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Inactivation of the Wnt/β‑catenin 
signaling pathway underlies inhibitory role 
of microRNA‑129‑5p in epithelial–mesenchymal 
transition and angiogenesis of prostate cancer 
by targeting ZIC2
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Abstract 

Background:  Prostate cancer (PCa) is a common disease that often occurs among older men and a frequent cause 
of malignancy associated death in this group. microRNA (miR)-129-5p has been identified as an essential regulator 
with a significant role in the prognosis of PC. Therefore, this study aimed to investigate roles of miR-129-5p in PCa.

Methods:  Microarray analysis was conducted to identify PCa-related genes. The expression of miR-129-5p and 
ZIC2 in PCa tissues was investigated. To understand the role of miR-129-5p and ZIC2 in PCa, DU145 cells were trans-
fected with mimic or inhibitor of miR-129-5p, or si-ZIC2 and the expression of Wnt, β-catenin, E-cadherin, vimentin, 
N-cadherin, vascular endothelial growth factor (VEGF), and CD31, as well as the extent of β-catenin phosphorylation 
was determined. In addition, cell proliferation, migration, invasion, angiogenesis, apoptosis and tumorigenesis were 
detected.

Results:  miR-129-5p was poorly expressed and ZIC2 was highly expressed in PCa tissues. Down-regulation of ZIC2 
or overexpression of miR-129-5p reduced the expression of ZIC2, Wnt, β-catenin, N-cadherin, vimentin, and β-catenin 
phosphorylation but increased the expression of E-cadherin. Importantly, miR-129-5p overexpression significantly 
reduced cell migration, invasion, angiogenesis and tumorigenesis while increasing cell apoptosis.

Conclusions:  The findings of the present study indicated that overexpression of miR-129-5p or silencing of ZIC2 
could inhibit epithelial–mesenchymal transition (EMT) and angiogenesis in PCa through blockage of the Wnt/β-
catenin signaling pathway.
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Background
Prostate cancer (PCa) is a most frequently occurring 
malignancy among older men [1, 2]. Prostate tumors are 
usually indolent, but a considerable number of tumors 
are highly aggressive and often metastasize to bones and 
other organs, leading to high morbidity and mortality [3, 
4]. In addition, PCa is typically marked by a high recur-
rence rates, whereby about 40% of local PCa cases recur 
after initial treatment, and the tumor progresses to hor-
mone refractory/castration resistance stage is basically 
untreatable [5, 6]. Epithelial–mesenchymal transition 
(EMT) and its reverse process are essential physiological 
processes during organogenesis and tissue differentia-
tion of normal embryonic development [7, 8]. The EMT 
process is also a part of cancer pathogenesis including 
PCa [9]. Angiogenesis is also an important feature of 
malignancy, and is particularly relevant in the progres-
sion to end-stage PCa [10]. There is a need to unravel the 
molecular events and players that are involved in these 
mechanisms.

Past studies have highlighted the regulatory role of 
microRNAs (miRNAs) in PCa pathogenesis. miRNAs 
regulate post-transcriptional gene expression and their 
dysregulation is implicated in the development of cancer 
[11, 12]. It has been previously reported that up-regu-
lated miR-129-5p could reduce EMT and thus functions 
as a tumor suppressor [13]. Down-regulation of miR-
129 has been demonstrated as a valuable prognostic 
biomarker of PCa proliferation [14]. Zinc-finger protein 
of the cerebellum (ZIC) 2, identified as a target gene of 
miR-129-5p in the present study, is the vertebrate homo-
logues of the Drosophila odd-paired (OPA) gene, includ-
ing ZIC1, ZIC2, ZIC3, ZIC4 and ZIC5, and has been 
implicated in multiple diseases including cancer [15, 16]. 
Another study has proved that the RNA levels of ZIC1, 
ZIC2, ZIC4 and ZIC5 are all induced in Gleason grade 
3 embedded in Gleason score (GS) 4 + 3 = 7 PCa [17]. 
miRNAs have recently become important regulators of 
EMT in diversity cancers [18]. miRNAs appear to regu-
late EMT by modulating posttranscriptional components 
such as EMT-transcription factors, epithelial and mes-
enchymal genes, or through regulation of key signaling 
pathways, which in turn modulate cancer progression 
and metastasis [7, 18]. For instance, overexpression of 
miR-129-5p attenuated EMT and proliferation in gas-
tric cancer by downregulating the expression of HMGB1 
[19]. The canonical Wnt signaling pathway, extensively 
conserved in the animal kingdom, is essential for embry-
onic development and adult tissue homeostasis [20]. 
Moreover, miR-129-5p has been reported to hamper pro-
liferation and invasion of chondrosarcoma cells by block-
ing the Wnt/β-catenin signaling pathway [21]. Based 
on the aforementioned evidences, we hypothesize that 

miR-129-5p played a significant role in PCa pathogen-
esis via its regulation of ZIC2-mediated Wnt/β-catenin 
signaling pathway. Therefore, the current study aimed to 
examine if miR-129-5p could impact EMT and angiogen-
esis in PCa by regulating ZIC2-mediated Wnt/β-catenin 
signaling pathway.

Materials and methods
Ethical statement
The study was approved by the Institutional Review 
Board of the First Hospital of China Medical Univer-
sity. Written informed consents were obtained from all 
patients or their guardians. All study procedures were 
conducted in accordance with the Declaration of Hel-
sinki. All animal experiments were conducted under 
the approval of guidelines for the protection and use of 
experimental animals issued by the National Institutes of 
Health (NIH), and strictly complied with the principles of 
completing the experiments with the minimum number 
of animals and minimizing pain.

Microarray analysis
The Gene Expression Omnibus (GEO) database (https​://
www.ncbi.nlm.nih.gov/geo/) was used to identify PCa-
related microarray datasets. The “limma” package in the 
R language was used to analyze differential expression 
with |log foldchange| > 2 and p < 0.05 as the screening 
threshold of differentially expressed genes (DEGs). The 
“pheatmap” package was used to construct a heat map of 
the DEGs. Next, PCa-related genes were selected using 
the MalaCards database (http://www.malac​ards.org/). 
The STRING database (https​://strin​g-db.org/) was used 
to analyze the correlation between known PCa genes 
and the DEGs obtained. A gene interaction network was 
constructed using Cytoscape. The TargetScan database 
(http://www.targe​tscan​.org/vert_71/), miRDB database 
(http://mirdb​.org/miRDB​/index​.html), mirDIP database 
(http://ophid​.utoro​nto.ca/mirDI​P/index​.jsp#r), miRNA-
path database (http://lgmb.fmrp.usp.br/mirna​path/tools​
.php) and starBase database (http://starb​ase.sysu.edu.
cn/) were used to predict the miRNAs that regulated the 
ZIC2 gene, and then the intersection of the results was 
obtained. The intersection of the results was searched in 
the microRNA.org database (http://34.236.212.39/micro​
rna/home.do).

Study subjects
A total of 60 cases of PCa tissues were collected from 
the PCa patients who had undergone prostatectomy in 
the Urology Department in the First Hospital of China 
Medical University from September 2016 to September 
2017, with the corresponding 60 adjacent normal tis-
sues taken as controls (all the samples were verified by 
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pathological examination). All subjects had no missing 
clinical data. The patients included were aged between 
54 and 76 years, old, with 26 patients ≥ 70 years old and 
34 patients < 70  years old; 46 patients of prostate trans-
verse diameter > 35 mm and 14 patients of prostate trans-
verse diameter < 35 mm; 43 patients of Gleason score ≤ 7 
points and 17 patients of Gleason score > 7 points. And 38 
patients in I + II stage, 22 patients in IIIA stage of tumor, 
node, metastases staging [22]. All the 60 cases of PCa 
patients were diagnosed as primary tumors. Moreover, 
all the patients had no previous history of PCa-related 
chemotherapy or radiotherapy. The adjacent normal tis-
sues were pathologically confirmed to be with no tumor 
cell infiltration and no obvious inflammatory reaction. 
The collected samples were fixed with 10% formaldehyde, 
routinely dehydrated, paraffin-embedded, and cut into 
4 μm sections for subsequent experiments.

Immunohistochemistry
The SP-9001 kit (Beijing noble Ryder Technology Co., 
Ltd., Beijing, China) was used for Immunohistochem-
istry. The normal and PCa paraffin tissues were allowed 
to stand at room temperature for 30  min, fixed by 4  °C 
acetone for 10 min followed by dewaxing and hydration. 
Next, samples were soaked with 3% H2O2 for 5–10 min 
to inhibit endogenous peroxidase activity and sealed 
with 5% normal goat serum working solution (C1771, 
Beijing Applygen Technology Co., Ltd., Beijing, China). 
After incubation for 10–15  min at 37  °C, the sections 
were probed with rabbit anti-human antibodies to Wnt3a 
(ab19925, 1:200, Abcam, Cambridge, UK) and β-catenin 
(ab16051, 1:100, Abcam, Cambridge, UK) overnight at 
4  °C. Next, the sections were allowed to stand at room 
temperature for 30 min and incubated with the second-
ary antibody, biotinylated goat anti-rabbit antibody to 
immune globulin (IgG; 1:1000, ab6721, Abcam, Cam-
bridge, UK) for 1 h at 37 °C. Following that, the sections 
were reacted with horseradish peroxidase (HRP)-labeled 
streptavidin (0343-10000U, Imunbio Biotechnology Co., 
Ltd., Beijing, China) for 1  h at 37  °C and with diamin-
obenzidine (DAB; ST033, Guangzhou Whiga Science and 
Technology Co., Ltd., Guangzhou, Guangdong, China) 
for 3–10  min. Subsequently, the sections were counter-
stained by hematoxylin (Shanghai Fusheng Industrial Co., 
Ltd., Shanghai, China) for 1 min, immersed in 1% hydro-
chloric acid alcohol for 10 s, soaked with tap water, and 
stained for 10 s with 1% ammonia to obtain a blue color. 
The sections were then dehydrated with conventional 
gradient alcohol, cleared by xylene, and sealed with neu-
tral balsam. Phosphate buffer solution (PBS) instead of 
the primary antibody was used as the blank control. Five 
high-power fields (200×) were randomly selected from 
each section and 100 cells were counted in each field. 

Scores were determined as the proportion of positive 
cells [23]. The positive cells/total cells > 10% was consid-
ered as positive (+) and positive cells ≤ 10% was consid-
ered as negative (−). Normally, the β-catenin+ cells in 
PCa tissues were mainly in the cytoplasm and nucleus, 
and poorly expressed in the membrane. The Wnt+ cells 
were mainly in the cytoplasm. The positively stained cells 
were expressed as brown or tan. Each experiment was 
carried out three times.

Dual‑luciferase reporter gene assay
Biological prediction website (https​://cm.jeffe​rson.edu/
rna22​/Inter​activ​e/) was applied to conduct the target 
gene analysis for ZIC2 and miR-129-5p. A dual-lucif-
erase reporter gene assay was used to verify whether 
ZIC2 was a target gene of miR-129-5p. Based on the 
predicted binding sequence between the 3′untranslated 
region (3′UTR) of ZIC2 mRNA and miR-129-5p, the 
target sequence and the mutant sequence were each 
designed. The target sequence was chemically synthe-
sized and digested by XhoI and NotI restriction sites. The 
synthesized fragment was cloned into the PUC57 vector 
(HZ0087, Shanghai Huzheng Industrial Co., Ltd., Shang-
hai, China), and recombinant plasmids were identified by 
DNA sequence assay once positive clones were identified. 
Next, the recombinant plasmids were subcloned into the 
psiCHECK-2 vector (HZ0197, Shanghai Huzhen Indus-
trial Co., Ltd., Shanghai, China), transferred into Escheri-
chia coli DH5α cells and amplified. All the plasmids were 
extracted in accordance with the instructions of plasmid 
mini-extracting kit Omega (D1100-50T, Beijing Solar-
bio Science & technology Co., Ltd., Beijing, China). The 
cells were seeded in a 6-well plate (2 × 105 cell/well) and 
transfected once they were adherent to the wall. After 
48 h, the effect of miR-129-5p on the luciferase activity of 
FGF3 3′-UTR in cells was detected using the dual-lucif-
erase reporter assay kit (D0010, Beijing Solarbio Science 
& technology Co., Ltd., Beijing, China). The fluores-
cence intensity was measured using a Promega Glomax 
20/20 luminometer fluorescence detector (E5311, Shanxi 
Zhongmei Bio-technology Co., Ltd., Xian, Shaanxi, 
China). Each experiment was repeated three times.

Cell culture, grouping and transfection
The DU145 PCa cell line (Cell Bank of Shanghai Institute 
of Cells, Chinese Academy of Science, Shanghai, China) 
was cultured in Dulbecco’s modified Eagle medium 
(DMEM) containing 10% fetal bovine serum (FBS) [24] 
with a mixture of penicillin–streptomycin solution at the 
ratio of 1:1 (100 U/mL), in a 5% CO2 incubator at 37 °C. 
Cells were detached with 0.25% trypsin and passaged at a 
ratio of 1:3. Next, the cells were cultured in 6-well plates 
at a density of 3 × 105 cells/well. When the cells reached 
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70–80% confluence, the following experiments were car-
ried out.

The cells at passage three were treated with trypsin, 
seeded in 24-well plates, and cultured until they grew 
into monolayers. These cells were then grouped as fol-
lows: the blank group (DU145 cells transfected without 
any sequence), the negative control (NC) group (DU145 
cells transfected with scramble siRNA), the miR-129-5p 
mimic group (DU145 cells transfected with miR-129-5p 
mimic plasmid), the miR-129-5p inhibitor group (DU145 
cells transfected with miR-129-5p inhibitor plasmid), 
the si-ZIC2 group (DU145 cells transfected with si-ZIC2 
plasmid), and the miR-129-5p inhibitor + si-ZIC2 group 
(DU145 cells transfected with miR-129-5p inhibitor and 
si-ZIC2 plasmid). The transfection sequences were con-
structed by Shanghai Sangon Biotech Company (Shang-
hai, China). Before transfection, cells were cultured in 
6-well plates for 24 h. When cell density reached 30–50%, 
the cells were transfected following the manufacturer’s 
instructions of lipofectamin 2000 (11668-019, Invitro-
gen, New York, CA, USA). A total of 250 μL serum-free 
Opti-minimal essential medium (MEM; 51985042, 
Gibco, Gaithersburg, MD, USA) was used for dilution of 
100  pmol plasmid (the final concentration was 50  nM), 
mixed gently and incubated for 5  min. Another 250 μL 
serum-free medium Opti-MEM was used to dilute 5 μL 
lipofectamin 2000, mixed gently and incubated for 5 min. 
These two mixtures were incubated for 20  min, added 
to the cell culture wells, and cultured within 5% CO2 at 
37 °C for 6–8 h. Next, a complete medium was used for 
incubation for 24–48 h for following experiments.

Reverse transcription quantitative polymerase chain 
reaction (RT‑qPCR)
The total RNA was extracted from the transfected cells in 
strict accordance with the instructions of the TRIZOL kit 
(15596-018, Beijing Solarbio Science & technology Co., 
Ltd., Beijing, China), and RNA concentration was deter-
mined. The primers used in this study were synthesized 
by Dalian TaKaRa Corporation (Dalian, Liaoning, China) 
(Table  1). The reverse transcription was conducted fol-
lowing the instructions of cDNA Reverse Transcription 
Kit (K1622, Beijing Reanta Biotechnology Co., Ltd., Bei-
jing, China). RT-qPCR was performed using a fluores-
cence quantitative PCR instrument (ViiA 7, Sun Yat-sen 
University DAAN GENE Co., Ltd., Guangzhou, Guang-
dong, China). U6 was used as the internal reference gene 
and the relative expression of miR-129-5p was calcu-
lated. With glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) used as the primer of internal reference, the 
relative expression of target genes (ZIC2, Wnt, β-catenin, 
E-cadherin and vimentin) was calculated by relative 
quantitative method (2−ΔΔCt) [25].

Western blot analysis
After 48  h of culture, cells of each group were lysed 
with a protein lysis buffer for 30 min at 4 °C and shaken 
once every 10 min. After centrifugation at 25,764×g for 
20  min at 4  °C, the supernatant was collected and used 
as the protein extraction solution. The protein concentra-
tion was determined using a bicinchoninic acid (BCA) 
kit (20201ES76, YEASEN Biotech Co., Ltd., Shanghai, 
China). The protein was separated by polyacrylamide 
gel electrophoresis (PAGE), transferred onto a polyvi-
nylidene fluoride (PVDF) membrane by wet transfer 
method, and blocked with 5% bovine serum albumin 
(BSA) for 1 h. The membrane was probed with the pri-
mary antibodies; rabbit anti-human antibodies to ZIC2 
(1:2000, ab150404), Wnt3a (1:1000, ab28472), β-catenin 
(1:4000, ab6302), p-β-catenin (1:500, ab75777), E-cad-
herin (1:20,000, ab40772), N-cadherin (1:1000, ab76057), 
vimentin (1:2000, ab92547), VEGF (1:2000, ab32152), 
CD31 (1:5000, ab76533), and GAPDH (1:500, ab9485) 
overnight at 4  °C. After being washed three times with 
tris-buffered saline tween (TBST) (each time for 5 min), 
the membrane was probed with HRP-labeled goat 
anti-rabbit IgG (1:10,000, ab6721) for 1  h at room tem-
perature. All antibodies were bought from Abcam (Cam-
bridge, UK). Subsequently, the membrane was washed 
three times with TBST (each time for 5 min) and devel-
oped. The ImageJ 1.48u software (National Institutes of 
Health, Bethesda, MD, USA) was used for protein quan-
titative analysis by computing the ratio of gray value of 
each protein to that of the internal reference. Each exper-
iment was repeated three times independently.

Table 1  Primer sequences for RT-qPCR

RT-qPCR reverse transcription quantitative polymerase chain reaction, miR-
129-5p micro RNA-129-5p, ZIC2 zinc-finger protein of the cerebellum 2, GAPDH 
glyceraldehyde-3-phosphate dehydrogenase, F forward, R reverse

Gene Sequence (5′–3′)

miR-129-5p F: CAA​AAA​GCG​GAC​AGG​

R: CAG​TGC​GTG​TCG​TGG​AGT​

ZIC2 F: GAG​GGC​ACC​TTG​TGA​TCA​TGT​

R: ACA​GGG​TGG​GAA​AGA​ACG​TG

Wnt F: CAG​AAG​GAC​CTT​GTT​TGC​CAGG​

R: CCT​CAG​GGT​ATT​GCT​GGA​CAAC​

β-Catenin F: CAA​GAC​CTC​GTG​CTC​CAG​TTAG​

R: GAC​CAA​AAG​GTG​ATG​CTG​GACAG​

E-Cadherin F: TGC​CCA​GAA​AAT​GAA​AAA​GG

R: GTG​TAT​GTG​GCA​ATG​CGT​TC

Vimentin F: GAG​AAC​TTT​GCC​GTT​GAA​GC

R: GCT​TCC​TGT​AGG​TGG​CAA​TC

U6 F: CTC​GCT​TCG​GCA​GCACA​

R: AAC​GCT​TCA​CGA​ATT​TGC​GT

GAPDH F: ACC​CAG​AAG​ACT​GTG​GAT​GG

R: TCT​AGA​CGG​CAG​GTC​AGG​TC
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3‑(4,5‑Dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium 
bromide (MTT) assay
After transfection for 48  h, the cells were counted and 
seeded in 96-well plates at a ratio of 3 × 103–6 × 103 cells/
well (100 μL/well). Six replicate wells were prepared. At 
the 24th h, 48th h, and 72nd h, cells were incubated with 
20 μL prepared 5 mg/mL MTT solution at 37 °C for 2 h. 
Next, 15 μL Dimethyl Sulphoxide (DMSO; WBBB011a, 
Beijing Qiangxin Biorepublic Co., Ltd., Beijing, China) 
was then added to each well. The optical density (OD) 
value was obtained at 570 nm using a microplate reader 
(NYW-96M, Beijing Nuoyawei Instrument Co., Ltd., Bei-
jing, China). Each experiment was conducted for three 
times. A cell viability curve was plotted using the time 
points at 24th h, 48th h, and 72nd h as abscissa and OD 
value as ordinate. The cell viability was calculated as fol-
lows = OD value of treated cells/OD value of control 
cells × 100% [26].

Transwell assay
Cells were starved in serum-free medium for 24  h and 
detached. Next the cells were resuspended in serum-free 
Opti-MEMI (31985008, Nanjing SenBeiJia Biological 
Technology Co., Ltd., Nanjing, Jiangsu, China) contain-
ing 10  g/L BSA, and the cell density was adjusted into 
3 × 104  cells/mL. A transwell chamber was placed in a 
24-well plate, and the bottom membrane on the apical 
chamber was coated with diluted Matrigel (40111ES08, 
YEASEN Biotech Co., Ltd., Shanghai, China) at a ratio of 
1:8, and then air-dried. Totally, 200 μL of cell suspension 
was added into the apical chamber coated with Matrigel, 
and 600 μL of Roswell Park Memorial Institute (RPMI) 
1640 culture medium with 20% FBS was added to the 
basolateral chamber. After 24  h of routine culture, the 
cells on the apical chamber were removed using cotton 
swabs, fixed using 4% paraformaldehyde for 15 min, and 
stained with methanol-prepared 0.5% crystal violet solu-
tion for 15 min. Five visual fields were randomly selected 
and photographed (200×) under an inverted microscope 
(XDS-800D, Shanghai CIKONG Optical Instrument Co., 
Ltd., Shanghai, China). The number of cells that had pen-
etrated the membrane was counted and the number of 
cells in each field was calculated to determine cell migra-
tion and invasion. Three replicates were set for all groups. 
This experiment was repeated for three times to obtain 
an average value.

Matrigel angiogenesis assay
Matrigel (356234, Shanghai ShanRan Biotech Co., Ltd., 
Shanghai, China) was placed in a freezer at 4 °C overnight 
to melt into a yellow gel. A total of 70 μL (0.5  mmol/L 
thickness) of the yellow gel was rapidly added to a pre-
cooled 96-well plate with a pre-chilled micropipette. 

Next, the plate was incubated for about 30 min at 37 °C 
until the Matrigel was frozen. After 48  h of infection, 
the cells were dissociated into a cell suspension. The cell 
suspension at 1 × 105 cells/mL was seeded into the wells 
coated with Matrigel and cell culture medium for the 
corresponding group was added to each well. The plates 
were incubated for 18  h, and then photographed under 
a low power microscopy system. Three fields were ran-
domly selected from each well and the number of blood 
vessels formed in each field was calculated. Each experi-
ment was carried out three times.

Flow cytometry
After transfection, the DU145 cells were treated with 
ethylene diamine tetraacetic acid (EDTA)-free trypsin, 
collected in a flow tube and centrifuged. The cells 
were centrifuged again, and then the supernatant was 
removed. According to the instructions of Annexin-
V-fluorescein isothiocyanate (FITC) Cell Apoptosis 
Detection Kit (40302ES60, YEASEN Biotech Co., Ltd., 
Shanghai, China), the Annexin-V-FITC/propodium 
iodide (PI) staining solution was prepared by dilution of 
the Annexin-V-FITC, PI, and 4-(2-hydroxyethyl)-1-pip-
erazineethanesulfonic acid (HEPES) buffer solution at a 
ratio of 1:2:50. Every 100 μL staining solution was used to 
re-suspend 1 × 106 cells, and the cells were shaken fully, 
incubated for 15  min, added with 1  mL HEPES buffer 
and mixed well. Cell apoptosis was determined by using 
525 nm and 620 nm band pass filters to detect the fluo-
rescence of FITC and PI at an excitation wavelength of 
488 nm.

In vivo xenograft assay
Male BALB/c nude mice (aged 4–6 weeks and weighing 
16–22 g) were used. All mice were housed in a humidity-
controlled (50–60%) room on a 12/12 h light/dark cycle 
with ad libitum access to chow and drinking water. After 
24 h of transfection, stably transfected DU-145 cells were 
detached with trypsin, resuspended in serum-free 1640 
medium and counted. A total of 1.5 × 106 DU-145 cells 
were implanted subcutaneously on the back of the nude 
mice (200 μL suspension). The growth of the resultant 
tumor was observed every 7  days starting from the 7th 
day. The volume (V) of the tumor was calculated using 
the formula V (mm3) = (D2 × L)/2, where L is the length, 
and D is the width of the tumor. The development of solid 
tumors was monitored for up to 35 days post xenotrans-
plantation. All mice were euthanized, and the tumor was 
excised and weighed.

Statistical analysis
SPSS21.0 statistical software (SPSS, IBM, Armonk, 
NY, USA) was used to analyze the statistical data. The 
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enumeration data were expressed as the number of cases 
or percentages. The comparisons were carried out using 
a Chi square test or Fisher’s exact test. The measurement 
data were summarized as mean ± standard deviation and. 
Data between 2 groups were analyzed using a t test, while 
those among multiple groups were compared using one-
way analysis of variance (ANOVA). Pairwise compari-
sons of mean values were made using Tukey test. α = 0.05 
was taken as the test level, and p < 0.05 was considered as 
statistically significant.

Results
miR‑129‑5p affects PCa by regulating ZIC2 and the Wnt/
β‑catenin signaling pathway
The GEO database was used to identify 3 PCa-related 
microarray datasets (GSE45016, GSE55945 and 
GSE46602). Differential analysis of gene expression in 
PCa samples and normal control samples on these three 

microarray datasets identified 667 DEGs in GSE45016, 
33 DEGs in GSE55945, and 759 DEGs in GSE46602. Fig-
ure  1a, b present the heat maps of 50 most significant 
DEGs in GSE46602 and GSE45016, respectively, and 
Fig. 1c is the heat map of all DEGs in GSE55945. A Venn 
diagram analysis was performed for the DEGs obtained 
from the three datasets to identify the overlapping DEGs 
(Fig.  1d). It was found that 8 genes were overlapping. 
Based on MalaCards database, 10 PCa-related known 
genes with highest scores were obtained (Table  2). In 
order to further identify the PCa-related genes among 
the DEGs, 8 obtained DEGs and 10 known PCa-related 
genes were used for correlation interaction analysis, and 
a gene interaction network map was plotted (Fig. 1e). The 
results revealed that the 10 known PCa-related genes 
were closely clustered and there was a replicating inter-
action between them. Among the 8 DEGs, ZIC2 and 
HOXC6 genes not only interacted directly with AR in the 
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known genes, but also interacted with other DEGs. After 
further retrieving the literatures concerning ZIC2 and 
HOXC6 genes, it was found that the effect of HOXC6 
on PCa had been reported in numerous studies [27–29]. 
However, the role of ZIC2 in PCa remained unclear. By 
retrieval of PCa-related signaling pathways, the Wnt/β-
catenin signaling pathway was found to have a role in 
development of PCa [30, 31]. In order to understand the 
upstream regulatory mechanism of ZIC2 and predict the 
miRNAs that regulated ZIC2, five databases including 
TargetScan and miRDB were applied to obtain overlap-
ping results (Fig.  1f ). Finally, there were 5 miRNAs in 
the intersection of the five database predictions. After 
retrieval of the binding of these 5 miRNAs with ZIC2 in 
the microRNA.org database, miR-181a, miR-181b, and 
miR-181c were all found to bind to ZIC2 at the same 
location, and they were found to have multiple binding 
sites on ZIC2. The mirSVR score of miR-96-5p and ZIC2 
was − 0.3957, whereas miR-129 only bound to ZIC2 at 
180 locations with mirSVR score of − 0.7863. Hence, 
miR-129 was selected for following study. Based on the 
above analysis and related reports, it was evident that 
miR-129-5p was likely to affect the development of PCa 
by targeting ZIC2 and regulating the Wnt/β-catenin sign-
aling pathway.

PCa tissues show increased ZIC2 expression and activated 
Wnt/β‑catenin signaling pathway while decreasing 
miR‑129‑5p expression
RT-qPCR was used quantify the expression of miR-
129-5p, ZIC2, Wnt, and β-catenin in adjacent normal 
tissues and PCa tissues, and the results (Fig. 2a) showed 
that compared with the control group, the expression of 
miR-129-5p in the PCa group was markedly decreased, 
but the mRNA expression of ZIC2, Wnt, and β-catenin 
was significantly increased (all p < 0.05). These results 

suggested that PCa tissues showed poorly expressed miR-
129-5p while highly expressed ZIC2, Wnt, and β-catenin.

Immunohistochemistry was used to analyze the expres-
sion of Wnt3a and β-catenin in PCa tissues (Fig.  2b, c), 
which revealed that the positive expression rates of 
Wnt3a and β-catenin in adjacent normal tissues were 
13.33% and 36.67%, respectively, whereas these rates in 
the PCa tissues were 73.33% and 93.33%, respectively. 
The number of positive cells was obviously increased. All 
these results indicated that the positive expression rates 
of Wnt3a and β-catenin in the PCa tissues were signifi-
cantly increased (all p < 0.05).

miR‑129‑5p targets ZIC2
Based on bioinformatic analysis, there was a specific 
binding between the ZIC2 gene sequence and the miR-
129-5p sequence, and ZIC2 was a target gene of miR-
129-5p (Fig. 3a). The dual-luciferase reporter gene assay 
was used to verify that ZIC2 was a target of miR-129-5p 
(Fig. 3b). The experimental results showed that the lucif-
erase signal of ZIC2-Wt in the miR-129-5p mimic group 
was decreased (p < 0.05) as compared with the NC group, 
with no significant difference in the ZIC2-mut (p > 0.05). 
Therefore, miR-129-5p was demonstrated to specifically 
bind to ZIC2.

Overexpression of miR‑129‑5p dampens the Wnt/β‑catenin 
signaling pathway and EMT process by targeting ZIC2
miR-129-5p expression, mRNA and protein expression 
of ZIC2, Wnt, β-catenin, E-cadherin and vimentin as well 
as the extent of β-catenin phosphorylation in cells were 
evaluated by RT-qPCR (Fig. 4a) and Western blot analysis 
(Fig.  4b, c). And the results showed that the expression 
of miR-129-5p in the miR-129-5p mimic group increased 
(p < 0.05), with no significant difference of expression 
of miR-129-5p in the si-ZIC2 group (p > 0.05) when 

Table 2  PCa-related genes

Symbol gene abbreviations, Description the gene description or gene full name, Score this score originates from Solr based GeneCards search engine score, obtained 
by querying the disease in GeneCards, Pubmed IDs PMID number of the related references, PCa prostate cancer

Symbol Description Score Pubmed IDs

PTEN Phosphatase and tensin homolog 1445.59 19081794, 20103652, 16778075

CHEK2 Checkpoint kinase 2 1441.94 16551709, 17085682, 15492928

MXI1 MAX interactor 1, dimerization protein 1394.38 7773287, 19042984, 24071797

AR Androgen receptor 1166.48 7723794, 19042984, 24071797

BRCA2 BRCA2, DNA repair associated 1100.63 11170288, 19042984, 24071797

MSR1 Macrophage scavenger receptor 1 1083.9 12244320, 19042984, 24071797

ZFHX3 Zinc finger homeobox 3 1067.26 16637072, 15750593, 16932943

KLF6 Kruppel like factor 6 1031.73 12651626, 18755691, 15247715

MAD1L1 Mitotic arrest deficient 1 like 1 1008.24 25831061, 11423979, 25781993

CDH1 Cadherin 1 686.47 7585573, 16483154, 17406365
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compared with the blank and NC groups. The expres-
sion of ZIC2, Wnt, β-catenin and vimentin, as well as the 
extent of β-catenin phosphorylation were significantly 
decreased, while that of E-cadherin was significantly 
increased in the miR-129-5p mimic and si-ZIC2 groups 
(p < 0.05). Compared with the blank and NC groups, the 
miR-129-5p expression and expression of E-cadherin in 
the miR-129-5p inhibitor group were significantly lower, 
while the expression of ZIC2, Wnt, β-catenin and vimen-
tin as well as the extent of β-catenin phosphorylation 
were significantly enhanced (p < 0.05). Relative to the 
blank and NC groups, the expression of miR-129-5p in 
the miR-129-5p inhibitor + si-ZIC2 group was markedly 

decreased (p < 0.05), with no significant difference in the 
expression of ZIC2, Wnt, β-catenin, E-cadherin, and 
vimentin as well as the extent of β-catenin phosphoryla-
tion (p > 0.05). Taken together, these results indicated that 
overexpressed miR-129-5p might hinder the activation of 
the Wnt/β-catenin signaling pathway by targeting ZIC2.

Inhibited proliferation of PCa cells is observed 
after overexpression of miR‑129‑5p or down‑regulation 
of ZIC2 treatment
MTT assay was applied to investigate effects of miR-
129-5 on the proliferation of PCa cells (Fig. 5a). There 
was no difference in OD value obtained at 24 h between 
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groups (p > 0.05). However, the OD values of the miR-
129-5p mimic and si-ZIC2 groups at 48  h and 72  h 
were significantly decreased (p < 0.05), while those 
of the miR-129-5p inhibitor group were significantly 
increased (p < 0.05) as compared with the blank and 
NC groups. No difference in the OD values of the miR-
129-5 inhibitor + si-ZIC2 group at 48 h and 72 h after 
transfection was observed (p > 0.05). Cell survival rate 
in all groups showed consistent trends (Fig. 5b). These 
results suggested the proliferation of PCa cells might be 

inhibited by over-expressed miR-129-5p or down-regu-
lated ZIC2.

Cell migration and invasion PCa cells are repressed 
after overexpression of miR‑129‑5p or down‑regulation 
of ZIC2 treatment
Transwell assay was used to evaluate the effect of miR-
129-5p on migration (Fig. 6a, b) and invasion (Fig. 6c, d) 
of PCa cells. Compared with the blank and NC groups, 
cell migration and invasion in the miR-129-5p mimic and 

R
el

at
iv

e 
ex

pr
es

si
on

miR
-12

9-5
p

ZIC
2

W
nt

β-c
ate

nin

E-C
ad

he
rin

Vim
en

tin

a PC-3
Blank
NC
miR-129-5p mimic
miR-129-5p inhibitor
si-ZIC2
miR-129-5p inhibitor + si-ZIC2

Blank
NC
miR-129-5p mimic
miR-129-5p inhibitor
si-ZIC2
miR-129-5p inhibitor + si-ZIC2

0.0

0.5

1.0

1.5

2.0

2.5
*

* ** *
*

*

*

*

**
*

*
*

* *

*
*

Blan
k

NC

miR
-12

9-5
p m

im
ic

miR
-12

9-5
p i

nh
ibi

tor

si-
ZIC

2

miR
-12

9-5
p i

nh
ibi

tor
 

+ s
i-Z

IC
2

ZIC2

Wnt

β-catenin

p-β-catenin

E-Cadherin

N-Cadherin

Vimentin

GAPDH

cb

R
el

at
iv

e 
pr

ot
ei

n 
ex

pr
es

si
on

ZIC
2

W
nt

β-c
ate

nin

p-β
-ca

ten
in

E-C
ad

he
rin

N-C
ad

he
rin

Vim
en

tin
0.0

0.5

1.0

1.5

2.0

PC-3

*

*

*

*

* *

*

*

*

*

* * *

*

* * **

*

*

*

Fig. 4  Overexpression of miR-129-5p suppresses the activation of ZIC2-dependent Wnt/β-catenin signaling pathway and EMT in PCa. DU-145 cells 
were treated with miR-129-5p mimic, miR-129-5p inhibitor or/and si-ZIC2. a The miR-129-5p expression and the mRNA expression of ZIC2, Wnt3a, 
β-catenin, E-cadherin and vimentin in DU-145 cells determined by RT-qPCR. b, c The protein expression of ZIC2, Wnt3a, β-catenin, E-cadherin and 
vimentin, and extent of β-catenin phosphorylation in DU-145 cells determined by western blot analysis; *p < 0.05 vs. the blank and NC groups; the 
experimental data are summarized as mean ± standard deviation; the one-way analysis of variance (ANOVA) was employed to analyze data among 
groups. This experiment was repeated three times

O
D

 v
al

ue
 (5

70
 n

m
)

24 h 48 h 72 h 
0.0

0.5

1.0

1.5

2.0

knalBknalB
NC
miR-129-5p mimic
miR-129-5p inhibitor
si-ZIC2
miR-129-5p inhibitor + si-ZIC2

NC
miR-129-5p mimic
miR-129-5p inhibitor
si-ZIC2
miR-129-5p inhibitor + si-ZIC2

*
*

*

*

*

*

C
el

l s
ur

vi
va

l r
at

e 
 %

 

0

50

100

150 *

* *

a b

Fig. 5  Overexpression of miR-129-5p or down-regulation of ZIC2 inhibits PCa cell proliferation. DU-145 cells were treated with miR-129-5p mimic, 
miR-129-5p inhibitor or/and si-ZIC2. a The OD values at the 24th, 48th, and 72nd h in DU-145 cells. b Cell survival rate after 48 h of transfection. The 
data are summarized as mean ± standard deviation; the repeated measurement analysis of variance was conducted to compare cell proliferation at 
different time points. The experiment was performed three times. *p < 0.05 vs. the blank and NC groups



Page 10 of 15Jiang et al. Cancer Cell Int          (2019) 19:271 

si-ZIC2 groups were significantly decreased (all p < 0.05) 
while those in the miR-129-5p inhibitor group were sig-
nificantly elevated (all p < 0.05). No significant difference 
in cell migration and invasion in the miR-129-5p inhibi-
tor + si-ZIC2 group was observed (p > 0.05). The results 
indicated that cell migration and invasion of PCa was 
attenuated by over-expression of miR-129-5p or down-
regulation of ZIC2.

Repressed angiogenesis of PCa cells is attributed 
to overexpressed miR‑129‑5p or down‑regulated ZIC2
Matrigel assay was used to analyze the impact of miR-
129-5p expression on angiogenesis of PCa cells, and the 
results (Fig. 7a, b) showed that, the miR-129-5p mimic 
and si-ZIC2 groups showed significantly decreased 
angiogenesis (p < 0.05), while miR-129-5p inhibitor 
group showed significantly enhanced angiogenesis 

(p < 0.05) when compared to the blank and NC groups. 
No significant difference in angiogenesis was found in 
the miR-129-5p inhibitor + si-ZIC2 group (p > 0.05).

Western blot analysis was used to analyze the expres-
sion of VEGF and CD31 in PCa cells (Fig.  7c, d). The 
protein expression of VEGF and CD31 in the miR-
129-5p mimic and si-ZIC2 groups was found to be 
significantly decreased (p < 0.05), while that in the 
miR-129-5p inhibitor group was significantly higher 
(p < 0.05) as compared with the blank and NC groups. 
No significant difference, however, was found in the 
protein expression of VEGF and CD31 in the miR-
129-5p inhibitor + si-ZIC2 group (p > 0.05). In sum-
mary, these findings indicated that overexpressed 
miR-129-5p or down-regulated ZIC2 suppressed angio-
genesis in PCa cells.
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Overexpressed miR‑129‑5p or down‑regulated ZIC2 leads 
to PCa cell apoptosis
Flow cytometry was used to examine the effect of miR-
129-5p on apoptosis of PCa cells (Fig. 8a, b). The apop-
tosis rate of the miR-129-5p mimic and si-ZIC2 groups 
was significantly potentiated (p < 0.05), while that of the 
miR-129-5p inhibitor group was significantly diminished 
(p < 0.05), as compared with the blank and NC groups. 
No statistically significant difference was evident in the 
apoptosis rate of the miR-129-5p inhibitor + si-ZIC2 
group (p > 0.05). These results showed overexpressed 
miR-129-5p or down-regulated ZIC2 might promote the 
apoptosis of PCa cells.

miR‑129‑5p overexpression or ZIC2 silencing promotes cell 
tumorigenesis in PCa
Finally, we examined the function of miR-129-5p over-
expression or ZIC2 silencing on tumorigenesis. As 
shown in Fig. 9, both the tumor volume and weight were 

significantly lower in the miR-129-5p mimic and si-ZIC2 
groups than that in the blank and NC groups (p < 0.05). 
Conversely, the tumor volume and weight were signifi-
cantly higher in the miR-129-5p inhibitor group than that 
in the blank and NC groups (p < 0.05). These data illus-
trated that ZIC2 served as an oncogene in PCa and miR-
129-5p played a tumor-suppressive role.

Discussion
PCa is one of the most prevalent carcinomas among men, 
resulting in a high number of cancer-related deaths [32]. 
miRNAs have been implicated in biological processes 
such as cell proliferation, differentiation, development, 
apoptosis, and metabolism, and their alterations have 
been found in various cancers and participate in patho-
genesis of cancers [33, 34]. Importantly, miR-129-5p 
has been demonstrated to express aberrantly in primary 
tumors of human PCa and prostate control specimens 
[35]. Therefore, this study investigated the function of 
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miR-129-5p in PCa, and it was found that up-regulated 
miR-129-5p could inhibit EMT and angiogenesis in PCa.

Initially, the results obtained from present study 
revealed that up-regulation of miR-129-5p could attenu-
ate EMT and angiogenesis of PCa. A previous study 
reported that miR-129-5p modulated EMT in tubu-
lar epithelial cells by targeting the gene PDPK1 [36]. 
β-Catenin, p-β-catenin, N-cadherin and vimentin are 
well established as indicators of EMT, and accordingly, 
the poor expression of β-catenin in chondrosarcoma 

cells of the miR-129-5p group has been observed, which 
further suppressed the cell proliferation, migration and 
promoted apoptosis [21]. Similarly, over-expression of 
miR-129-5p in the breast cancer cell line MCF-7 was 
found to significantly induce E-cadherin and suppress 
N-cadherin and vimentin expression [37]. Corroborat-
ing these findings, we noted that poor expression of 
β-catenin, N-cadherin, and vimentin and high expression 
of E-cadherin were markers of PCa inhibition. Addition-
ally, up-regulation miR-195 has been found to reduce 
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VEGF level by blocking VEGF receptor 2 signaling in 
endothelial cells and consequently inhibiting angiogen-
esis, consistent with our findings [38].

Additionally, miR-129 might play a role in inhibition 
of viability, proliferation, migration and invasion of PCa 
cells via directly suppressing E26 transformation spe-
cific-1 (ETS1), which was also provided new train of 
thought for us to popularize the carcinogenesis of PCa 
[39]. In laryngeal cancer, miR-129-5p can mediate cell 
proliferation, invasiveness, and migration by suppressing 
the expression of STAT3 [40]. Another study suggested 
that miR-129-5p mediates FNDC3B to suppress pro-
liferation, migration and invasion of glioblastoma cells 
U87 cells [41]. Overexpression of miR-129-5p alone has 
been found sufficient to promote apoptosis [42]. Consist-
ent with these findings, the current study demonstrated 
that up-regulated miR-129-5p could inhibit proliferation, 
migration, and invasion while promoting apoptosis of 
PCa cells.

Here, we showed that an operant mechanism of 
miR-129-5p in PCa involves impairment of the Wnt/β-
catenin signaling pathway via down-regulation of ZIC2. 
The Wnt/β-catenin signaling pathway, central to tis-
sue development in embryos and tissue maintenance in 
adults, is a major up-regulated signaling pathway in cas-
tration-resistant PCa [43]. Vimentin and E-cadherin are 
established as Wnt/β-catenin signaling pathway-related 
factors [44]. The Wnt/β-catenin signaling pathway is 

blocked upon down-regulation of the EMT marker 
vimentin [45]. The up-regulated E-cadherin expression in 
microwells was found following with a downregulation of 
the Wnt signaling pathway and the deficiency of nuclear 
β-catenin as well [46]. Consistent with former results, our 
data indicated over-expressed miR-129-5p and down-
regulated ZIC2 reduced the expression of Wnt, β-catenin 
and vimentin, but restored the expression of E-cadherin, 
which further indicated the inhibitory role of over-
expressed miR-129-5p or down-regulated ZIC2 on the 
Wnt/β-catenin signaling pathway.

Conclusion
In a conclusion, elevated miR-129-5p was found to block 
the activation of the Wnt/β-catenin signaling pathway in 
PCa, consequently inhibiting EMT and angiogenesis via 
targeting ZIC2 (Fig.  10). miR-129-5p can be considered 
as a new therapeutic target for PCa therapy. The down-
regulation of miR-129-5p can promote ZIC2 expres-
sion via activating the Wnt/β-catenin signaling pathway, 
and further enhanced the expression of Wnt, β-catenin, 
N-cadherin and vimentin and inhibited the expression 
of E-cadherin, thus resulting in cancer cell proliferation, 
invasion, migration along with EMT and angiogenesis 
and reduced apoptosis. Overexpression of miR-129-5p 
may reverse these events, thus limiting the growth of 
PCa. However, further studies with different disease 
models and larger cohorts are essential to validate these 
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Fig. 10  The molecular mechanism of miR-129-5p regulation of ZIC2 expression and the Wnt/β-catenin signaling pathway in PCa. In PCa, the 
expression of miR-129-5p was significantly decreased, while the expression of ZIC2 was significantly increased. miR-129-5p targeted ZIC2 and 
inhibited the expression of ZIC2. The up-regulated miR-129-5p could suppresses the expression of ZIC2, leading to reduced expression of Wnt, 
β-catenin, N-cadherin and vimentin with increase in E-cadherin expression. Eventually, up-regulated miR-129-5p significantly inhibited cell 
proliferation, migration, invasion and EMT while promoting PCa cell apoptosis
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findings and expand the translational potential of this 
direction.
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