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Abstract: Over the past seven decades, particularly since the discovery of the first marine-derived
nucleosides, spongothymidine and spongouridine, from the Caribbean sponge Cryptotethya
crypta in the early 1950s, marine natural products have emerged as unique, renewable and yet
under-investigated pools for discovery of new drug leads with distinct structural features, and myriad
interesting biological activities. Marine sponges are the most primitive and simplest multicellular
animals, with approximately 8900 known described species, although more than 15,000 species
are thought to exist worldwide today. These marine organisms potentially represent the richest
pipeline for novel drug leads. Mycale (Arenochalina) and Clathria are recognized marine sponge genera
belonging to the order Poecilosclerida, whereas Biemna was more recently reclassified, based on
molecular genetics, as a new order Biemnida. Together, these sponge genera contribute to the
production of physiologically active molecular entities with diverse structural features and a wide
range of medicinal and therapeutic potentialities. In this review, we provide a comprehensive
insight and up-to-date literature survey over the period of 1976–2018, focusing on the chemistry
of the isolated compounds from members of these three genera, as well as their biological and
pharmacological activities, whenever available.
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1. Introduction

Current medical risks, including diabetes, chronic pains, hepatitis, hypertension, microbial
infection, together with the emergence of multidrug-resistant microbes and different types of carcinoma,
have motivated and encouraged scientists to search for new bioactive compounds with novel
modes of action [1]. Naturally occurring compounds derived from plants, marine invertebrates
and microorganisms have provided important platforms and ideal validated starting materials for
drug development and manufacturing [2]. Marine natural products represent a potent, promising and
valuable source of supply for new chemical entities possessing unprecedented and novel mechanisms
of action [2–7]. At present, marine-derived compounds or derivatives thereof have contributed to
seven approved drugs for the market: cytarabine (Cytosar-U®, Depocyst®, approved by FDA in 1969
for cancer treatment), vidarabine (Vira-A®, approved by FDA in 1976 as antiviral), ziconotide (Prialt®,
approved by FDA in in 2004 as analgesic for treatment of severe chronic pain), trabectedin (Yondelis®,
ET-743, approved in the EU in 2007 as an anticancer), eribulin mesylate (Halaven®, approved by FDA
in 2010 and by Heath Canada in 2011 for metastatic breast cancer treatment), brentuximab vidotin
(Adcetris®, approved by FDA in 2011 for Hodgkin’s lymphoma cells, and in 2017 for cutaneous T-cell
lymphoma) and omega-3 acid ethyl esters (Lovaza®, approved by FDA in 2004 for lowering blood
triglyceride levels in adults with severe hypertriglyceridemia) [8,9]. Moreover, twelve marine natural
products are being under exploration in different phases of clinical trials [8], and a number of them are
in the preclinical pipeline. Despite being the most basal of metazoan animal phyla, marine sponges
(Porifera) greatly contribute as prolific suppliers of potentially valuable novel compounds to the clinical
pipeline, with almost 47% of all reported bioactive compounds from the marine environment. Several
relevant reports have shown that almost 62.5% (i.e., 10 out of 16) of clinically approved medicines,
or those in ongoing advanced clinical phases, are derived from marine invertebrates, including marine
sponges [10,11]. Marine sponges of the genera Mycale (Arenochalina) (family Mycalidae), Clathria
(family Microcionidae), and Biemna (family Desmacellidae) include diverse sponge species belonging
to the orders Poecilosclerida and Biemnida. They are rich producers of diverse and physiologically
active secondary metabolites [12,13] with a wide range of biological activities, including cytotoxic,
antimalarial [14,15], anti-HIV [16], anti-inflammatory [17,18], enzyme inhibitors [19], antifungal and
antibacterial properties [20,21]. Some of these compounds are chemotaxonomic markers, particularly
for some Poecilosclerida marine sponges of the genera Batzella, Crambe and Monanchora [22]. The World
Porifera Database [23] lists 14 valid species of Mycale (Arenochalina), 55 of Biemna, and 381 of Clathria.
To the best of our knowledge, chemical investigations have previously been carried out only on nineteen
species of the genus Mycale (Arenochalina), i.e., Mycale (Arenochalina) mirabilis and Mycale (Arenochalina)
sp., M. rotalis, M. aff. graveleyi, M. laxxissima, M. izuensis, M. fibrexilis, M. ancorina, M. (carmia) cf.
spongiosa, M. adhaerens, M. magellanica, M. hentscheli, M. micracanthoxea, M. tenuispiculata, M. cecilia,
M. laevis, M. lissochela and M. plumos. For the genus Biemna, only four species, including Biemna laboutei,
Biemna sp., B. ehrenbergi, and B. fortis, were chemically studied, while eleven species of the genus
Clathria, i.e., Clathria hirsuta, C. gombawuiensis, C. cervicornis, C. compressa, C. araiosa, Clathia. sp., C. calla,
C. reinwardtii, C. lissosclera, C. basilana, C. strepsitoxa and C. pyramida were chemically investigated
(Table 1). Due to our interest in the marine sponges of the order Poecilosclerida [22,24–26], we have
reviewed the literature reporting the isolation of secondary metabolites from these three marine sponge
genera, covering the period of 1976–2018. This up-to-date review focuses mainly on the chemistry of
the isolated metabolites, although their biological and pharmacological properties are also discussed
when they are available.
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Table 1. Summary of the secondary metabolites isolated from the marine sponges belonging to the genera Mycale (Arenochalina), Biemna and Clathria, their source
organisms and biological activities.

Name Compound Class Marine Sponges Collection Bioactivities Ref.

Crambescidin 800 (1) Pentacyclic guanidine Clathria (Thalysias) cervicornis - Antimicrobial 21
Crambescidins 1–6 Pentacyclic guanidine C. bulbotoxa Indonesia Cytotoxic, antifungal 28

Norbatzelladine L (7) Tricyclic guanidine C. (Microciona) calla Caribbean Cytotoxic 29
Clathriadic acid (8) Tricyclic guanidine C. (Microciona) calla Caribbean Cytotoxic, antimalarial 29

Mirabilins A–F (9–14) Tricyclic guanidine Mycale (Arenochalina) mirabilis Australia Nr 30
Netamines A–G (15–21) Tricyclic guanidine Biemna laboutei Madagascar Cytotoxicity 31
Netamines H–N (22–28) Tricyclic guanidine B. laboutei Madagascar Cytotoxic, antimalarial 14
Netamines O–S (29–33) Tricyclic guanidine B.laboutei Madagascar Cytotoxic, antimalarial 15

Mirabilin G (34) Tricyclic guanidine Clathria sp. Australia Antibacterial, antifungal 32
Mirabilins H–J (35–37) Tricyclic guanidine Clathria sp. Australia Cytotoxic 33

Araiosamines A–D (38–41) Indole cyclic guanidine C. (Thalysias) araiosa Vanuatu Antibacterial, Anti-HIV-1 34
42–45 Pyridoacridine Biemna sp. Okinawa Cytotoxicity 37

46 and 47 Pyridoacridine Biemna sp. Indonesia Enzyme inhibitor 38
48 and 49 Pyridoacridine Biemna sp. Japan Cytotoxic 39

50–53 Pyridoacridine Biemna sp. Japan Cytotoxic 40
Pseudoanchnazines A–C (54–56) Pteridine alkaloid Clathria sp. Argentina Antibacterial 41

Clathryimine A (57) Quinolizine alkaloid C. (Clathria) basilana Indo-Pacific Nr 42
N-methylpyrrolidone (58) Pyrrolodine Alkaloid C. frondifera India Nr 43

59–69 Indole alkaloids M. fibrexilis China Nr 44
70–83 Pyrrole alkaloids M. micracanthoxea Spain Cytotoxic 45
84–94 Pyrrole alkaloids M. micracanthoxea Venezuela Cytotoxic 46
95–97 Pyrrole alkaloids M. tenuispiculata India Nr 47

98–111 Pyrrole alkaloids M. cecilia California Cytotoxic 48
112 and 113 Pyrrole alkaloids M. lissochela China Enzyme inhibitor 49

Clathrynamides A–C (114–116) Bromine-containing amide Clathria sp. Sad-Misaki, Japan Cytotoxic, inhibitors of starfish eggs 50
Microcionamides A&B (117&118) Cyclic thiopeptide C. (Thalysias) abietina Philippines Cytotoxic, antibacterial 51

Gombamide A (119) Cyclic thiopeptide C. (Clathria) gombawuiensis Korea Cytotoxic, enzyme inhibitor 52
Azumamides (120–124) Cyclic peptides Mycale izuensis Japan Histone Deacetylase 53
Mycalisines (125–126) Nucleotides Mycale sp. Japan Inhibitors of starfish eggs 54

127 and 128 Nucleotides C. (Microciona) strepsitoxa Atlantic Nr 55
129 and 130 Fatty acid M. laevis Caribbean Nr 56

131 Fatty acid M. laxissima Caribbean Nr 57
132–134 Fatty acid M. euplectellioides Red Sea Cytotoxic 58

Mycalamides A&B (135&136) Polyketide Mycale sp. New Zealand Cytotoxic, antiviral 59–60
Mycalamide D (137) Polyketide Mycale sp. New Zealand Cytotoxic 61
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Table 1. Cont.

Name Compound Class Marine Sponges Collection Bioactivities Ref.

138–140 Polyketide M. rotalis Mediterranean Nr 62–63
141–146 Anthraquinone C. (Thalysias) hirsuta Australia Nr 64
147–149 Macrolide Mycale sp. Japan Antifungal, cytotoxic 65

150 Macrolide M. adhaerens Lamb Japan Cytotoxic 66
Pateamine (151) Macrolide Mycale sp. New Zealand Cytotoxic 67

152 and 153 Macrolide Mycale sp. Japan Cytotoxic 68
154–156 Macrolide M. magellanica Japan Cytotoxic 69–70

Peloruside A (157) Macrolide Mycale sp. New Zealand Cytotoxic 71
158 Macrolide M. izuensis Japan Cytotoxic 72
159 Macrolide Mycale sp. Japan Cytotoxic 73

Peloruside B (160) Macrolide M. hentscheli New Zealand Cytotoxic 74
161 and 162 Macrolide Mycale sp. Japan Cytotoxic 75

Peloruside C&D (163&164) Macrolide M. hentscheli New Zealand Cytotoxic 76
165-169 Sesquiterpene M. (Arenochalina) sp Australia Antitumor, antifungal 80–83

Clathrin A–C (170–172) Sesterterpene Clathria sp Australia - 84
Clathric acid (173) C21 terpenoid C. compressa Florida Antimicrobial 20

Clathrimide A&B (174&175) C21 -terpenoid C. compressa Florida Antimicrobial 20
Gombaspiroketal A–C (176–178) Sesterterpene C. gombawuiensis Korea Antibacterial, enzyme inhibitors 85

179 and 181 Norterpene/triterpene C. gombawuiensis Korea Antibacterial 86
Rotalins (182–183) Diterepene M. rotalis Mediterranean Nr 87
Mycgranol (184) Diterepene M. aff. graveleyi Kenya Nr 88

185–189 Cyclic norterpenoid peroxide M. ancorina Australia Nr 89
190 and 191 Cyclic norterpenoid peroxide M. (carmia) cf. spongiosa Australia Antimicrobial 90
192 and 193 Cyclic norterpenoid peroxide Mycale sp. Thailand Cytotoxic, antiviral 91

194–201 Cyclic peroxide/norditerepene Mycale sp. Australia Nr 92
202–204 Cyclic norterpenoid peroxide Mycale sp. Australia Nr 93

205 Cyclic norterpenoid peroxide Mycale sp. Thailand Cytotoxic 94
206 and 207 Tetraterpene C. frondifera (=C. (Thalysias vulpina) Japan Nr 95–96

Contignasterol (208) Steroid C. (Clathria) lissosclera New Zealand Histamine inhibitory 17–18
Clathriols A&B (209&210) Steroid C. (Clathria) lissosclera New Zealand Anti-inflammatory, histamine inhibitory 17–18

Clathsterol (211) Sulphated sterol Clathria sp. Red Sea Anti-HIV-1 16
Biemansterol (212) Sterol Biemna sp. Okinawa, Japan Cytotoxic 97

213 Sterol Biemna sp. Okinawa, Japan Cytotoxic 97
Foristerol (214) Sterol B. fortis China Nr 98

215 Sterol B. triraphis Madagascar Nr 99
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Table 1. Cont.

Name Compound Class Marine Sponges Collection Bioactivities Ref.

216–224 Sterol B. fortis China Lymphocytes and hPTP1B inhibition 100
225 and 226 Sterol B. ehrenbergi Red Sea Cytotoxic, antibacterial 101

227–235 Sterol M. laxissima Caribbean Fertilized eggs inhibitors 102–103
Mycapolyols A–F (184–189) Mixed PKS/NPRS M. izuensis Japan Cytotoxic 104

242 Thio-sugar C. (Dendrocia) pyramida Australia Nr 105
243 Glycol C.reinwardtti India Nr 106
244 1,5-Diamine Mycale sp. Kenya Cytotoxic 107
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2. Chemistry and Biological Activities of the Secondary Metabolites Isolated from the Marine
Sponges of the Genera Mycale (Arenochalina), Biemna and Clathria

In this section, we provide insights into the chemical classes and biological activities of the
marine sponge-derived secondary metabolites obtained from these three genera. For convenience,
the isolated compounds are divided into fourteen major groups, according to their skeleton as
well as their biosynthetic origins. Additionally, their biological potentialities are also discussed
whenever applicable.

2.1. Guanidine-Containing Alkaloids

Crambescidins, batzelladines, mirabilins and ptilocaulins are definite groups of marine cyclic
guanidine-containing alkaloids that display potent biological activities, such as cytotoxic, antiviral,
antifungal and anti-HIV-1 gp 120-human. These compounds were isolated from various marine
sponge genera, like Batzella, Crambe, Monanchora and Ptilocaulis, and are chemotaxonomic markers
for the marine sponges belonging to the orders Poecilosclerida and Axinellida [22,27]. Crambescidin
800 (1), a pentacyclic guanidine alkaloid, was isolated from the marine sponge Clathria (Thalysias)
cervicornis, and was found to display potent antimicrobial activity against Acinetobacter baumannii,
Klebsiella pneumoniae and Pseudomonas aeruginosa, with MIC values of 2, 1 and 1 µg/mL, respectively [21].
Recently, three new crambescidin-type alkaloids, including crambescidin 345 (2), crambescidin 361 (3)
and crambescidin 373 (4), along with the known congeners 1, crambescidin 359 (5) and crambescidin
657 (6) (Figure 1), were isolated from the Indonesian marine sponge C. bulbotoxa. Interestingly,
3 was reported as a new crambescidin congener which possesses two identical saturated spiroaminal
six-membered ring on both sides, which is considered to be rare within the crambescidin family.
Additionally, 3 bears a propyl group as an alkyl substituent of the left-sided tetrahydropyran moiety.
Compounds 2–5, possessing only the pentacyclic guanidinium core (vessel), exhibited moderate
cytotoxicity against the A431 cancer cell line with IC50 values of 7.0, 2.5, 0.94 and 3.1 µg/mL,
respectively. However, 1 and 6, featuring both the vessel and the long-chain ω-hydroxy fatty acid
(anchor) motifs, displayed significant cytotoxicity with IC50 values of 48 and 12 nM, respectively.
Such variation in cytotoxicity highlighted the importance of the spermidine part, which could act as a
spacer linking two sites of interaction [24]. Furthermore, 2–4 demonstrated a strong anti-oomycete
activity against the plant pathogenic fungus Phytophthora capsici with a minimum inhibitory dose
(MID) of 50 µg/disk, while 1 and 6 showed a weak activity with MID 100 mg/disk or even higher [28].
Two batzelladine derivatives, norbatzelladine L (7) and clathriadic acid (8) (Figure 1), were isolated
from the Caribbean marine sponge C. (Microciona) calla. Compound 7 exhibited potent cytotoxicity
against a variety of cancer cell lines, including breast cancer (MDA-MB-231), non-small cell lung cancer
(A549) and colon cancer (HT29), with GI50 = 0.7, 1.1 and 1.2 03BCg/mL, respectively, whereas 8 showed
a weak antitumor activity with GI50 = 13.5, >30 and >30 µM, respectively. Moreover, 7 displayed
stronger (IC50 = 0.4 µg/mL) antimalarial activity than 8 (IC50 = 2.3 µg/mL) [29].
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Six tricyclic guanidine alkaloids, mirabilins A–F (9–14), were isolated from a Southern Australian
marine sponge Mycale (Arenochalina) mirabilis [30]. Later on, seven further cytotoxic tricyclic guanidine
alkaloids, netamines A–G (15–21), were reported from a Madagascar marine sponge Biemna laboutei.
These compounds showed an in vitro cytotoxic activity against three human cancer cell lines,
i.e., NSCL (A549), colon (HT29), and breast (MDA-MB-231). While netamine C (17) showed GI50

values of 4.3, 2.4 and 2.6 µg/mL, respectively, netamine D (18) exhibited slightly higher GI50 values
of 6.6, 5.3 and 6.3 µg/mL against these cancer cell lines [31]. An additional seven tricyclic alkaloids,
netamines H–N (22–28), along with the known congeners netamine G (21) and mirabilins A (9), C (11)
and F (14), were isolated from the same marine sponge. These compounds displayed cytotoxic and
antimalarial activities. Netamine M (27) exhibited cytotoxicity against KB cancer cell line with the IC50

in a micromolar range whereas netamine K (25) showed antiplasmodial activity against Plasmodium
falciparum with the IC50 value of 2.4 µg/mL [14]. Another five antimalarial tricyclic guanidine alkaloids,
netamines O–S (29–33), were also isolated, together with the previously reported netamine E (19),
from B. laboutei. Netamines O–Q (29–31) showed a promising in vitro antimalarial activity against
P. falciparum with IC50 values of 16.99 ± 4.12, 32.62 ± 3.44, and 8.37 ± 1.35 µg/mL, respectively.
Moreover, these compounds also exhibited cytotoxic activity against the KB cancer cell line in the
range of 10−5 M [15]. A tricyclic guanidine alkaloid, mirabilin G (34), isolated from the Australian
sponge Clathria sp., displayed a moderate antibacterial activity against Gram-negative bacterial strains,
including Escherichia coli and Serratia marcescens, as well as antifungal activity against Saccharomyces
cerevisiae [32]. Further chemical investigation of the marine sponge Clathria sp., collected from South
Australia, resulted in the isolation of mirabilins C (11), F (14) and G (34), along with three new
congeners, namely mirabilins H–J (35–37). Compounds 11, 14, 34–37 displayed no cytotoxicity against
neuroblastoma (SH-SY5Y), gastric (AGS), colorectal (HT29) and intestinal (Intestine-407) cancer cell
lines, with LD50 > 30 µg/mL [33] (Figure 2).
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Another interesting group of marine cyclic guanidine alkaloids comprises those containing a
bromoindole moiety. The tris-bromoindole cyclic guanidine alkaloids, araiosamine A–D (38–41)
(Figure 3), were isolated from the marine sponge Clathria (Thalysias) araiosa, collected from Vanuatu.
These compounds originated from an unusual mode of linear polymerization of tryptamine units
involving a C–C bond formation. Compounds 38–41 were evaluated for their antimicrobial activity;
however, none of them displayed significant antibacterial activity against S. aureus or anti-HIV
activity [34].
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2.2. Pyridoacridine, Pteridine, Tetrahydroquinolizine and N-methylpyrrolidone Alkaloids

Pyridoacridine alkaloids are a unique group of marine-derived metabolites and are one of the
largest marine alkaloid families. Chemically, they feature a common tetracyclic hetero-aromatic
parent-11H-pyrido[4,3,2nm] acridine or 4H-pyrido[2,3,4-kl] acridone [35,36]. Among the three
marine sponge genera, pyridoacridine alkaloids were exclusively isolated from Biemna species.
Biemnadin (42), 8, 9-dihydro-11-hydroxyascididemin (43), 8-hydroxyisocystodamine (44) and
9-hydroxyisocystodamine (45) (Figure 4), were reported from the Okinawan Biemna sp. Compounds
42 and 43 displayed a significant in vitro cytotoxicity against two tumor cell lines: human epidermoid
carcinoma KB (with IC50 values of 1.73 and 0.209 µg/mL, respectively) and murine lymphoma
L1210 (with IC50 values of 4.29 and 0.675 µg/mL, respectively) [37]. Moreover, labuanine A (46)
was isolated, along with three previously described congeners, i.e., 42, 45 and isocystodamine
(47) (Figure 4), from the Indonesian sponge B. fortis. All of these compounds induced multipolar
neuritogenesis in more than 50% of Neuro 2A murine neuroblastoma cells at concentrations of
0.03–3 µM. Interestingly, 47 not only displayed the strongest neuritogenic activity but also activated
an increase of the acetylcholinesterase level [38]. Matsunaga’s group [39] described the isolation of
N-methylisocystodamine (48) and methoxymethylisocystodamine (49) (Figure 4), together with 47,
from the marine sponge Biemna sp., collected at Oshima-Shinsone, Southern Japan. Both 48 and 49
were found to activate the erythroid differentiation of human leukemia K562 cells, with an ED50 value
of 5 nM [39]. Later on, the same group [40] further isolated N-hydroxymethylisocystodamine (50) and
neolabuaninen A (51), together with the previously reported congeners ecionines A (52) and B (53), 42,
45 and 47 (Figure 4), from the same sponge. These compounds displayed cytotoxicity and activated
differentiation of K562 leukaemia cells into erythrocytes at a concentration of 5 µg/mL. Furthermore,
47 and 50 were the most active in inducing neuronal differentiation when compared to 42, 45 and
51. Interestingly, while 51 and 52 lowered this activity, 42, 47 and 53 showed no notable activity [40].
Another interesting group of marine-derived alkaloids are the pteridines, which represent a widely
distributed family of naturally occurring alkaloids. Chemically, pteridine nucleus is composed of
a pyrimidine ring fused with a pyrazine ring. Examples of this group are pseudoanchnazines A–C
(54–56) (Figure 4), which were isolated from the marine sponge Clathria sp., collected near the coast of
Rio Negro, Argentina. Compound 54 showed a moderate inhibition against E. coli at 50 µg/disk [41].
Additionally, Sperry and Crews described isolation of a new tetrahydroquinolizinium ion, clathryimine
A (57), which produced a decarboxylated derivative clathryimine B upon heating in CDCl3 (Figure 4),
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from the Indo-Pacific marine sponge C. basilana, collected in Indonesia [42]. Radhika et al. [43] reported
the isolation of N-methylpyrrolidone (58) (Figure 4) from C. frondifera, collected from the East coast
of India.Mar. Drugs 2018, 16, x  6 of 26 
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2.3. Monoindole Alkaloids

Wang et al. [44] reported the isolation of eleven brominated indole alkaloids, 59–69 (Figure 5),
from the marine sponge M. fibrexilis. Since monoindole alkaloids were less common for this sponge
family, the authors proposed that they could be specific for this species.
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2.4. Pyrrole-Containing Alkaloids

Fourteen pyrrole-containing metabolites, named mycalazols (70–81) and mycalazals (82–83)
(Figures 6 and 7), were isolated from M. micracanthoxea, collected at the Southern coast of Spain.
Compounds 70–83 displayed a potent in vitro cytotoxicity with ED50 values in the micromolar
rang, against five cancer cell lines: P388, SCHABEL mice lymphoma, A549 human lung carcinoma,
HT29 human colon carcinoma and MEL28 human melanoma, and 75–76 and 81 were the most active
analogues [45].
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A further eleven pyrrole-containing metabolites, 84–94 (Figure 8), were isolated from the
same sponge, collected in the Caribbean Sea in Venezuela. The structures of these compounds
were elucidated by analysis of their NMR, HRMS and GC-MS data. Compound 84 was the
most active against Leishmania mexicana promastigotes, with LD50 value of 12 µg/mL [46].
Three 5-alkylpyrrole-2-carbaldehydes (95–97) (Figure 8) were reported from M. tenuispiculata, collected
in Southern India [47], while an additional fourteen 5-alkylpyrrole-2-carbaldehyde analogues,
with varying alkyl side chains, named mycalazals (98–108) and mycalenitriles (109–111) (Figure 8)
were isolated from M. Cecilia, collected in California. These compounds displayed growth inhibition
activity against nine cancer cell lines, with GI50 values below 5 µg/mL, being 103 the most cytotoxic
against the LNcaP cell line, with a GI50 value of 0.2 µg/mL. Compounds 98, 99 and 102 displayed
remarkable cytostatic activity on this tumor cell line, with TGI (Total Growth Inhibition) values of
3.3, 2.6 and 2.8 µg/mL, respectively. Compounds 109–111 exhibited potent cytotoxicity with high
selectivity against PANC1 human pancreas, LOVO human colon, and HELA human lymphoma cell
lines [48]. It is interesting to point out that the cytotoxicity exhibited by mycalazals and mycalenitriles
is affected by the structural features of the alkyl side chains, including their length, the number and
position of the unsaturations [48]. Recently, Xue et al. [49] described isolation of mycalenitrile-15 (112)
and mycalenitrile-16 (113) from the Chinese M. lissochela. Compound 112 displayed a remarkable
PTP1B (Protein-tyrosine phosphatase 1B) inhibitory activity with an IC50 value of 8.6 µM.
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2.5. Bromine-Containing Amides

Three brominated acetylenic amides, clathrynamides A–C (114–116) (Figure 9), were isolated
from the Japanese marine sponge Clathria sp., collected from the Sad-misaki coast. Compound 114
displayed potent inhibitory activity against the mitotic cell division of starfish eggs at a very low
concentration, with an IC50 value of 6 ng/mL, and cytotoxicity against the human myeloid K-562
cell line with an IC50 value of 0.2 µg/mL. Compounds 115 and 116 were less active than 114 against
the mitotic cell division of starfish eggs, with IC50 values of 0.2 and 1 µg/mL, respectively. Based on
the IC50 values of 114–116, it is clear that the presence of a primary amide in the molecule plays an
important role in the inhibitory activity of the mitotic cell division of starfish eggs [50].Mar. Drugs 2018, 16, x  9 of 26 
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2.6. Cyclic Peptides/Thiopeptides

Two cyclic thiopeptides, microcionamides A (117) and B (118), were isolated from C. (Thalysias)
abietina, collected from the Philippines. Compounds 117 and 118 displayed a significant cytotoxicity
against the human breast tumor cell lines, MCF-7 and SKBR-3, with the IC50 values of 125/98 nM
and 177/172 nM, respectively. Furthermore, 117 and 118 also displayed inhibitory activity against
Mycobacterium tuberculosis (H37Ra), with MIC value of 5.7 µg/mL [51]. Another cyclic thiopeptide,
gombamide A (119) (Figure 10) was isolated from the Korean marine sponge C. gombawuiensis.
119 exhibited a weak cytotoxicity against K562 and A549 cell lines with the IC50 values of 6.9 and
7.1 µg/mL, respectively. Moreover, 119 also exhibited a moderate inhibitory activity against
Na+/K+-ATPase with IC50 of 17.8 µg/mL [52]. Five cyclic tetrapeptides, azumamides A–E (120–124),
were isolated from the marine sponge M. izuensis. These compounds displayed a potent HDAC
(Histone Deacetylase) inhibitory activity with the IC50 values of 0.045 to 1.3 µM, using enzymes
obtained from K562 human leukemia cells. Compounds 120–124 represented the first examples of
cyclic peptides with HDAC inhibition activity recorded from marine invertebrates [53].
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2.7. Nucleotides

Two guanine-nucleotides, mycalisines A (125) and B (126) (Figure 11), from the Japanese sponge
Mycale sp., were found to inhibit a cell division of the fertilized starfish (Asterina pectinifera) eggs
with MIC50 of 0.5 and 200 µg/mL, respectively [54]. Two 8-oxoisoguanine-nucleotides, 127 and
128 (Figure 11), were isolated from Clathria (Microciona) strepsitoxa, collected from the Northeastern
Atlantic. These compounds did not exhibit any significant antimicrobial or cytotoxic activity [55].Mar. Drugs 2018, 16, x  10 of 26 
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2.8. Fatty Acids

(Z)-16-pentacosenoic acid (129) and (Z)-18-pentacosenoic acid (130) were isolated from the
hydrolyzed phospholipids of the Caribbean sponge M. laevis [56], while (5Z)-2-methoxy-5-hexadeconic
acid (131) (Figure 12) was reported from M. laxissima [57]. Chemical investigation of the Red
Sea M. euplectellioides led to the identification of hexacosa-(6Z,10Z)-dienoic acid methyl ester
(132), hexacosa-(6Z,10Z)-dienoic acid (133) and icosa-(8Z,11Z)-dienoic acid methyl ester (134)
(Figure 12). Compounds 132–134 displayed weak cytotoxicity against A549 human lung carcinoma,
U373 glioblastoma and PC-3 prostate cancer cell lines [58].
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2.9. Polyketides Derivatives

Mycalamides A (135) and B (136) (Figure 13) were isolated from Mycale sp., collected from
Otago Harbour, New Zealand. Both compounds exhibited a potent in vitro anti-HSV-1 activity.
Compound 136 was a more potent antiviral agent than 135, with the Minimum Active Doses
(MAD) of 1–2 and 3.5–5.0 ng/disk, respectively. Furthermore, 136 exhibited stronger (IC50 = 0.7
± 0.3 ng/mL) cytotoxicity than 135 (IC50 = 3.0 ± 1.3 ng/mL) against P-388 cancer line [59,60].
Additionally, mycalamide D (137) (Figure 13), along with 135 and 136, were also reported from Mycale
sp., collected from New Zealand [61]. Compounds 135 and 137 displayed significant cytotoxicity
against three cell lines: non-tumorigenic pig kidney (LLC-PK1), human lung carcinoma (H441) and
human neuroblastoma (SH-SY5Y) cell lines. Furthermore, 135–137 exhibited remarkable cytotoxicity
in a nanomolar range against lymphoma P-388 cells with IC50 values of 5.2, 1.3 and 65.5 ± 5.5 nM,
respectively. From a structure-activity point of view, the cytotoxic potency is inversely proportional to
the number of the methoxy groups as well as the polarity of the compounds (Figure 13) [61]. Within
the polyketide group, acetogenins were also isolated from the marine sponge of the genus Mycale.
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Giordano et al. [62] reported the isolation of two polybrominated C15 acetogenins (138–139) from
M. rotalis, and subsequently, Notaro et al. isolated the C15 nonrterpenoid brominated ether (140) from
the same sponge [63].
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Figure 13. Chemical structures of 135–140.

2.10. Anthraquinones

Six rhodocomatulin-type anthraquinones, including the previously reported rhodocomatulin
5, 7-dimethyl ether (141) and rhodocomatulin 7-methyl ether (142), together with the new
6-methoxyrhodocomatulin 7-methyl ether (143), 3-bromo-6-methoxy-12-deethylrhodocomatulin 7-methyl
ether (144), 3-bromo-6-methoxyrhodocomatulin 7-methyl ether (155) and 3-bromorhodocomatulin
7-methyl ether (146) (Figure 14), were isolated from the marine sponge C. hirsuta, collected from the Great
Barrier Reef, Australia. Compounds 141 and 142 were also isolated from the marine sponge Comatula
rotalaria [64].
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2.11. Macrolides

Three trioxazole containing macrolides, mycalolides A–C (147–149) (Figure 15), isolated from the
Japanese Mycale sp., displayed antifungal activity against some pathogenic fungi. These compounds
also showed a promising cytotoxicity against the B-16 cancer cell line, with IC50 values ranging
from 0.5 to 1.0 ng/mL [65]. 13-Deoxytedanolide (150) (Figure 15), along with 147–148, were also
isolated from the Japanese sponge M. adhaerens. Compound 150 exhibited significant cytotoxicity
against P388 leukemia cells, with an IC50 value of 94 pg/mL [66]. The chemical investigation of
Mycale sp., collected from New Zealand, afforded a potent cytotoxic thiazole-containing macrolide,
pateamine (151) (Figure 15). Compound 151 displayed significant and selective cytotoxicity against
P388 cells with an IC50 value of 0.15 ng/mL [67]. Thiomycalolides A (152) and B (153) (Figure 15),
another two trioxazole-containing macrolides, were reported from Mycale sp., collected at Gokasho
Bay, Japan. Both compounds were cytotoxic against human leukaemia P388 cells with an IC50 of
18 ng/mL [68]. Further analogues, including 30-hydroxymycalolide A (154), 32-hydroxymycalolide A
(155) and 38-hydroxymycalolide B (156) (Figure 15), were isolated, together with 147–149, from the
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Japanese M. magellanica. Compounds 154–156 showed cytotoxicity against L1210 cells, with IC50 values
of 0.019, 0.013 and 0.015 µg/mL, respectively [69,70]. Peloruside A (157), another cytotoxic macrolide,
was isolated from Mycale sp., collected from New Zealand. This compound exhibited a remarkable
cytotoxicity against P388 with IC50 value of 18 nM [71]. Additionally, 30, 32-dihydroxymycaloloide A
(158) (Figure 15) was isolated from the Japanese sponge M. izuensis as a cytotoxic compound against
HeLa cells with IC50 value of 2.6 ng/mL [72].
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Figure 15. Chemical structures of 147–158.

A bisoxazole-containing macrolide, secomycalolide A (159) (Figure 16), was isolated from a
Japanese Mycale sp., together with 147 and 154. By using a chymotrypsin-like substrate, 159, 147 and
154 displayed a promising proteasome inhibition activity, with IC50 values of 11, 30 and 45 µg/mL,
respectively [73]. Later on, peloruside B (160) (Figure 16), another potent cytotoxic macrolide,
was isolated from the New Zealand sponge M. hentscheli. Compound 160 showed strong cytotoxicity
against human myeloid leukemia cells (HL-60) and human ovarian carcinoma 1A9 cells with IC50

values of 33 ± 10 and 71 ± 6 nM, respectively [74]. Additionally, miuramides A (161) and B (162)
(Figure 16) were identified from Mycale sp., collected from Japan. Both compounds showed significant
cytotoxicity against 3YI cells with IC50 value of 7 nM [75]. Very recently, Suo et al., described
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the isolation of pelorusides C (163) and D (164) (Figure 16), also from the New Zealand sponge
M. hentscheli. Both compounds showed cytotoxicity against HL-60 cell line, with IC50 values of more
than 2 and 15 µM, respectively [76]. A structure-activity analysis revealed that pelorusides A–D (157,
160, 163 and 164) (Figures 15 and 16) stabilize microtubules by binding to β-tubulin, similar to the
antitumor drug paclitaxel, highlighting the potential of these compounds as promising anticancer
drug candidates [74,75,77–79].
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2.12. Terpenoids

Five sesquiterpenes, including two sesquiterpene phenols (+)-curcuphenol (165) and (+)-curcudiol
(166), along with three minor compounds, 167–169 (Figure 17), were reported from an Australian
marine sponge Mycale (Arenochalina) sp. [80]. Compound 165 displayed in vitro cytotoxicity against
P388 murine leukemia and human tumor cell lines (IC50 = 7 µg/mL), HCT-8 (colon; MIC = 0.1 µg/mL),
mammary (MDAMB; MIC = 0.1 µg/mL) [80] and NSLC (A549; MIC = 10 µM) [81], as well as antifungal
activity against Candida albicans and Cryptococcus neoformans (MIC = 15 µM) [81,82]. Moreover, 165 also
showed antibacterial activity against both Staphylococcus aureus and methicillin-resistant S. aureus,
with MIC value below 20 µM [82]. On the contrary, 166 only exhibited weak antifungal activity
against filamentous fungi and Candida albicans with MIC = 250 µg/mL [81,83]. Three terpenoid
metabolites, clathrins A–C (170–172) (Figure 17), were isolated from the marine sponge Clathria
sp., collected from the Great Australian Bight. Compound 170 represents the first example of a
marine sesquiterpene/benzenoid in which the “benzenoid” residue retained a nonaromatic shikimate
character, while 171 and 172 are rearranged norditerpenes. However, 172 was thought to be an
artefact, which represents the oxidized form of 171 [84]. The unusual bicyclic C21-diterpenoids,
including clathric acid (173) and two acyl taurine derivatives, clathrimides A (174) and B
(175) (Figure 17), were isolated from the marine sponge C. compressa, which was collected in
Florida [20]. These compounds were tested for antibacterial activity against several Gram-positive
and Gram-negative bacteria. However, only 173 was found to exhibit weak antibacterial activity,
with MIC = 32 µg/mL against S. aureus (ATTC 6538P), and with MIC = 64 µg/mL against both
methicillin-resistant S. aureus (ATTC 33591) and vancomycin-resistant S. aureus (VRSA), while 174
and 175 exhibited no activity at the highest concentration tested (128 µg/mL). Moreover, none of the
compounds showed activity against Gram-negative bacteria [20]. Three tetracyclic sesterterpenes,
gombaspiroketals A–C (176–178) (Figure 18), were isolated from the Korean sponge C. gombawuiensis,
and showed in vitro cytotoxicity against K562 and A549 cell lines, with IC50 values of 1.45, 2.02,
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0.85 and 0.77, 1.87, 4.65 µg/mL, respectively. Furthermore, 176 and 178 also exhibited antibacterial
activity against several strains of Gram-positive bacteria, including S. aureus, Bacillus subtilis and Kocuria
rhizophila, with MIC values of 25.0, 6.25, 12.5 and 25.0, 6.25, 25.0 µg/mL, respectively, and against
Gram-negative bacteria Salmonela enterica and Proteus hauseri, with MIC values of 12.5, 6.25 and
25.0, 12.5 µg/mL, respectively. Moreover, 176–178 also inhibited the enzymes Na+/K+-ATPase
and isocitrate lyase (ICL) with IC50 = 10.9, 77.9, 18.7 and 57.4, >100, 66.3 µg/mL, respectively,
and their inhibitory activity was hypothesized to be due to the three-dimensional structure of the
spiroketal motif [85]. Phorone B (179) and ansellone C (180) (Figure 18), along with a nortriterpene
sodium O-sulfonato-glucuronide saponin gombaside A (181) (Figure 18), were also isolated from
C. gombawuiensis. Compound 181 features a rare 4,4,14-trimethyl pregnane skeleton. Compounds
179–181 exhibited moderate cytotoxicity against A549 and k562 cancer cell lines with IC50 values of
4.7/3.9, 5.4/4.5 and 2.1/1.8 µg/mL, respectively. Interestingly, while 181 showed antibacterial activity
against B. subtilis and P. hauseri with MIC values of 1.6 and 3.1 µg/mL, respectively, 179 and 180
were inactive (MIC > 100 µg/mL) [86]. Rotalins A (182) and B (183) are two diterpenes reported from
the Mediterranean M. rotalis [87] while mycgranol (184) (Figure 18) is a diterpene, isolated from the
Kenyan M. aff. graveleyi [88].
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Norsesterterpene cyclic peroxides are a distinct class of marine sponges-derived metabolites.
Five norsesterterpene cyclic peroxides, 185–189 (Figure 19), were isolated from the Australian marine
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sponge M. ancorina [89]. Capon et al. [90] reported the isolation of further two norsesterterpene
cyclic peroxides, 190–191 (Figure 19), from M. (Carmia) cf. spongiosa, collected from New South Wales,
Australia. Compounds 190–191 were isolated from the CH2Cl2 soluble fraction, which exhibited
antimicrobial activity against B. subtilis and Saccharomyces cerevisae. Mycaperoxides A (192) and B (193)
(Figure 19), isolated from the Thai Mycale sp., were found to display in vitro potent cytotoxicity against
three cancer cell lines, P-388, A-549 and HT.29 with IC50 of 0.5-1.0 µg/mL, and antiviral activity against
several viruses, including HSV-1. Moreover, these compounds also showed antibacterial activity
against B. subtilis and S. aureus [91]. A further five cyclic peroxides, 185, 186, 189, mycaperoxides
C (194) and D (195), along with six norterpenes, 196–201 (Figure 20), were isolated from M. sp.
From Australia [92]. A re-investigation of Mycale sp., collected from New South Wales, Australia,
allowed the identification of two further mycaperoxides F (202) and G (203) and a norterpene ketone
(204) (Figure 20) [93]. Similarly, re-examination of the Thai Mycale sp., by Phuwapraisirisan et al., led to
the isolation of mycaperoxide H (205) (Figure 20), which was cytotoxic against the HeLa cancer cell
line with IC50 = 0.8 µg/mL [94].
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2.13. Steroidal Compounds

Three highly oxygenated steroids, named contignasterol (208) and clathriols A (209) and B
(210) (Figure 21), were isolated from the New Zealand marine sponge C. (Clathria) lissosclera.
While 208 exhibited a histamine release inhibitory activity with an IC50 = 0.8 ± 0.32 µg/mL,
209 and 210 showed anti-inflammatory activity against the production of superoxide stimulated
with N-formyl-methionine-leucine-phenylalanine (fmlp) or phorbol myristate acetate (PMA), with IC50

values of −33/27 and 140/130 µg/mL, respectively. Moreover, 209 also displayed a 72% inhibition
of the histamine release in peritoneal mast cells and a 76% inhibition of human peripheral blood
neutrophil at a concentration of 30 µM [17,18]. Bioassay-guided fractionation of the CHCl3-MeOH
crude extract of the marine sponge Clathria sp., collected from the Red sea, resulted in the isolation
of a sulfated sterol, clathsterol (211) (Figure 21), which displayed moderate antiviral activity
against HIV-1 at a concentration of 10 µg/mL [16]. Biemansterol (212), along with the previously
reported 24β-methylcholesta-5, 7, 22, 25-tetraen-3β-ol (213) (Figure 21), were isolated from the
Okinawan marine sponge Biemna sp. [97]. Compound 212, which possesses a rare 22, 25-diene
side chain displayed in vitro cytotoxicity against murine lymphoma L1210 and human epidermoid
KB cell lines, with IC50 values of 3 and 1.3 µM, respectively [97]. Foristerol (214) (Figure 21),
a steroid featuring an unusual seven-membered lactone ring, was reported from the Chinese marine
sponge, B. fortis [98], while 5α, 8α-epidioxy-24(S)-ethylcholest-6-en-3β-ol (215) (Figure 21) was
isolated from the Madagascar marine sponge B. triraphis [99]. Huang and Guo [100] described the
isolation of nine steroids, including melithasterol B (216), (24R)-ergosta-7,22-dien-3, 5, 6-triol (217),
(24R)-ergosta-4, 6, 8(14), 22-tetraen-3-one (218), (24R)-ergosta-4, 7, 22-trien-3-one (219), (24R)-ergosta-6,
22-dien-5, 8-epidioxy-3-ol (220), 6-hydroxycholest-4-en-3-one (221), cholest-4-en-3, 6-dione (222),
cholest-4-en-3-one (223) and cholest-5, 22-dien-3-one (224) (Figure 21), from the Chinese marine
sponge B. fortis. Compound 222 displayed mild inhibition of T- and B-lymphocytes proliferation and
potent hPTP1B inhibitory activity, with IC50 = 1.6 µM [100]. Youssef et al. [101] reported the isolation of
ehrenasterol (225) and (22E)-ergosta-5, 8, 22-trien-7-one-3β-ol (226), along with the previously reported
(24R)-ergosta-6, 22-dien-5, 8-epidioxy-3-ol (220) and 216 (Figure 21), from the Red Sea marine sponge
B. ehrenbergi. Compound 225 exhibited antibacterial activity with an inhibition zone of 20 mm at
100 µg/disc against E. coli. Moreover, both 225 and 226 showed weak cytotoxicity against a human
colon adenocarcinoma (HCT-116) cancer cell line, with IC50 of 45 and 40 µg/mL, respectively [101].
The steroidal oligoglycosides, mycalosides A–I (227–235) (Figure 22), were isolated from the Caribbean
sponge M. laxissima. These compounds represent the first examples of steroidal oligoglycosides
reported from marine sponges. The fraction containing 227–235, along with the pure mycaloside
A (227) and mycaloside G (233), showed growth inhibition of fertilized eggs of the marine urchin
(Strongylocentrotus nudus), with EC50 of 7.4 and 3.2 µg/mL, respectively [102,103].

2.14. Miscellaneous Compounds

The unprecedented cytotoxic PKS/NPRS metabolites, mycapolyols A–F (236–241) (Figure 23),
were isolated from a Japanese M. izuensis. These compounds displayed cytotoxic activity against the
HeLa cells, with IC50 values of 0.06, 0.05, 0.16, 0.40, 0.38 and 0.90 µg/mL, respectively [104]. On the
other hand, the first naturally occurring 5-thiosugar, 5-thio-D-mannose (242) (Figure 23), was reported
from the marine sponge C. (Dendrocia) pyramida [105] while diethylene glycol dibenzoate (243) was
reported from C. reinwardtti, collected at the Mandapam coast in the Gulf of Mannar, Tamilnadu,
India [106]. 1,5-Diazacyclohenicosane (244) (Figure 23), an aliphatic cyclic diamine was isolated from
the Kenyan Mycale sp. [107]. Compound 244 exhibited significant cytotoxicity against A549 human
lung carcinoma, HT29 human tissue carcinoma, and MDA-MB-231 human breast adenocarcinoma,
with GI50 values of 5.41, 5.07 and 5.74 µM, respectively.
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3. Conclusions and Prospects

This review presents extensive documented data, focusing on chemical diversity and
biological activities of the secondary metabolites, isolated from the three marine sponge genera:
Mycale (Arenochalina), Biemna and Clathria, demonstrating these marine species as prolific sources of
structurally diverse bioactive compounds. Despite their production of tricyclic guanidine-containing
alkaloids, these sponges are classified under two different orders: Mycale (Arenochalina)/Clathria
(under the order Poecilosclerida) and Biemna (under the order Biemnida), as recent molecular data
revealed that Biemna is not related to the Poecilosclerida, and hence a new order Biemnida was given for
the genus Biemna. This finding could highlight the important question of using secondary metabolites
as taxonomic markers. Another important chemical feature is the uniqueness of the production of
pyridoacridine alkaloids by Biemna sponges, which implies the relatedness of Biemna genus to the order
Poecilosclerida. The two hundred and forty-four metabolites reported in this review are put together
into fourteen major chemical classes, according to their structural characteristics and biosynthetic
origin. The vast array of bioactivities exhibited by some of these metabolites make these marine sponge
genera some of the most attractive biological targets, worthy of further exploration.
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