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Abstract

Long reads obtained from third-generation sequencing platforms can help overcome the long-standing challenge of the
de novo assembly of sequences for the genomic analysis of non-model eukaryotic organisms. Numerous long-read-aided
de novo assemblies have been published recently, which exhibited superior quality of the assembled genomes in comparison
with those achieved using earlier second-generation sequencing technologies. Evaluating assemblies is important in guid-
ing the appropriate choice for specific research needs. In this study, we evaluated 10 long-read assemblers using a variety of
metrics on Pacific Biosciences (PacBio) data sets from different taxonomic categories with considerable differences in
genome size. The results allowed us to narrow down the list to a few assemblers that can be effectively applied to eukary-
otic assembly projects. Moreover, we highlight how best to use limited genomic resources for effectively evaluating the
genome assemblies of non-model organisms.
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Introduction

Pacific Biosciences (PacBio) single-molecule real-time (SMRT)
and Oxford Nanopore sequencing technologies are the two
widely used third-generation, single-molecule sequencing
(SMS) technologies, which can generate average read lengths of
several thousand base pairs. SMRT sequencing technology suf-
fers from high error rates reaching up to 15% [1]; however, as
these errors are random, high-quality error-corrected consen-
sus sequences can be generated with sufficient coverage.
Application of SMRT sequencing to eukaryotic genomes [2–18]
has already demonstrated the obvious advantages provided by
long reads in de novo assembly, such as higher contiguity, lesser
gaps and fewer errors. The assembled contigs of recently
assembled plant and animal genomes can be routinely seen to

achieve an N50 of 1 Mb using SMS data. Hence, a significant rise
in the number of genomes sequenced using SMS technologies is
imminent, raising the need for evaluation of the available long-
read assemblers. Large-scale evaluation studies such as GAGE
[19], GAGE-B [20], Assemblathon1 [21] and Assemblathon2 [22]
have been attempted with short-read assemblers, providing
conclusions that serve as a useful guide for the de novo assembly
of a given target organism. Although such evaluations have also
been attempted for SMS data, these studies were either focused
on bacterial and smaller eukaryotic genomes [23, 24] or were
not sufficiently comprehensive to cover all of the available non-
hybrid long-read assemblers [25–27], while others are already
outdated because of continuous improvements in the technol-
ogy [28, 29]. Also genome size was found to correlate with conti-
guity in long-read assemblies [17]; hence, diverse genome sizes

Vasanthan Jayakumar is a graduate student at the Department of Biosciences and Informatics, Keio University, Japan. His research interest is in
Genomics and Bioinformatics.
Yasubumi Sakakibara is a Professor at the Department of Biosciences and Informatics, Keio University, Japan. His research interests are Bioinformatics
including genome assembly, metagenome analysis and artificial intelligence.
Submitted: 29 June 2017; Received (in revised form): 22 September 2017

VC The Author 2017. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

, 20(3), 2019, 866–876

doi: 10.1093/bib/bbx147
Advance Access Publication Date: 3 November 2017
Paper

Briefings in Bioinformatics

866

Deleted Text: single 
Deleted Text: real 
Deleted Text: since 
Deleted Text: ,
Deleted Text: &hx2009;
Deleted Text: ,
Deleted Text: ,
Deleted Text: ], 
https://academic.oup.com/


can help differentiate the effect of the assemblers on each data
set. In this study, we attempted to comprehensively evaluate
three important features—contiguity, completeness and cor-
rectness [1]—of long-read assemblers (Table 1), using SMRT
data of a bacterium (Escherichia coli, �5 Mb), protist (Plasmodium

falciparum, �23 Mb), nematode (Caenorhabditis elegans, �105 Mb)
and plant (Ipomoea nil, �750 Mb). We also designed a pipeline
(Figure 1) for assembling the data and evaluating the results of
different assemblers, which can be applied to both model
organisms as well as to non-model organisms with limited
genomic resources.

Materials and methods
Long-read assembly pipelines

Overlap layout consensus (OLC) approach, de Bruijn graphs and
string graphs are the commonly used algorithms for de novo

assembly [30–33]. The advent of SMS data introduced a new
challenge in de novo assembly because of the high error rates.
Hence, application of de Bruijn graphs was rendered unfeasible
[34], bringing back the OLC approach along with the string

graphs to higher prominence. The longer the reads, the more
efficient the assembly using the OLC approach, resulting in a
linear increase in contiguity [35]. Although second-generation
sequencing (SGS) reads were initially used for correcting long
reads [36], most of the current long-read OLC pipelines follow a
hierarchical approach (Figure 2), exclusively using SMS data as
follows: (a) select a subset of longer reads as seed data; (b) use
shorter reads to align against the longer seed data as reference,
and correct sequencing errors by consensus of the aligned
reads; (c) use the error-corrected reads for a draft assembly; and
(d) obtain a polished consensus of the draft assembly [36, 37].
The procedure to identify overlaps has been the key difference
in most long-read assemblers, and some of the overlap detec-
tion methods have been evaluated previously [38]. The long-
read assemblers assessed in the present work are briefly sum-
marized below.

Hierarchical Genome Assembly Process
Hierarchical Genome Assembly Process (HGAP) [36] was one of
the first hierarchical pipelines to exclusively use SMS reads for
assembling a genome. Higher-quality preassembled reads with
around 25–30� coverage are generated by aligning shorter reads

Figure 1. Evaluation pipeline.

Table 1. Summarized statistics of the assemblies

Organism #Contigs Assembly size (Mb) Longest contig (Mb) N50 (Mb) L50 CPU time (hours) Maximum RSS (GB)

Escherichia coli (4.6 Mb)
Maximum 1 4.7 4.7 4.7 1 83.9 44.5
Minimum 1 4.6 4.6 4.6 1 2.2 3.6
Mean 1 4.7 4.7 4.7 1 19.4 15.7

Plasmodium falciparum (23 Mb)
Maximum 43 23.8 3.3 1.7 7 2012.6 43.9
Minimum 15 23.1 2.1 1.3 5 20.1 4.5
Mean 26.3 23.4 2.9 1.5 6.1 441.7 22.7

Caenorhabditis elegans (105 Mb)
Maximum 452 106.9 7.1 3.7 38 6733.8 251.7
Minimum 68 101.9 2.7 0.8 11 13.4 10.1
Mean 166.7 104.2 5.1 2.2 19.4 1221.4 56.9

Ipomoea nil (750 Mb)
Maximum 8751 752.7 11.5 1.8 1194 28 504.7 331.2
Minimum 1697 642 2.5 0.1 104 129.7 16.2
Mean 4288 702.7 6.2 0.7 439.4 10 065.8 78.2

Note: L50 and N50 represent the number of contigs and the length of the contig, respectively, crossing 50% mark of the assembly. Higher N50 and lower L50 values indi-

cate highly contiguous assemblies. Max RSS represents the peak memory usage of the computational node.
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against longer seed reads. The preassembled reads are then fed
to the celera assembler [39] to obtain a draft assembly, followed
by applying a consensus polishing procedure called quiver.
BLASR [40] is used for aligning candidate overlaps, which are
identified using an Ferragina–Manzini (FM)-index search and
clustering of k-mer hits. The slower BLASR-based pipeline was
replaced by FALCON in the latest version (v4). To distinguish
between HGAP v3 and v4, the version used in the present evalu-
ation is referred to as HGAP3.

PBcR
PBcR [41] also follows the hierarchical approach using MinHash
Alignment Process (MHAP) for overlap detection. To identify k-
mers shared between overlapping reads, without performing
any alignments, k-mers of query reads are converted to integer
fingerprints using multiple hash functions. The minimum val-
ues from the multiple hash functions are used to create a set
called as MinHash sketch, for each read. MHAP then calculates
the Jaccard similarity index by comparing the sketches of query
reads to identify overlap candidates. Like HGAP3, the assembly
of the corrected reads is performed using the celera assembler.

Canu
Canu [25] is a fork of the celera assembler and improves on the
earlier PBcR pipeline into a single, comprehensive assembler.
Highly repetitive k-mers, which are abundant in all the reads,
can be non-informative. Hence, term frequency, inverse docu-
ment frequency (tf-idf), a weighting statistic was added to
MinHashing, giving weightage to non-repetitive k-mers as mini-
mum values in the MinHash sketches, and sensitivity has been
demonstrated to reach up to 89% without any parameter adjust-
ment. By retrospectively inspecting the assembly graphs and
also statistically filtering out repeat-induced overlaps, the chan-
ces of mis-assemblies are reduced.

FALCON
FALCON [42] is a hierarchical, haplotype-aware genome assem-
bly tool. The sequence data are split into blocks for comparison
using daligner [43]. Daligner first compiles a list of k-mers, along
with their read identifiers and read coordinates, and then sorts

them lexicographically. Identical k-mers from each block are
merged into a new list containing both the query identifiers and
their coordinates. A second sorting procedure, accounting for
the query coordinates, places neighboring matches adjacent to
each other, resulting in the identification of overlap candidates.
A directed string graph is created from the alignment of the
overlaps, with a collapsed diploid-aware layout, while main-
taining the heterozygosity information.

HINGE
HINGE [34] is one of the few assemblers not requiring an error-
correction step. Dalinger is used for overlap detection. The key
innovation of this assembler is the placement of hinges to mark
repeat regions that are not spanned by longer reads. Repeats are
identified using the coverage gradients of the alignments, and
an in-hinge and an out-hinge are marked on the reads, which
are on the boundaries of unbridged repeats. Only two reads per
repeat region, which have the longest overlap within the repeat,
are chosen for placing the hinges. When a repeat is spanned by
a completely bridged read, the other overlapping reads are
marked as poisoned and not considered for hinge placing,
thereby separating bridged repeats. Hinge-aided greedy
graphs are used to resolve repeat junctions before obtaining a
consensus.

Miniasm
Miniasm [37] was the first long-read assembler to not use error
correction and hence is fast. Minimap is used for overlap detec-
tion, which indexes subsampled k-mers (minimizers [44]) from
all the reads in a hash table, against which the query minimiz-
ers are then compared. The matches are sorted and clustered to
find the longest collinear matching chains to identify overlap
candidates. An assembly graph layout is subsequently con-
structed from the collinear matches and output as the
assembled contigs, without building any consensus. Because
error-correction and consensus procedures are not executed,
the error rate of the final assembly is equivalent to that of the
raw reads. To circumvent this, Racon [26], a consensus module,
was shown to generate high-quality contigs within reasonable

Figure 2. Hierarchical pipeline for OLC assembly approaches. Errors are displayed in Step C, which become reduced in number in the corrected reads. After assembly, a

consensus polishing step, which is not shown in the figure, will also be performed as part of the hierarchical pipeline.
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run times and is included in the present study as part of the
miniasm pipeline.

SMARTdenovo
SMARTdenovo (https://github.com/ruanjue/smartdenovo) is
another fast assembler, which can also work without error cor-
rection of the raw reads. Similar to minimap, SMARTdenovo
searches subsampled query k-mers in indexed hash tables,
which are then sorted and merged into collinear matches.
Alignment using a dot-matrix alignment method is performed
for adjacent matches, and the overlap candidates are subse-
quently input to a string graph layout. The consensus module
can reach an accuracy of up to 99.7%, albeit taking up much of
the entire computational time.

ABruijn
A de Bruijn graph [45] is a directed graph that is generally con-
structed from k�1 overlaps of adjacent k-mers. Rather, a set of
solid strings (frequent k-mers), instead of all k-mers, is used to
construct the ABruijn graphs because of the high error rates in
SMS reads. A fast dynamic programming approach is used to
find the longest common subpaths to obtain a rough estimate
of the overlaps between two reads. Overlapping read vertices
are added onto the graph, and the draft assembly is subse-
quently constructed. After aligning reads against the draft
assembly, ABruijn graphs are constructed again to obtain a pol-
ished consensus assembly.

Wtdbg
Wtdbg (https://github.com/ruanjue/wtdbg) is another assembler
that uses the framework of de Bruijn graphs. Unlike ABruijn
graphs, overlapping k-mer hits are identified among the reads
using a sorting approach similar to that adopted in minimap
and SMARTdenovo, and the hits are used to add on and con-
struct the fuzzy de Bruijn graphs. The resulting graphs, in com-
parison with ABruijn graphs, have reduced complexity and
thereby consume lesser memory.

Mapping, Error Correction and de novo Assembly Tool
Mapping, Error Correction and de novo Assembly Tool (MECAT)
[27] scans for identical k-mers, in blocks of sequences among
query reads, to calculate distance difference factor (DDF)
between neighboring k-mer hits. When the DDF is within a
specified threshold, scores are assigned to the blocks of k-mers
and extended to neighboring blocks. With the scoring mecha-
nism, a large number of irrelevant read overlap candidates are
filtered out, significantly reducing the computational time
before alignment. After error correction, the corrected reads are
pairwise-aligned and fed into a modified canu pipeline to con-
struct contigs.

Data sets for evaluation

The evaluation data sets were broadly chosen in such a way
that (i) data are available for public use, and (ii) genomes are of
diverse sizes.

Initially, the standard bacterial model organism E. coli was
chosen, and the sequence data (1 SMRT cell: �140� coverage) of
P6-C4 chemistry (Supplementary Figure S1A) were downloaded
from the PacBio DevNet website (https://github.com/PacificBios
ciences/DevNet/wiki/Datasets).

Plasmodium falciparum (protist) is one of the few smaller
eukaryotic genomes with long-read data available. Although the
genome is only �23 Mb in length, it contains 14 chromosomes

with a relatively high repeat content of 51.8% and a high AT% of
80.6% [46]. Plasmodium falciparum sequence data (9 SMRT cells:
�180� coverage) of P6-C4 chemistry (Supplementary Figure S1B)
were downloaded from the National Center for Biotechnology
Information’s Sequence Read Archive (SRA360189) [47].

In contrast to P. falciparum, C. elegans (nematode) has a
genome size of�105 Mb, but with only six, although much longer,
chromosomes. The genome is also estimated to contain �20 000
genes making it more complex when compared with those of E.
coli and P. falciparum, which have only �5000 genes each. There
are also relatively fewer transposons (�12%), although they are
sufficiently long (1–3 kb) to confound the genome assembly [48].
Caenorhabditis elegans sequence data (11 SMRT cells: �45�
coverage) of P6-C4 chemistry (Supplementary Figure S1C) were
also downloaded from the PacBio DevNet website.

Next, we tackled the main challenge of focus for this evalua-
tion using the genome of a non-model plant with a high repeti-
tive content and longer repeats. For this purpose, I. nil (plant)
data [2] of P5-C3 chemistry (Supplementary Figure S1A) were
obtained based on our previous work (90 SMRT cells: �50�
coverage; DRA002710). Ipomoea nil has a highly repetitive (64%)
genome of an estimated size of 750 Mb, with limited available
genomic resources, providing a good measure for similar repeti-
tive plant genomes. To evaluate the correctness of the I. nil
genome assemblies, restriction site-associated DNA (RAD)-seq
(DRA002758), expressed sequence tags (ESTs; HY917605–
HY949060) and bacterial artificial chromosome (BAC)-end data
(GA933005–GA974698) were used.

PacBio RSII was the sequencer used in all cases. The P6-C4
chemistry, in comparison with P5-C3, has shown an increase in
average read lengths and therefore the average read lengths of
the I. nil data set are slightly shorter than those of the other data
sets (Supplementary Figure S1). The reason for choosing only
SMRT data for the present study is that one of the aims was to
evaluate long-read assemblies without depending on SGS data,
whereas the nonrandom errors of nanopore data may still have
to rely on more accurate Illumina data [49, 50]. All four data sets
were preprocessed using HGAP3 to obtain filtered subreads for
assembly. Two rounds of consensus polishing were applied to
all assemblies using quiver.

Criteria for evaluation

For assessing the assembly results, we considered various met-
rics (Figure 1). Apart from N50 and L50 measures, the average
contigs-to-chromosomes (ctg/chr) ratio was calculated for
assessing contiguity. For gene-level completeness, BUSCO [51]
and CEGMA [52] were used. In eukaryotic contigs, the terminal
regions were scanned using tandem repeats finder [53] for the
presence of telomeres. Peak computational memory in the form
of maximum resident set size (RSS) and CPU time were deter-
mined to compare computational requirements. When com-
plete reference sequences were available, single-nucleotide
variations (SNVs), indels and structural variations (SVs) were
analyzed from QUAST [54] and Assemblytics [55] to evaluate
correctness; unique SVs provided a relative measure of assem-
bly errors. In addition, dot plots were visualized for rearrange-
ments. The percentage of reference sequences covered by the
assemblies was calculated using MUMmer [56] alignments.

For the non-model organism I. nil, linkage maps were con-
structed from RAD-seq [57] data using STACKS [58], to identify
mis-assembled contigs. Because the marker density of the link-
age maps was low, this also provided a good measure for conti-
guity, as larger contigs have a better chance of being
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incorporated in the linkage maps. ESTs and BAC-end reads were
used for assessing completeness. Longer contigs had a better
chance of concordantly mapping the 100 kb insert-sized BAC-
end read pairs, whereas discordant mapping rates provided an
indirect measure of mis-assemblies. Whole BAC sequences, of
�100 kb in length, were used to assess contiguity and complete-
ness, and also to identify SNVs and indels. Tpn transposons, a
unique feature of I. nil flowers [2], were also considered to assess
completeness.

Ranks were assigned for all the criteria, as listed in
Supplementary Methods. The ranks for all criteria were
summed up for each assembler. The summed score, in the
decreasing order, was used for assigning an overall rank. Also,
z-scores were calculated for all observed metrics, so that signifi-
cant observations received rewards or penalties [22]. The aver-
age of the z-scores, from all metrics, for each assembler was
plotted to observe z-score-based rankings, which displayed
high and low scores for better and worse performances, respec-
tively. For assemblies that failed during execution, either they
were left out from the rankings or assigned arbitrary low
rankings.

Versions of the tools and the commands used are detailed in
the Supplementary Methods.

Results
Contiguity

All of the assemblers reported good contiguity (Table 1).

Escherichia coli
A single contig representing the complete bacterial genome was
reconstructed by all the assemblers (Supplementary Table S1).

Plasmodium falciparum
Fewer number of contigs (15–43 contigs), high N50 values (1.2–
1.7 Mb), low L50 values (5–7) and low ctg/chr ratios (1–2.27 ratios)
were generally observed in all the assemblies, representing high
level of contiguity, despite the repetitive nature of the genome.
MECAT, in particular, reconstructed every chromosome in one
piece, whereas miniasm, SMARTdenovo and wtdbg produced
comparatively fragmented or redundant contigs (Supplementary
Tables S2 and S3).

Caenorhabditis elegans
The N50 exceeded 1 Mb in all, but the PBcR assembly. Canu had
the best N50 (3.6 Mb) and L50 (11) values, while PBcR had low
N50 (847 kb) and high L50 (38) values. In general, six contigs, on
an average, were found to be sufficient to represent a chromo-
some (Supplementary Tables S4 and S5).

Ipomoea nil
HGAP3 obtained the best contiguity (N50¼1.53 Mb; L50¼120) and
was the only assembler to have contigs >10 Mb in length. Canu
and FALCON shared the next best N50 (934 and 904 kb, respec-
tively) and L50 values (191), while both wtdbg and miniasm had
fragmented assemblies (Supplementary Table S6).

The shorter the genome, the lesser the differences observed
in contiguity among the assemblers. However, with longer
genomes, the contiguity profiles progressively started to differ
among the assemblers (Supplementary Figures S2–S4).

Completeness

Escherichia coli
In all the cases, the assembly size was slightly larger than that
of the reference genome, with 99.9% BUSCO completeness
(Supplementary Table S1).

Plasmodium falciparum
On average, the contigs covered the 14 chromosomes in the
range of 95.67–99.90% (Supplementary Table S7). Excluding

ABruijn, the apicoplast genome was assembled by all the
assemblers, while the mitochondrial genome was only present
in the HGAP3 assembly. Canu was able to reconstruct 23 of the
28 telomeres, whereas the PBcR and wtdbg assemblies resolved
<10 telomeres (Supplementary Table S8). Intriguingly, Miniasm
was unable to resolve even a single telomere. BUSCO analysis
showed 67.4–68.9% completeness for all the assemblies, while it
should be noted that the original reference sequence also
yielded only 68.8% completeness.

Caenorhabditis elegans
At least 99% of all the chromosomes were covered by the
assembled contigs on average, excluding the wtdbg assembly
(Supplementary Table S9). Canu and HGAP3 produced 10 of 12
telomeres, whereas wtdbg produced only a single telomere
(Supplementary Table S10). All the assemblies also showed high
BUSCO (97.2–99.2%) completeness ratios.

Ipomoea nil
Most of the assemblies fell short of the expected genome size of
750 Mb; however, BUSCO reported completeness ratios in the
range of 92.9–94%. Most of the assemblies mapped around 99%

of the ESTs and BAC-end reads (Supplementary Table S11). PBcR
(314) and HGAP3 (311) resolved the largest number of Tpn trans-
posons (Supplementary Table S11), followed by canu (307) and
MECAT (307). MECAT (18), FALCON (16) and SMARTdenovo (16)
were better at resolving telomeres (Supplementary Table S11).

Some smaller PBcR contigs were present redundantly and
were covered within larger contigs with short overhangs. The
high BUSCO and CEGMA ratios indicated that the gene regions
were captured effectively, despite differences in the assembly
sizes. The shorter, circular and high-copy nature of the mito-
chondrial genomes could have possibly confounded the assem-
blers and were largely unassembled.

Correctness

After two rounds of consensus polishing of the draft assemblies,
the indel rates were drastically reduced.

Escherichia coli
Analysis using QUAST showed that all contigs had mis-
assemblies. However, on closer inspection using Assemblytics,
the source of the mis-assemblies reported by QUAST was
revealed to be because of three SVs, which are likely strain-
specific differences rather than mis-assemblies (Supplementary
Table S1). For instance, in the ABruijn assembly, the contig
length was equal to the reference length when the SVs were tal-
lied. However, most other assemblies still had a large number of
SVs (an average of 68.8 SVs compared with 9 SVs of ABruijn),
even after two rounds of polishing.
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Plasmodium falciparum
More than 5000 SVs were shared among all the assemblies.
Wtdbg (6448) produced the largest number of unique SVs,
whereas ABruijn (389), canu (384), MECAT (311) and PBcR (332)
performed better by producing a relatively smaller share of the
unique SVs (Supplementary Table S12). Dot plots were used for
observing rearrangements, which displayed small rearrange-
ments only in ABruijn and wtdbg assemblies. In other cases, an
approximate straight diagonal line was observed with strong
congruity.

Caenorhabditis elegans
A total of 17 893 SVs were shared among all the assemblies.
Wtdbg (30 622) produced the largest number of unique SVs,
whereas canu (2374), FALCON (3337), MECAT (2358) and PBcR
(4179) produced a relatively smaller share of unique SVs
(Supplementary Table S13). A single or a couple of mis-
assembled contigs were visible in the dot plots of all assemblies,
barring MECAT and SMARTdenovo.

Ipomoea nil
Miniasm (1.2 Mb) and wtdbg (5.8 Mb) assemblies had the short-
est of the mis-assembled contigs, while HGAP3 (128 Mb) showed
the largest share of mis-assembled data. HGAP3, FALCON and
MECAT had >100 Mb of mis-assembled contigs, whereas canu
offered the best balance in incorporating longer contigs
(593.3 Mb) into the linkage maps, with shorter (20.9 Mb) mis-
assemblies (Supplementary Table S14). Wtdbg (1.04%) and mini-
asm (2.53%) had the least discordantly mapping BAC-end read
pairs. Surprisingly, FALCON (6.36%) had the highest discordant
mapping rate (Supplementary Table S11). When BAC sequences
were completely covered by contigs, the per-base accuracy was
99.9% in four of the five BAC sequences (Supplementary Table
S15), while mismatched bases were almost nonexistent.
Fragmented contigs were not considered for assessing per-base
accuracy, as they had unresolved errors in overlapping terminal
regions.

A lot of SVs were shared among all the assemblers, which
may be actual variations rather than assembly errors. Unlike
the SMRT data, the Illumina-based assembly was found to have
large indels, and plenty of mismatches covering the five BAC
sequences in I. nil [2]. The evaluated assemblers, which are
based on the overlap information of the longer reads, had bene-
fited not just in terms of contiguity but also in per-base accu-
racy for a repetitive genome like I. nil.

Circularity and overlapping fragmented contigs

With the application of Circlator [59], it was evident that the cir-
cularity of some of the E. coli assemblies was clearly not
resolved, and hence the presence of additional base pairs,
which were subsequently trimmed out. The increased indel
rates were originally concentrated on the overlapping terminal
ends of the circularly unresolved contigs. As a result, the indel
rates became almost identical in all the circularly resolved
assemblies (Supplementary Table S16). However, Circlator was
unable to resolve the circularity for HGAP3, MECAT and wtdbg
assemblies. Similarly, when the contigs were fragmented in
repetitive regions, sometimes, the breakpoints happened in
such a way that two nearby contigs shared considerable over-
lapping terminal ends. Consensus polishing did not have an
impact in such overlapping regions leading to unresolved and
high amount of indel errors.

Resource usage

Escherichia coli
HINGE and wtdbg assemblies were quickly obtained, while
HGAP3 was the slowest, as expected (Figure 3A). Miniasm was
the fastest of all assemblers, and finished in about 16 min of
CPU time; however, two rounds of RACON execution required
25.81 CPU h, making this pipeline the second slowest.
SMARTdenovo consumed the maximum peak memory usage,
while HGAP3 consumed the least amount of memory
(Figure 3B).

Plasmodium falciparum
Wtdbg was the quickest assembler, closely followed by MECAT.
Other assemblers generally consumed hundreds of CPU hours,
with HGAP3 being almost 100-fold slower compared with the
speed of wtdbg (Figure 3A). ABruijn, SMARTdenovo and wtdbg
were memory-intensive, whereas canu, FALCON and MECAT
were memory-efficient (Figure 3B).

Caenorhabditis elegans
Wtdbg followed by MECAT were the fastest in producing assem-
blies, while PBcR was the slowest (Figure 3A). ABruijn consumed
a huge amount of memory, while canu was the most memory-
efficient, followed by MECAT and HGAP3 (Figure 3B).

Ipomoea nil
Wtdbg was again the fastest assembler (129.7 CPU h). It should
be noted that HGAP3 took 83.9 CPU h even for a bacterial
genome. MECAT was also fairly quick, while the celera-
dependent pipelines were the slowest (Figure 3A). Wtdbg con-
sumed 331.15 Gb of peak memory. MECAT was the best with
respect to both CPU time and peak memory usage, while canu
also showed a reasonable balance in resource usage (Figure 3B).

Ranking

Escherichia coli
The assemblers ABruijn, canu and FALCON in the order were
top-ranked in both the rankings (Figures 4 and 5A). The rank-
ings were heavily influenced by whether the assemblies were
circularly resolved, and hence, MECAT, HGAP3 and wtdbg were
pushed to the bottom of the table.

Plasmodium falciparum
Although HGAP3 had the highest N50 value, it was not the top-
ranked assembler (Figures 4 and 5B). Four assemblers in the
order of MECAT, FALCON, ABruijn and canu were top-ranked
according to their z-scores (Figure 5B), corroborating that N50
should not be the sole factor in choosing an assembly. HINGE
assembly was excluded from the rankings, as it resulted in a
segmentation fault and therefore was not tested for the other
eukaryotic data sets too.

Caenorhabditis elegans
Canu ranked at the top, followed by FALCON and MECAT (Figure
5C). Although miniasm was eighth in the ranking (Figure 4), it
surprisingly ranked fourth according to the z-scores, as a result
of obtaining considerably high z-scores for contiguity metrics
(Figure 5C). Without error correction, it would be difficult to dis-
tinguish duplications and repeats [37]; however, the repeat-
sparse nature of the C. elegans genome likely contributed to the
better contiguity achieved by miniasm.
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Ipomoea nil
ABruijn assembly resulted in a segmentation fault and was not
considered for evaluation. The highly repetitive nature and the
shorter insert size of the I. nil data set prevented all of the
assemblers from reaching a 1 Mb contig N50, excluding HGAP3.
Nevertheless, canu ranked first, ahead of HGAP3, in either of
the rankings (Figure 4 and 5D). If mis-assemblies were given
additional penalties, the ranking of HGAP3 might come down

further. For the first time, SMARTdenovo was ranked among the
top five assemblers.

Mean ranking of the three eukaryotic assemblies
When the rankings of the eukaryotic assemblies were averaged
(Figure 4), canu, MECAT, FALCON and HGAP3, in that order,
were on the top of the rankings. Similarly, in the z-score-based

Figure 3. Computational resource requirements. Computational requirements are represented as (A) log CPU time and (B) maximum RSS, a measure of peak memory

usage, for all assemblers. Refer to Supplementary Table S17 for actual CPU times. Failed assemblies (HINGE for the eukaryotic genomes, and ABruijn for the I. nil

genome) are not plotted.

Figure 4. Rankings for all assemblies. The lower the rank, the better is the assembly.
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mean rankings, canu, MECAT, FALCON and HGAP3, in that
order, displayed better performances with positive mean z-
scores (Figure 6).

Discussion

De novo genome assemblies using SMRT data, when compared
with earlier versions, have been shown to increase contiguity by
several hundred-folds [3, 6, 10], and resolve fragmented regions
into contiguous, gapless sequences [6, 41]. The average and
median contig N50 values of recently assembled plant and ani-
mal genomes using long reads are 6.24 and 3.60 Mb (Table 2),
respectively. In the current study, the three important fea-
tures—contiguity, completeness and correctness [1]—of long-
read assemblers were evaluated.

Canu ranked the best in the average rankings of all the
assemblies from all the data sets. Canu, because of its efficiency
to handle repeats [25], had fewer assembly errors, sometimes
trading contiguity for correctness. Indeed, it is essential to pri-
oritize correctness rather than contiguity, which would other-
wise defeat the purpose of building a reference genome for
future studies.

Canu and MECAT showed the best balance in computational
requirements. MECAT requires longer reads to effectively distin-
guish non-repetitive overlaps, and was found to underperform
in the case of I. nil, whose transposons can be longer than the
7 kb average insert size of I. nil data.

FALCON, the only diploid-aware assembler, showed reason-
able performance for genomes up to 100 Mb in length, similar to
MECAT. The FALCON assembly was surprisingly filled with mis-
assemblies for the I. nil data, probably because of the repeat

Figure 5. Z-score-based rankings. Average z-scores of all ranking metrics are plotted for (A) E. coli, (B) P. falciparum, (C) C. elegans and (D) I. nil. Higher the average z-value,

the better is the assembly performance. The failed ABruijn assembly is left blank for I. nil data set.

Figure 6. Mean z-score-based rankings. The mean scores of the individual average z-scores obtained from E. coli, P. falciparum, C. elegans and I. nil are plotted. Higher the

average z-value, the better is the assembly performance.
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filtering steps, leading to further loss of coverage in input data.
An increase in insert sizes and coverage could yield better per-
formance from both FALCON and MECAT.

HGAP3 was found to be the most contiguous assembler, but
with the disadvantage of extremely slow computation times.
Mis-assemblies were also most abundant in the HGAP3 assem-
blies, possibly because of the greedier nature of celera’s algorithm
at the layout stage [36]. In addition, as previously observed for
PBcR in the rice genome assembly [15], the celera-based assem-
blers, PBcR and HGAP3, were found to have redundant contigs.

PBcR is the second most widely used long-read assembler
(Table 2); however, it is no longer maintained, as the focus has
shifted to its successor canu, which seemed to outperform PBcR
in almost every analysis.

SMARTdenovo, although not the best, produced moderately
good results in all metrics and would be a suitable choice for
obtaining larger genome assemblies quickly.

Leaving out the consensus module, miniasm was the fastest
available assembler for all genomes evaluated, excluding I. nil.
Miniasm requires as much as 13% divergence for repeat resolution,
whereas canu and FALCON require only 3 and 5% divergence,
respectively [25]. Hence, miniasm produced fragmented contigs for
repeat-rich genomes, but obtained reasonable rankings otherwise.

HINGE may not be ideal for assembling large genomes, but
would be a good choice for assembling highly repetitive bacte-
rial genomes.

As observed in the assemblies of the slightly smaller yeast
genome [24], ABruijn, despite its good contiguity, was chimeric.
ABruijn failed to assemble the I. nil data set; however, when the
error-corrected reads of canu were used, the assembly was pos-
sible but only after consuming almost 500 Gb of maximum RSS.

Similarly, wtdbg was also memory-intensive, and both the
assemblers will need high-end servers for handling larger
genomes. In the case of repetitive genomes, both assemblers

could collapse repeats, leading to loss of information. In particu-
lar, the wtdbg assembly was found to be >100 Mb short of the
expected genome size in I. nil. Wtdbg assemblies, which always
ranked last, mostly because no consensus procedure was exe-
cuted, would need additional rounds of consensus polishing to
effectively compete with other assemblers. Wtdbg assemblies
also had fragmented contigs.

Mitochondrial genomes were generally left unassembled.
Hence, it might be necessary to either extract (i) reads that do
not align to the assembled contigs, (ii) or reads that align to an
available or a closely related mitochondrial genome. The
extracted reads could be used to perform an additional round of
assembly, for reconstructing extra-chromosomal genomes [47].
In addition, redundancy at the ends of contigs can be a major
obstacle for polishing the genome, as it might become difficult
for the reads to be aligned at such regions, leaving out errors
stranded in the terminal portions of the contigs. Indeed, when
whole BAC sequences of I. nil were covered by completely span-
ning contigs, the error rate was approximately homogenous
across all the assemblers, whereas when contigs were in over-
lapping fragmented pieces, the terminal overlapping regions
were found to have increased error rates. The same phenom-
enon was observed in redundant regions from circularly unre-
solved bacterial assemblies. Identifying such regions and
trimming the redundant base pairs may lead to an improved
overall per-base correctness.

Dot plots showed that many of the breakpoints in contig
mis-assemblies originated from different locations for different
assemblers. Contiguity profiles were also found to be different
for FALCON and PBcR in plant genome assemblies, and a hybrid
assembly using the different contiguity profiles was found to be
highly successful [17]. Hence, an alternative solution to increas-
ing the contiguity would be to combine different assemblies by
using reconciliation tools such as quickmerge [60]. For example,

Table 2. A list of recently assembled genomes using PacBio’s SMRT data

Organism Technology Assembly tool Contig N50/NG50 (Mb) Scaffold N50/NG50 (Mb) Study

Taeniopygia guttata PB FALCON 5.8 NA [3]
Calypte anna PB FALCON 5.4 NA [3]
Drosophila serrata PB PBcR 0.94 NA [4]
Utricularia gibba PB HGAP3 3.42 NA [5]
Arabidopsis thaliana PB PBcR 11.16 NA [41]
Drosophila melanogaster PB Canu 21.31 NA [25]
Homo sapiens CHM1 PB Canu 21.95 NA [25]
Vitis vinifera PB FALCON 2.39 NA [42]
Ipomoea nil PBþIlluminaþLM HGAP3 1.87 2.88 [2]
Vigna angularis PBþIlluminaþ454 Sprai, Celera 0.8 2.95 [7]
Oreochromis niloticus PBþRH mapþRAD map Canu 3.1 NA [8]
Gorilla gorilla PBþBAC-endþFosmid-end FALCON 9.56 23.14 [6]
Lates calcalifer PBþOMþLM HGAP3 1.72 25.85 [9]
Capra hircus PBþOMþHiC PBcR 18.7 87.28 [11]
Arabis alpina PBþOMþHiC PBcR, FALCON 0.9 3.8 [17]
Euclidium syriacum PBþOM PBcR, FALCON 3.3 17.5 [17]
Conringia planisiliqua PBþOM PBcR, FALCON 3.6 8.9 [17]
Corvus corone PBþOM FALCON 8.91 18.36 [10]
Zea mays PBþOM PBcR, FALCON 1.19 9.56 [13]
Homo sapiens NA12878 PBþOM PBcR, FALCON 1.4 31.1 [14]
Homo sapiens HX1 PBþOM FALCON 8.3 22 [12]
Oropetium thomaeum PBþOM HGAP3 2.4 7.1 [16]
Oryza sativa indica PBþFosmidsþOMþLM PBcR 4.43 1.22 [15]
Homo sapiens NA19240 PBþOM FALCON 7.25 78.6 [18]

PB, PacBio SMRT data; OM, Optical mapping data; LR, Linked reads; LM, Linkage maps.
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miniasm had fewer contigs and breakpoints compared with
MECAT for the C. elegans assemblies. Using miniasm assembly
as a backbone for extending the MECAT assembly may result in
longer and more accurate contigs in this case.

Similar to the evaluation of short read assemblers [19–22],
the current study did not reveal a clear winner; a similar result
was observed with evaluations of Nanopore sequencing data
[24]. That is, an optimal assembler for one data set may not be
optimal for a different data set. Hence, it would be ideal to try
out a variety of assemblers, as performed in the Solanum pennelii
genome project [49], and choose the best assembly based on
various evaluation strategies. Any available resources such as
BAC-end data, whole BAC sequences, previously annotated
gene sets and similar resources could be effectively used for the
purpose of evaluation, as demonstrated in this study.

Based on the results, we suggest that the best approach in
handling larger genomes would be to generate assemblies from
at least canu, FALCON, MECAT and SMARTdenovo, and basing
the final decision on the assembler according to different evalu-
ation metrics rather than on N50 alone. When time is not a lim-
iting factor, HGAP3 could also be used, but care should be taken
in recognizing mis-assembled and redundant contigs. Recently,
scaffolding techniques, such as optical mapping, CHICAGO, Hi-
C and linked reads, have been applied to correct mis-assemblies
[10–18], which can also be used for achieving chromosome-
scale assemblies.

Key Points

• All non-hybrid long-read assemblers are good at pro-
ducing excellent contiguity.

• Considering correctness, computational time and mem-
ory requirements, canu, MECAT, FALCON and
SMARTdenovo are recommended as minimum neces-
sity for assembling third-generation, single-molecule
sequencing (SMRT) data.

• As observed in the previous evaluations for short-read
assemblers [19–22], the assemblies should be carefully
evaluated using different metrics before finalizing the
assembly, without relying on just N50 metric.

• Redundant base pairs in the overlapping terminal
regions of fragmented contigs lead to unresolved errors,
even after several rounds of consensus polishing.

• High copy extrachromosomal genomes have a signifi-
cant chance of being filtered out. To reconstruct mito-
chondrial genomes, it may be necessary to identify
reads, which do not align to the assembled contigs, so
that they can be separately assembled.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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