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Prediction of nickel concentration 
in peri‑urban and urban soils using 
hybridized empirical bayesian 
kriging and support vector machine 
regression
Prince Chapman Agyeman1*, Ndiye Michael Kebonye1, Kingsley John1, Luboš Borůvka1, 
Radim Vašát1 & Olufadekemi Fajemisim2

Soil pollution is a big issue caused by anthropogenic activities. The spatial distribution of potentially 
toxic elements (PTEs) varies in most urban and peri‑urban areas. As a result, spatially predicting the 
PTEs content in such soil is difficult. A total number of 115 samples were obtained from Frydek Mistek 
in the Czech Republic. Calcium (Ca), magnesium (Mg), potassium (K), and nickel (Ni) concentrations 
were determined using Inductively Coupled Plasma Optical Emission Spectroscopy. The response 
variable was Ni, while the predictors were Ca, Mg, and K. The correlation matrix between the 
response variable and the predictors revealed a satisfactory correlation between the elements. The 
prediction results indicated that support vector machine regression (SVMR) performed well, although 
its estimated root mean square error (RMSE) (235.974 mg/kg) and mean absolute error (MAE) 
(166.946 mg/kg) were higher when compared with the other methods applied. The hybridized model 
of empirical bayesian kriging‑multiple linear regression (EBK‑MLR) performed poorly, as evidenced 
by a coefficient of determination value of less than 0.1. The empirical bayesian kriging‑support 
vector machine regression (EBK‑SVMR) model was the optimal model, with low RMSE (95.479 mg/
kg) and MAE (77.368 mg/kg) values and a high coefficient of determination  (R2 = 0.637). EBK‑SVMR 
modelling technique output was visualized using a self‑organizing map. The clustered neurons of the 
hybridized model CakMg‑EBK‑SVMR component plane showed a diverse colour pattern predicting the 
concentration of Ni in the urban and peri‑urban soil. The results proved that combining EBK and SVMR 
is an effective technique for predicting Ni concentrations in urban and peri‑urban soil.

Nickel (Ni) is regarded as a micronutrient for plants due to its contribution to atmospheric nitrogen (N) fixation 
and urea metabolism, both of which are needed for the germination of  seed1. Apart from its contribution to seed 
sprouting, Ni also acts as an inhibitor for fungi and bacteria and promotes plant development. The deficiency 
of Ni in the soil for plants to uptake results in leaves showing chlorosis symptoms. Cowpeas and green beans, 
for example, require the application of Ni-based fertilizer to optimize N  fixation2. The continuous application 
of Ni-based fertilizer to enrich the soil and increase the potency of the leguminous plant to fix N in the soil 
successively increases Ni concentration in the soil. Even though Ni serves as a micronutrient for plants, its 
excesses in the soil cause more harm than good. The toxicity of Ni in the soil minimizes the pH level in the soil 
and impedes iron uptake as an essential nutrient for plant  growth1. According to  Liu3, Ni has been discovered as 
the 17th important element required for plant development and growth. Apart from Ni playing a role in plant 
development and growth, humans also need it for various applications. The use of nickel in various industrial 
sectors is required for electroplating, the production of nickel-based alloys, and the manufacture of ignition 
devices and spark plugs for the automobile  industries4. Furthermore, Ni-based alloys and plated items have been 
widely utilized extensively in kitchen wares, fittings for ballroom, for goods in the foods industry, electricals, 
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wires and cables, turbines for jets, implants for surgical, textiles and building  ships5. Enriched Ni levels in the 
soil (i.e. surface soil) are attributed to anthropogenic and natural sources, but primarily, Ni is of natural source 
than  anthropogenic4,6. The natural sources of nickel include volcanic eruptions, vegetation, forest fires, and 
geological processes; however, anthropogenic sources include steel industry Ni/Cd batteries, electroplating, arc 
welding, diesel oil and fuel oil, and atmospheric nickel accumulation from coal combustion and waste and sludge 
 incineration7,8. According to Freedman and  Hutchinson9 and Manyiwa et al.10 the primary source of topsoil pol-
lution in the immediate vicinity and adjacent environments is principally caused by Ni-Cu based smelter and 
mines. The topsoil around the Ni–Cu refinery in Sudbury, Canada, had the highest levels of Ni pollution, up to 
26,000 mg/kg11. In contrast, pollution from Russia’s nickel production has culminated in higher Ni concentrations 
in Norwegian  soils11. According to Alms et al.12 the quantities of  HNO3-extractable Ni in top cultivated fields in 
this area (Russia nickel production) ranged from 6.25 to 136.88 mg/kg with a corresponding of mean 30.43 mg/
kg, and a baseline concentration of 25 mg/kg. The application of phosphate fertilizer to agricultural soil in urban 
or peri-urban soils to successive crop seasons injects or pollutes the soil, according to  kabata11. The potential 
impact of nickel on humans potentially cause cancer via mutagenesis, chromosomal damage, Z-DNA creation, 
obstruction of DNA excision repair, or epigenetic  processes13. In animal experiments, nickel has been found to 
have the potential to cause a variety of tumours, which can be exacerbated by carcinogenic nickel  complexes14.

Soil pollution assessment is prevalent in the recent era because of the wide range of health-related issues that 
arise from soil–plant relationships, soil and soil organism relationships, ecological degradation and environmen-
tal impact assessment related issues. Hitherto, spatial prediction of potentially toxic elements (PTEs) such as Ni 
in the soil using conventional means has been laborious and time-consuming. The advent of digital soil mapping 
(DSM) and its success  chalked15 in this present time has improved predictive soil mapping (PSM) tremendously. 
Predictive soil mapping, or DSM, according to Minasny and  McBratney16 has proven to be a prominent soil sci-
ence subdiscipline. Lagacherie and McBratney, 2006 define DSM as "the creation and population of spatial soil 
information systems by using field and laboratory observational methods coupled with spatial and non-spatial soil 
inference systems". McBratney et al.17 outlined that DSM or PSM in contemporary time is the utmost effective 
technique to foretell or map the spatial distribution of PTEs, types of soil and soil properties. Geostatistics and 
machine learning algorithms (MLA) are DSM modeling techniques that use significant and minimal data to 
create a digitized map with the assistance of a computer.

Deutsch18 and  Olea19 defines geostatistics “as a collection of numerical techniques that deal with the characteri-
zation of spatial attributes, employing primarily random models like how time series analysis characterizes temporal 
data.” Mainly, geostatistics involves the assessment of variograms, which allows quantifying and defining the 
dependency of spatial values from every sort of  dataset20. Gumiaux et al.20 further illustrated that the assessment 
of variogram in geostatistics is based on the three principles, including (a) to compute the data correlation scale, 
(b) to identify and calculate the anisotropies in the disparity of the dataset and (c) estimate the area effects in 
addition to intrinsic errors that takes in accounts measured data that is segregated from local effects. On the 
basis of these concepts, numerous interpolation techniques including as universal kriging, cokriging, ordinary 
kriging, empirical bayesian kriging, simple kriging, and other well-known interpolation techniques are employed 
within geostatistics to map or predict PTEs, soil characteristics, and soil types.

Machine learning algorithms (MLAs) are a relatively new technique that employs larger nonlinear data 
classes propelled by algorithms primarily used for data mining, identifying data patterns, and repeatedly applied 
to classification and regression tasks in scientific fields such as soil  science21. Substantial research papers have 
relied on MLA models to predict PTEs in soil, such as Tan et al.22 (random forest for heavy metal estimation in 
agricultural soil), Sakizadeh et al.23 (application of support vector machine and artificial neural network to model 
soil pollution). Furthermore, Vega et al.24 (CART for modelling heavy metal retention and sorption in soil) Sun 
et al.25 (application of cubist is the distribution of Cd in the soil) and other algorithms like k-nearest neighbours, 
generalized boosted regression and boosted regression tree also applied MLA to predict PTEs in the soil.

The application of DSM algorithms in prediction or mapping comes with several challenges. Many authors 
have argued the superiority of MLA to geostatistics and contrariwise. Even though one is superior to the other, 
the combination of the two has increased the accuracy level in mapping or prediction in  DSM15. Woodcock and 
 Gopal26  Finke27; Pontius and  Cheuk28 and  Grunwald29 have commented on the imperfection and some errors 
that exist in predictive soil mapping. Soil scientists have tried a variety of techniques to optimize the effectiveness, 
precision, and predictability of DSM mapping and prediction. The incorporation of uncertainty and validation 
is one of the many different facets that have been integrated into DSM to optimize effectiveness and decrease 
imperfection. Nevertheless, Agyeman et al.15 outlined that the act of validation and the uncertainty that come 
with the creation of map and prediction should be validated independently to enhance map quality. The limita-
tions in DSM are due to geographically dispersed soil qualities, which involve a component of  uncertainty30; 
nevertheless, the lack of certainty in DSM may stem from multiple error sources, namely covariate error, model 
error, positional error and analytical  error31. The modelling inaccuracy triggered during MLA and geostatistical 
relates to a lack of comprehension, culminating in an oversimplification of genuine  processes32. Regardless of the 
nature of modelling, the inaccuracy can be attributed to modelling parameters, mathematical model predictions, 
or  interpolations33. Recently, there has been a new DSM trend that fosters the combination of geostatistics and 
MLA in mapping and prediction. Several soil scientists and authors such as Sergeev et al.34; Subbotina et al.35; 
Tarasov et al.36and Tarasov et al.37 have harnessed accurate qualities in geostatistics and machine learning to 
generate hybrid models that increase the efficiency and quality of the prediction as well as mapping. Some of these 
hybridizations or combined algorithmic models are artificial neural network-kriging (ANN-RK), multi-layer 
perceptron residual kriging (MLP-RK), generalized regression neural network residual kriging (GR-NNRK)36, 
artificial neural network-kriging- multilayer perceptron (ANN-K- MLP)37 and cokriging and gaussian process 
 regression38.
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According to Sergeev et al., combining various modelling techniques has the potential to eliminate flaws 
and increase the efficiency of the hybrid model produced over the single models from which it was developed. 
Against this backdrop, this new paper deems it necessary to apply a combined algorithm from geostatistic and 
MLA to create the best-hybridized model to predict the enrichment of Ni in the urban and peri-urban area. This 
research will lean on empirical Bayesian kriging (EBK) as the base model and hybridize it with a support vector 
machine (SVM) as well as multiple linear regression (MLR) model. The hybridization of EBK with any MLA is 
uncharted. The plurality of hybrid models seen is a combination of ordinary, residual, regression kriging and 
MLA. EBK is a geostatistical interpolation approach that utilizes a spatial stochastic process that is localized 
as a non-stationary/stationary random field with a defined localize parameter on the field that allows for space 
 variation39. EBK has been applied in a variety of studies, including the analysis of the distribution of organic 
carbon in agrogray  soils40, soil contamination  assessment41 and mapping soil  properties42.

On the other hand, a self-organising map (SeOM) is a learning algorithm that has been applied in various 
articles such as Li et al.43, Wang et al.44, Hossain Bhuiyan et al.45, and Kebonye et al.46 to determine the spatial 
attributes and grouping of elements. Wang et al.44 outlined that SeOM is a vigorous learning technique known 
for its capacity in grouping and imagining that is allowed to deal with nonlinear problems. SeOM, unlike other 
pattern recognition techniques such as principal component analysis, fuzzy clustering, hierarchical clustering 
and multiple criteria decision making, performs better in an organization and recognising the pattern of PTEs. 
According to Wang et al.44, SeOM can spatially group the distribution of related neurons and provide high-
resolution data visualization. SeOM will visualize Ni prediction data for the best model developed to characterize 
the results for straightforward interpretation.

This paper intends to generate a robust mapping model with optimal accuracy that predicts Ni content in 
urban and peri-urban soil. We hypothesized that the dependability of the hybridized model primarily relies 
on the influence of the other model attached to the base model. We acknowledge the challenges in DSM, and 
while these challenges are being addressed on multiple fronts, the combination of geostatistics and MLA model 
progression appears to be gradual; therefore, we will attempt to answer the research question that may generate 
a hybrid model. Nevertheless, how accurate is the model in predicting the targeted element? Furthermore, what 
is the efficiency assessment level based on validation and accuracy assessment? Therefore, the specific objec-
tives of this research are (a) to create a combined hybrid model using EBK as the base model against SVMR or 
MLR, (b) compare the models generated (c) propose the best hybrid model to predict the concentration of Ni 
in urban or peri-urban soil and (d) to apply SeOM to create high-resolution spatial variability maps of Nickel.

Materials and methods
Study area. The research is being conducted in the Czech Republic, specifically in the Frydek Mistek dis-
trict of the Moravian-Silesian Region (see Fig. 1). The study area’s geography is a very rugged landscape that is 
mostly part of the Moravian-Silesian Beskydy region, which is part of the outer Carpathian Mountain range. The 
study area falls within latitude 49° 41′ 0′ North and longitude 18° 20′ 0′ East at an altitude varying between 225 
and 327 m above sea level; however, the Koppen classification system of the area’s climatic situation is rated as 
Cfb = temperate oceanic climate with a high amount of rainfall even in dry months. Temperatures vary slightly 
between − 5 °C and 24 °C throughout the year and are seldom below − 14 °C or above 30 °C, whereas average 
annual precipitation is between 685 and 752  mm47. The district’s area survey is projected to be 1208  km2, with 
39.38% of the land under cultivation and 49.36% under forest cover. The area used for this study, on the other 
hand, is approximately 889.8  km2. In and around the Ostrava neighbourhood, the steel industry and metal 
works are active. Metal works, steel industry that uses Ni for stainless steel (e.g., resisting corrosion from the 
atmosphere) and alloy steel (nickel can increase the strength of the alloy while maintaining its good plasticity 
and toughness), and intensive agriculture such as phosphate fertilizer application and livestock production are 
potential sources of Ni in the study area (e.g., Ni supplement in sheep lamb to increase growth rate in lambs and 
cattle fed low). Other industrial uses of Ni in the research area include its usage in electroplating, which consists 
of the electroplated nickel and electroless nickel processes. The soil properties are easily differentiated from the 
soil’s colour, structure, and carbonate content. The soil’s texture is medium to fine, and it is derived from parent 
materials. They are either colluvial, alluvial, or aeolian in nature. Some soil areas show mottles in the top and 
subsoil, which are usually accompanied by concrete and bleaching. However, cambisols and stagnosols are the 
most common soil types in the  area48. With elevations ranging from 455.1 to 493.5 m, cambisols is predominate 
in the Czech  Republic49.

Soil sampling and analysis. Topsoil samples totaling 115 were obtained from urban and peri-urban soil 
in the Frydek Mistek district. The sample pattern used was the regular grid, and the soil sample intervals were 
2 × 2 km using a handheld GPS device (Leica Zeno 5 GPS) at a depth of 0 to 20 cm for topsoil. The samples were 
wrapped in Ziploc bags, labelled appropriately, and transported to the laboratory. The samples were air-dried to 
produce a pulverized sample, crushed by a mechanical system (Fritsch disk mill), and sieved (sieve size 2 mm). 
A gram of the dried, homogenized, and sieved soil sample was placed in a Teflon bottle that was clearly labelled. 
In each Teflon container, 7 ml of 35% HCl and 3 ml of 65%  HNO3 were dispensed (using automatic dispens-
ers—one for each acid), and the cap was gently closed to allow the sample to remain overnight for reactions 
(aqua regia procedure). The supernatant was put on a hot metal plate (temperature: 100 Watt and 160 °C) for 2 h 
to promote the digestion process of the sample before being allowed to cool. The supernatant was transferred 
to a 50 ml volumetric flask and diluted to 50 ml with deionized water. After that, the diluted supernatant was 
filtered into 50 ml PVC tubes with deionized water. In addition, 1 ml of the diluted solution was diluted with 
9 ml of deionized water and filtered into a 12 ml test tube prepared for PTE pseudo-concentration in this study. 
The concentration of PTEs (As, Cd, Cr, Cu, Mn, Ni, Pb, Zn, Ca, Mg, K) was determined by ICP-OES (inductively 
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coupled plasma optical emission spectrometry) (Thermo Fisher Scientific, USA) following standard methods 
and protocols. The quality assurance and control (QA/QC) procedure was ensured (SRM NIST 2711a Montana 
II soil). PTEs having detection limits of less than half were excluded from this study. The PTE used in this study 
had a detection limit of 0.0004. (Ni). Furthermore, the quality control and quality assurance process for each 
analysis was ensured by analyzing the reference standards. To ensure that the error was minimized, a double 
analysis was performed.

Empirical Bayesian kriging. Empirical Bayesian kriging (EBK) is one of the numerous geostatistical inter-
polation techniques used in modelling in diverse fields such as soil science. Unlike the other kriging interpola-
tion techniques, EBK varies from conventional kriging methods by considering the error of the semivariogram 
model  estimation50. In EBK interpolation, several semivariogram models, are calculated during the interpola-
tion instead of a unitary semivariogram. The interpolation technique makes way for uncertainties associated 
with this plotting semivariogram and programming the highly complex parts of composing a sufficient kriging 
 approach40. The interpolation process of EBK follows three criteria as proposed by  Krivoruchko50, (a) the model 
estimate semivariogram from the input dataset (b) based on the generated semivariogram a new predicted is 
value against each inputted dataset location and (c) finally a model is computed from the simulated dataset. The 
bayesian equation rule is given as posterior

where the Prob(A) represents the prior, Prob(B) marginal probability in the most instances there they are ignored, 
Prob(B,A) the posterior. The semivariogram calculation is based on the Bayes rule, which exhibits the proclivity 
that the observed dataset can be created from the semivariogram. The semivariogram’s value is subsequently 
determined employing Bayes’ rule, which illustrates how probable the observed dataset could be created from 
the semivariogram.

(1)Prob(A,B) = Prob

(
A

B

)
Prob(B) = Prob(B,A) = P

(
B

A

)
P(A)

Figure 1.  Study area map [The study area maps was created with ArcGIS Desktop (ESRI, Inc, Version 10.7, 
URL: https:// deskt op. arcgis. com).]

https://desktop.arcgis.com
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Support vector machine regression. Support vector machine is a machine learning algorithm that 
generates an optimal disengaging hyperplane to differentiate identical but not linearly independent categories. 
 Vapnik51, created the algorithm for intent classification, but it has recently been used to solve regression-oriented 
problems. According to Li et al.52, SVM is one of the best classifier techniques and has been used in various 
fields. The regression component of SVM is used in this analysis (support vector machine regression-SVMR). 
Cherkassky and  Mulier53, pioneered SVMR as a regression based on the kernel, and its computation was per-
formed using a linear regression model with a multinational space function. John et al.54 reported that the SVMR 
modelling employs a hyperplane linear regression, which creates a nonlinear relationship and allows for the 
space function. According to Vohland et al.55 epsilon (ε)-SVMR uses a trained dataset to obtain a represented 
model as an epsilon -insensitive function applied to map data independently with the optimum epsilon-devia-
tion from dependent data training. The preset distance error within is ignored from the actual value, and if the 
error is larger than the epsilon (ε), the soil property compensates for it. The model also reduces the intricacy of 
training data to a broader subset of support vectors. The equation as proposed by  Vapnik51 is given as.

In which the b represents the scalar threshold, K
(
x,xk

)
 representing the kernel function, α denoting the 

Lagrange multiplier, N symbolizing the number dataset, xk representing the data input, and y is the data output. 
One of the critical kernels used is the SVMR operation with is the gaussian radial basis function (RBF). The RBF 
kernel was applied to ascertain the optimum SVMR model essential to procure the most nuanced penalty set 
factors C and the kernel parameters gamma (γ) for the PTE training data. First, we assessed the set of training 
and then tested the validation set’s model performance. The turning parameter used was sigma and the method 
value was svmRadial.

Multiple linear regression. The multiple Linear Regression Model (MLR) is a regression model that 
embodies the relationship between a response variable and numerous predictor variables by employing linearly 
incorporated parameters that are computed using the least-squares method. In MLR, the least square model is a 
prediction function that is directed toward a soil property following the selection of an explanatory variable. It 
was necessary to use the response in building a linear relationship using the explanatory variable. The PTE was 
used as the response variable which was used to establish the linear relationship utilizing the explanatory vari-
able. The MLR equation is given as

In which the y represents the response variable, a denotes the intercept, n signifies the number of predictors, 
b1 denotes the partial regression of coefficient, xi implies the predictors or the explanatory variables and the εi 
signifies the error in the model, which is also called residual.

The model was utilized in RStudio.

Hybrid modelling. The hybrid models were obtained by sandwiching the EBK as the base model with 
SVMR and MLR. This was done by extracting predicted values from the EBK interpolation. The predicted values 
obtained from interpolated Ca, K and Mg were passed through a combination process to obtain new variables 
such as CaK, CaMg and KMg. The elements Ca, K and Mg were then combined to obtain the fourth variable, 
CaKMg. Overall, the variables obtained were Ca, K, Mg, CaK, CaMg, KMg and CaKMg. These variables became 
our predictors that will aid in predicting Nickel concentration in urban and peri-urban soil. The predictors 
were subjected to an SVMR algorithm to obtain a hybrid model Empirical bayesian kriging—Support vector 
machine (EBK_SVM). Similarly, the variables were piped through MLR algorithm likewise to obtain a hybrid 
model Empirical bayesian kriging -multiple linear regression (EBK_MLR). Generally, the variables Ca, K, Mg, 
CaK, CaMg, KMg and CaKMg were used as covariates which served as predictors in predicting the Ni content in 
urban and peri-urban soil. The most acceptable model (EBK_SVM or EBK_MLR) obtained will then be visual-
ized using the self-organizing map. The workflow of the study is presented in Fig. 2.

Self‑organizing maps (SeOM). Using SeOM has become a popular tool in a variety of sectors for the 
organization, appraisal, and prediction of data in the financial sector, medical sector, industrial sector, statistics, 
soil science, and so on. SeOM was created using an artificial neural network for organization, evaluation, and 
prediction, as well as unsupervised learning approaches. In this study, SeOM was used to visualize the concen-
tration of Ni based on the finest model used to predict Ni in urban and peri-urban soil. The data treated in the 
SeOM assessment serves as an n input dimensional vector  variable43,56. Melssen et al.57 delineated that an input 
vector is connected to an output vector with a single weight vector by a single input layer into a neural network. 
The output generated from SeOM comes out as a two-dimensional map made up of diverse neurons or nodes 
knitted together into either a hexagonal, circular or square topological plot based on their  proximity43. Map sizes 
were compared based on metrics, quantization error (QE) and topographic error (TE), and a SeOM model with 
0.086 and 0.904 respectively was chosen, which was a 55-map unit (5 × 11). The neuron structure was deter-
mined based on empirical equation node number given as

(2)y(x) =
∑N

k=1
αk K

(
x,xk

)
+ b,

(3)y = a+
n∑

i−1

b1 X xi ± εi

m = 5×
√
n
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In which the m denotes the quantity of SeOM map neurons, n represents the input data quantity.

Data partitioning. The number of data used in this study is 115 samples. A random method was employed 
to dissect the data into test data (25% for validation) and a training dataset (75% for calibration). The train-
ing dataset was used to produce the regression models (calibration), and the test dataset was used to validate 
generalization  capabilities58. This was done to evaluate the appropriateness of the diverse models that are being 
used to predict nickel content in the soil. All the models used were subjected to a tenfold cross-validation pro-
cess that was replicated five times. The variables generated from EBK interpolation were used as the predictors 
or explanatory variables to predict the targeted variable (PTEs). The modelling was processed in RStudio, and 
the packages utilized were library (Kohonen), library(caret), library(modelr), library ("e1071"), library("plyr"), 
library("caTools"), library("prospectr"), and library ("Metrics").

Model performance metrics. A variety of validation parameters were used to determine the optimal 
model suitable for the prediction of nickel concentration in the soil and evaluate the accuracy of the model and 
its validation. The hybridized models were assessed using mean absolute error (MAE), root means square error 
(RMSE), and R square, or coefficient determination  (R2).  R2 defines the variance of the proportion in the answer 
and is represented by the regression model. The RMSE and the magnitude of the variance within the independ-
ent measurement describe the model prediction power, while MAE determines the actual quantitative value. The 
 R2 value must be high to evaluate the best-hybridized model using the validation parameters, and the closer the 
value is to 1, the higher the accuracy. According to Li et al.59an  R2 criteria value of 0.75 or greater is considered a 
good prediction; from 0.5 to 0.75 is acceptable model performance and below 0.5 is unacceptable model perfor-
mance. A lower obtained value is sufficient and considered best for selecting a model using the RMSE and MAE 
validation criteria evaluation methods. The following equation describes the validation methods.

Mean absolute error

R square

Root mean square error

MAE =
1

n

n∑

i=1

Yi − Ŷi

R
2 = 1−

∑
n

i=1(Ŷi − Yi)
2

∑
n

i=1(Yi−Ŷi)
2

Figure 2.  Flowchart of the study.
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whereby n represents the size of the observations Yi represents the measured response and the Ŷi also stated as 
the predicted response values, accordingly, for the ith observation term.

Results and discussion
Statistical description. The statistical description of the predictors and the response variables are shown in 
Table 1, displaying the mean, standard deviation (SD), coefficient of variability (CV), minimum value, maximum 
value, kurtosis and skewness. The elements minimum and maximum values descend in this Mg < Ca < K < Ni and 
Ca < Mg < K < Ni order, respectively. The concentration of the response variable (Ni) sampled from the study area 
ranged from 4.86 to 42.39 mg/kg. Comparing Ni with the world average value (29 mg/kg) and the European 
average value (37 mg/kg) indicates that the overall computed geometric mean of the study area is under tolerable 
limits. Nevertheless, comparing the mean concentration of nickel (Ni) in this current study to the agricultural 
soils in Sweden, as indicated by Kabata-Pendias11 exhibits that the current mean concentration of Ni is higher. 
Similarly, the mean concentration in the current study (Ni 16.15 mg/kg) of the urban and peri-urban soil in 
Frydek Mistek is higher than the permissible limit for Ni in urban soil in Poland as reported by Różański et al.60 
(10.2 mg/kg). Furthermore, the mean Ni concentration in Tuscan urban soil recorded by Bretzel and  Calderisi61 
(1.78 mg/kg) is very low compared to the current study.  Jim62 also identified a low Ni concentration in Hong 
Kong urban soil (12.34 mg/kg), lower than the current Ni concentration of this study. Birke et al.63 reported a 
Ni mean concentration of 17.6 mg/kg in an old mining and urban industrial area in Sachsen-Anhalt, Germany, 
which is 1.45 mg/kg higher than the Ni (16.15 mg/kg) mean concentration in the current study. The concentra-
tion of Ni in some parts of the study area’s urban and peri-urban soil that exceeds the allowable limit might be 
attributed largely to steel industries and metal works. This is inline with Khodadoust et al.64 studies that steel 
industries and metal works are major sources of nickel pollution in the soil. However, the predictor variables also 
ranged from 538.70 mg/kg to 69,161.80 mg/kg for Ca, 497.51 mg/kg to 3535.68 mg/kg for K and 685.68 mg/kg to 
5970.05 mg/kg for Mg. Jakovljevic et al.65 investigated the total content of Mg and K in central Serbian soil. They 
found that the total concentration (410 mg/kg and 400 mg/kg, respectively) was lower than the Mg and K con-
centration of the current study. Indistinguishably, in eastern Poland, Orzechowski and  Smolczynski66 assessed 
the total content of Ca, Mg and K, and the results suggested that the mean concentration Ca (1100 mg/kg), Mg 
(590 mg/kg) and K (810 mg/kg) in the topsoil were lower than the individual elements in this present study. A 
recent study conducted by Pongrac et al.67 revealed that Ca total content analyzed in 3 different soil in Scotland 
Uk (Mylnefield soil, Balruddery soil and Hartwood soil) suggested the Ca content of the present study is higher.

The dataset distribution of the elements exhibited different skewness due to the differences in the measured 
concentration of the elements sampled. The skewness and the kurtosis of the elements ranged from 1.53 to 7.24 
and 2.49 to 54.16 correspondingly. All the computed skewness and kurtosis levels of the elements were above + 1, 
and it thus indicates that the data distribution is irregular skewed in the right direction and leptokurtic. The 
estimated CV of the elements also suggested that K, Mg and Ni showed a moderate variability, whereas Ca had 
extremely high variability. The CV of K, Ni and Mg explained that they are homogeneously distributed. Moreover, 
Ca distribution is non-homogeneous, and an external source might influence its level of enrichment.

Correlation between response and predictor variable. The correlation of the predictors against the 
response element suggested a satisfactory correlation among the elements (see Fig. 3). The correlation suggested 
that CaK showed a moderate correlation with r value = 0.53 and CaNi similarly displayed moderate correlation. 
Even though Ca and K showed moderate nexus, among each other but researchers such as Kingston et al.68 and 
 Santo69 have suggested that their content in the soil is inversely proportional. However, Ca and Mg are antagonis-
tic to K, but CaK correlated very well. This might be due to applying fertilizer such as potassium carbonate that 
is 56% richer in potassium. Potassium correlated moderately with magnesium (KMg r = 0.63). In the fertilizer 
industry, these two elements have a history of strong relationships due to applying potassium magnesium sulfate, 
potassium magnesium nitrate and muriate of potash to the soil to enhance its deficiency level. Nickel correlated 

RMSE
(
mg/kg

)
=

√
1

n

n∑

i=1

(Ŷi − Yi)
2

Table 1.  Statistical description of predictors and response.

Ca K Mg Ni

mg/kg

Predictors Response

Mean 3624.83 1289.75 1981.91 16.15

Standard deviation 7969.72 446.87 666.69 6.78

Coefficient of variability 219.86 34.65 33.64 41.97

Minimum value 538.70 497.51 685.68 4.86

Maximum value 69,161.80 3535.68 5970.05 42.39

Kurtosis 54.16 4.82 11.67 2.49

Skewness 7.24 1.54 2.48 1.63
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moderately with Ca, K and Mg with r values = 0.52, 0.63 and 0.55, respectively. The relationships involving cal-
cium, magnesium, and PTE such as nickel are complicated, but notwithstanding, magnesium inhibits calcium 
absorption, calcium decreases the effects of excess magnesium, and both magnesium and calcium reduce the 
toxicity effects of the nickel in the soil.

Spatial distribution of the elements. Figure  4 illustrates the spatial distribution of the elements. 
According to Burgos et al.70 applications of spatial distribution is a technique used to quantify and highlight hot 
spots of polluted areas. The enrichment level of Ca in Fig. 4 can be seen in the northwestern part of the spatial 
distribution map. The map shows moderate to high hotspots of Ca enrichment. Calcium enrichment in the 
northwestern part of the map might be due to the application of quicklime (Calcium oxide) to reduce soil acid-
ity and its application in steel plants as basic oxygen in steel making process. On the other hand, other farmers 
prefer to use calcium hydroxide in acidic soil to neutralize the pH level, which also surges the calcium content 
of the  soil71. Potassium exhibited hot spots in the northwestern part of the map and the eastern part as well. The 
Northwestern part is the predominantly agrarian community, and a moderate to high pattern of K might be 
due to the application of NPK and muriate of potash. This is coherent with other studies such as Madaras and 
Lipavský72, Madaras et al.73, Pulkrabová et al.74, Asare et al.75 who observed using muriate of potash and NPK for 
soil stabilization and treatment resulted in high K content in the soil. Potassium enrichment in the northwestern 
part of the spatial distribution map might be due to the usages of potassium-based fertilizers such as potassium 
chloride, potassium sulphate, potassium nitrate, sylvinite, and kainit to increase the k content of deficient soil. 
Zádorová et al.76 and Tlustoš et al.77 outlined that the application of potassium-based fertilizer increases the 
potassium level in the soil and, by a long effect will significantly upsurge soil nutrient content, especially K. Mag-
nesium showed a hot spot in the northwestern part of the map and relatively moderate hotspot in the southeast-
ern part of the map. Colloid fixation in soil depletes the concentration of magnesium in the soil. Its deficiency 
in the soil causes plants to portray interveinal chlorosis of yellowish colouration. Magnesium-based fertilizers, 
such as potassium magnesium sulphate, magnesium sulphate and Kieserite, treat deficiency syndrome (purple, 
red or brown colouration of plants indicating lack magnesium) in soils with normal pH  ranges6. The accumula-
tion of Nickel on the surface of the urban and peri-urban soil might be due to anthropogenic activities such as 
agriculture and Ni importance in stainless steel  production78.

The results of the model performance metrics of the elements used in this study are presented in Table 2. 
The RMSE and MAE for Ni, on the other hand, were both closer to zero (0.86 RMSE, −0.08 MAE). The RMSE 
and MAE values for K, on the other hand, were both acceptable. The RMSE and MAE results for calcium and 

Figure 3.  Correlation matrix of the elements showing the relationship between predictors and response (Note: 
The plot includes scatter plots between the element, and the significance levels is based on p < 0,001).
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magnesium were greater. Because of the dataset’s dissimilarity, the Ca and K MAE and RMSE results are greater. 
The results of this study’s RMSE and MAE for predicting Ni using EBK were found to be better than those of John 
et al.54 for predicting S concentration in soil using cokriging using the same collected data. The EBK output of 
our study is related to those of Fabijaczyk et al.41, Yan et al.79, Beguin et al.80, Adhikary et al.81, and John et al.82, 
especially K and Ni.

Performance of models. The performance of individual approaches for predicting Ni content in urban 
and peri-urban soil was assessed using the models’ performance (Table 3). Model validation and accuracy assess-
ment confirmed that the Ca_ Mg_ K predictors coupled with EBK SVMR model yielded the optimal perfor-
mance. The  R2, the root means square error (RMSE) and the mean absolute error (MAE) of the calibrated 
model Ca_Mg_K- EBK_SVMR model obtained 0.637  (R2), 95.479 mg/kg (RMSE) and 77.368 mg/kg (MAE) 
as against 0.663  (R2), 235.974 mg/kg (RMSE) and 166.946 mg/kg (MAE) for Ca_Mg_K-SVMR. Despite that, 
Ca_Mg_K-SVMR (0.663 mg/kg  R2) and Ca_Mg-EBK_SVMR (0.643 =   R2) obtained a good  R2 value; their RMSE 

Figure 4.  Spatial distribution of the elements [The spatial distribution maps was created with ArcGIS Desktop 
(ESRI, Inc, Version 10.7, URL: https:// deskt op. arcgis. com).]

Table 2.  Showing the EBK model performance.

RMSE MAE

mg/kg

Ca 2492.35 2072.23

Mg 142.71 − 13.31

K 9.46 − 0.88

Ni 0.86 − 0.08

https://desktop.arcgis.com
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and MAE results were higher than that of Ca_Mg_K-EBK_SVMR  (R2 0.637) (see Table 3). Moreover, the RMSE 
and MAE of the Ca_Mg-EBK_SVMR (RMSE = 1664.64 and MAE = 1031.49) model are 17.5 and 13.4, bigger 
than that of Ca_Mg_K-EBK_SVMR. Similarly, the RMSE and MAE of the Ca_Mg-K SVMR (RMSE = 235.974 
and MAE = 166.946) model are equally bigger than Ca_Mg_K-EBK_SVMR RMSE and MAE by a margin of 2.5 
and 2.2, respectively. The computed RMSE results indicated how concentrated the dataset is from the best fit line. 
It was observed that the RSME and MAE were higher. According to Kebonye et al.46 and john et al.54, the closer 
the RMSE and the MAE are to zero, the better the results. The quantified RSME and MAE values for SVMR and 
EBK_SVMR were higher. It was observed that consistently, the RSME estimated values were higher than MAE 
values, suggesting outliers. According to Legates and  McCabe83, the extent to which the RMSE surpasses the 
mean absolute error (MAE) is recommended as an indicator of the occurrence of outliers. This implies that the 
larger the heterogeneity of the dataset, the higher the MAE and RMSE  value38. The cross-validation accuracy 
assessment Ca_Mg_K-EBK_SVMR hybrid model predicts Ni content in the urban and peri-urban soil 63.70% 
accuracy level. This level of accuracy, according to Li et al.59 is an acceptable model performance rate. The cur-
rent results compared to a previous study by Tarasov et al.36 whose hybridized model created MLPRK (multi-
layer perceptron residual kriging) to the current study EBK_SVMR accuracy assessment indices reported with 
regards, RMSE (210) and MAE (167.5) were higher than the results we had in the current study (RMSE 95.479, 

Table 3.  Model comparison using diverse prediction models. Significant values are in bold.

Predictors

Models

SVMR EBK _SVMR EBK_MLR

mg/kg

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Ca 2.78E−01 1478.87 1015.300 6.85E−05 2710.6 1402.38 2.160E−02 6.246 4.425

K 0.306 323.602 228.251 0.079 144.949 120.139 6.000 E−02 6.123 4.324

Mg 0.161 418.771 324.731 0.002 162.293 122.298 1.350 E−01 5.872 4.296

Ca_Mg 0.416 346.868 259.569 0.643 1664.64 1031.49 1.480 E−01 5.829 4.314

Ca_K 0.584 312.264 242.796 0.533 113.175 91.920 6.100 E−02 6.119 4.320

K_Mg 0.511 281.239 196.885 0.523 114.201 90.926 1.350 E−01 5.871 4.302

Ca_Mg_K 0.663 235.974 166.946 0.637 95.479 77.368 1.500 E−01 5.823 4.320

Figure 5.  Represent the final predicted map using the hybridized model EBK _SVMR and using Ca_Mg_K as a 
predictor. [The spatial distribution map was created with RStudio (Version 1.4.1717: https:// www. rstud io. com/).]

https://www.rstudio.com/
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MAE 77.368). However, when the  R2 (0.637) of the current study is compared to the  R2 (0.544) of Tarasov et al.36, 
it is clear that the coefficients of determination  (R2) in this hybrid model is higher. The hybrid model’s marginal 
errors (RMSE and MAE) (EBK SVMR) are two times lower. Similarly, Sergeev et al.34 recorded 0.28  (R2) for the 
hybrid model developed (multi-layer perceptron residual kriging), compared to 0.637  (R2) for Ni in the current 
study. The prediction accuracy level of this model (EBK SVMR) is 63.7%, as opposed to 28% obtained by Sergeev 
et al.34. The final map (Fig. 5) created using the EBK _SVMR model and Ca_Mg_K as predictors showed patches 
of hotspots and a moderate to nickel prediction across the entire study area. This implies that the concentration 
of Ni in the study area is primarily moderate, with high concentrations in some specific areas. 

Visualization of predicted Nickel via EBK_SVMR model using self‑organizing map. Presented 
in Fig. 6 is the PTEs concentrations as component planes comprising of individual neurons. No component 
plane exhibited the same colour pattern as shown. However, the appropriate number of neurons per plotted 
map was 55. The SeOMs were made using various colours, and the more similar the colour pattern, the more 
comparable the sample attributes are. According to its precise colour scale, the single elements (Ca, K, and Mg) 
displayed a similar colour pattern with single high neurons and most low neurons. Consequently, CaK and 
CaMg shared some similarities with very high-level neurons and low to moderate colour patterns. Both mod-
els predicted the concentration of Ni in the soil by displaying moderate to high shades of colours such as red, 
orange, and yellow. The KMg model showed a lot of high colour patterns according to the precise scale and low 
to moderate patches of colours. The component plane distribution patterns of the models revealed high colour 
patterns according to the precise color scale ranging from low to high, indicating the potential concentration 
of Ni in the soil (see Fig. 4). The CakMg model component plane showed a diverse colour pattern from low to 
high according to the accurate colour scale. In additament, this model’s prediction of nickel content (CakMg) is 
similar to the spatial distribution map of Ni shown in Fig. 5. Both maps revealed high, moderate, and low pro-
portional Nickel concentrations in urban and peri-urban soil. Figure 7 depicts the silhouette method in k-mean 
groupings on the maps, which are divided into three clusters based on the predicted values in each model. The 
silhouette method indicated the optimal clustering number. Cluster 1 obtained the most soil samples,74, out of 
the 115 collected. Cluster 2 received 33 samples, while Cluster 3 received 8 samples. The seven component planes 
predictor combinations are simplified to allows for proper clustering interpretation. It is difficult to have suitably 
differentiated cluster patterns in the distributed SeOM map due to the numerous anthropogenic and natural 
processes that influence soil  formation78. 

Conclusion
The current research clearly illustrates a modelling technique for nickel concentration in urban and peri-urban 
soil. The study tested different modelling techniques, combining elements with modelling techniques to obtain 
the best method for predicting nickel concentration in soil. The SeOM component plane spatial characteristics 
of the modelling techniques exhibited a high colour pattern spanning between low to high on a precise colour 
scale, suggesting the concentration of Ni in the soil. However, the spatial distribution map corroborates with 
the component plane spatial distribution exhibited by EBK_SVMR (see Fig. 5). The results indicated that the 
support vector machine regression model (Ca Mg K-SVMR) predicted the concentration of Ni in the soil as 
a unitary model, but validation and accuracy evaluation parameters revealed that the error in terms of RMSE 
and MAE was very high. The modelling technique employed utilizing EBK_MLR models, on the other hand, 
was similarly deficient due to the low coefficient of determination  (R2) values. The use of EBK SVMR and com-
bined elements (CaKMg) resulted in good results with low RMSE and MAE error and a 63.7 percent accuracy 
level. The results proved that combining the EBK algorithm with a machine learning algorithm can generate 
a hybrid algorithm that can predict the concentration of PTEs in soil. The results indicated that utilizing Ca 
Mg K as predictors to predict Ni concentrations in the study area improved Ni prediction in the soil. It implies 
that the continual application of Ni-based fertilizer and industrial pollution of soil through the steel industry 
has the tendency to raise the concentration of Ni in the soil. The study revealed the ability of the EBK model to 
reduce error levels and improve the accuracy of spatial distribution models of soils in urban or peri-urban soil. 
Generally, we suggest applying the EBK-SVMR model for assessing and predicting PTEs in the soil; moreover, 
hybridization using EBK with various machine learning algorithms is also recommended. The use of elements as 
covariates predicted Ni concentration; however, using more covariates will go a long way to improve the model’s 
performance, which can be considered a limitation of the current work. An additional limitation of this study is 
that number of datasets is 115. As a result, if more data is provided, the performance of the suggested optimized 
hybridization approaches can be increased.



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3004  | https://doi.org/10.1038/s41598-022-06843-y

www.nature.com/scientificreports/

Figure 6.  Component planes for each empirical bayesian kriging -support vector machine (EBK_SVM_SeOM) 
variable output. [The SeOM maps were created with RStudio (Version 1.4.1717: https:// www. rstud io. com/).]

https://www.rstudio.com/
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