can be used to
NSCLC with an AUC value of 0.899 for detecting NSCLC
[41]. Zhu et al. developed a signature containing 4 miRNAs,
miR-23b,miR-221,miR-148b, andmiR-423-3p, with an AUC
of 0.885, and this signature may be considered as a biomarker
for diagnosing lung cancer.

Bioinformatics is an appropriate approach for an initial
discovery to identify biomarkers. Using bioinformatics
methods, researchers found a series of microRNAs that can
be used as diagnosis and prognosis biomarkers in tumors.
The public databases such as GEO and TCGA and the
prediction tools of mirDIP (http://ophid.utoronto.ca/
mirDIP) and DIANA-mirPath (https://omictools.com/
diana-mirpath-tool) are widely used in the researches of
microRNAs. Based on a GEO dataset, Hafsi et al. found
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Figure 3: ROC curves of hsa-miR-195-5p to distinguish lung cancer patients, COPD patients, and normal controls. In all three datasets,
hsa-miR-195-5p showed good performance in distinguishing between lung cancer or COPD patients and normal controls, but not between
lung cancer and COPD patients.
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two microRNAs that targeted YY1 mRNA in Burkitt’s lym-
phoma using miRNA target prediction tools and Pearson
correlation. The two microRNAs were related to the expres-
sion of YY1 and downregulated in Burkitt’s lymphoma
[42]. Using two public available GEO datasets, Falzone
et al. reported several microRNAs that were associated
with the epithelial-mesenchymal transition pathway and
NGAL/MMP-9 pathways in bladder cancer [43]; the
author also found four microRNAs which were related to
colorectal cancer through the mismatch repair pathway and

other tumor signaling pathways [44]. The research group
reported three microRNAs, which were associated with the
prognosis in uveal melanomas [45]; in oral cancer, they iden-
tified 11 microRNAs with a potential diagnostic role and
eight microRNAs associated with prognosis [46]. For the first
time, they discovered a set of deregulated miRNAs in both
glioblastoma and Alzheimer’s disease [47].

In this study, we compared the expression of hsa-miR-
195-5p between lung cancer patients, COPD patients, and
normal controls. We found a lower expression of hsa-miR-
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Figure 4: Coexpression network and Ingenuity Pathway Analysis of hsa-miR-195 in the TCGA lung cancer patients The ROC curve of
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network analysis shows another microRNA highly correlated with hsa-miR-195. (b, c) Ingenuity Pathway Analysis shows that the IL-8
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195-5p in lung cancer and COPD patients. Using hsa-miR-
195-5p as a biomarker to diagnose lung cancer, the AUC
was 0.92, when combining hsa-miR-195-5p with the correla-
tive microRNA hsa-miR-143, and the AUC was 0.97 for diag-
nosing lung cancer. Similarly, hsa-miR-195-5p has the ability
to diagnose COPD, but the evidence was not strong enough
to distinguishing lung cancer from COPD.

hsa-miR-195-5p is located at 17p13 with 87 bp in the
genome. Our previous research has demonstrated the effect
of hsa-miR-195-5p on the prognosis of NSCLC patients.
hsa-miR-195-5p can suppress NSCLC by decreasing CHEK1
expression [21]. MiR-195 regulates the response of NSCLC
to microtubule-targeting agents (MTAs) by targeting CHEK1
[48]. In addition to lung cancer, miR-195 suppresses colon
cancer proliferation and metastasis [49], inhibits tumour
growth and angiogenesis in breast cancer [50], and is associ-
ated with the chemotherapy sensitivity of cisplatin and the
clinical prognosis in gastric cancer [51]. In the studies of
Falzone, hsa-miR-195-5p is one of the 16 microRNAs, which
are downregulated in oral cancer [45]; in colorectal cancer,
hsa-miR-195-5p is also downregulated and directly related
to colorectal cancer through some cancer pathways [5].
hsa-miR-143 is located at 5q32 with 106 bp in the genome.
MiR-143 can suppress gastric cancer cell migration and
metastasis by inhibiting MYO6 and EMT [52]; it can also
regulate the proliferation and migration of osteosarcoma
through MAPK7 [53]. hsa-miR-143-5p is upregulated in
uveal melanomas [45] and bladder cancer [43] in bioinfor-
matics studies. The ability of hsa-miR-195-5p to diagnose
lung cancer and to find a high-risk population has not
been reported.

This study has some limitations. We did not have enough
clinical samples to confirm the results. The clinical informa-
tion of the datasets is not complete; therefore, we could not
analyze the subtypes of lung cancer and COPD. In addition,
we could not adjust the relevant factors properly. The path-
way and functional analysis remained at the sample level
and was only a little exploration for mechanistic research.

5. Conclusions

Early diagnosis and detection of lung cancer are effective
strategies for prevention and treatment. hsa-miR-195-5p
has a good performance as a biomarker to diagnose lung

cancer. hsa-miR-195-5p may contribute to the diagnosis
of lung cancer and the detection of its high-risk
population.
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