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Abstract

There is now compelling evidence that gene by environment interactions are important in the etiology of autism spectrum
disorders (ASDs). However, the mechanisms by which environmental factors interact with genetic susceptibilities to confer
individual risk for ASD remain a significant knowledge gap in the field. The epigenome, and in particular DNA methylation,

is a critical gene expression regulatory mechanism in normal and pathogenic brain development. DNA methylation can be
influenced by environmental factors such as diet, hormones, stress, drugs, or exposure to environmental chemicals,
suggesting that environmental factors may contribute to adverse neurodevelopmental outcomes of relevance to ASD via
effects on DNA methylation in the developing brain. In this review, we describe epidemiological and experimental evidence
implicating altered DNA methylation as a potential mechanism by which environmental chemicals confer risk for ASD, using
polychlorinated biphenyls (PCBs), lead, and bisphenol A (BPA) as examples. Understanding how environmental chemical
exposures influence DNA methylation and how these epigenetic changes modulate the risk and/or severity of ASD will not
only provide mechanistic insight regarding gene-environment interactions of relevance to ASD but may also suggest potential
intervention strategies for these and potentially other neurodevelopmental disorders.
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Introduction

Autism spectrum disorders (ASDs) are neurodevelopmental dis-
orders characterized by core deficits in social communication
and interaction, restricted interests, and repetitive patterns of be-
havior. Symptoms typically present in the first 2 years of life,
though there is considerable clinical heterogeneity in severity,
comorbidities, and response to treatment [1-3]. According to
the autism and developmental disabilities monitoring network of
the Centers for Disease Control (CDC), 1 in 68 eight-year-old

children is diagnosed with ASD [4]. Although ASD affects both
sexes, it is almost five times more common among boys (1 in 42)
than girls (1 in 189) [4]. Alarmingly, the incidence of ASD con-
tinues to increase. Independent studies have reached the com-
mon conclusion that this trend cannot be explained in its
entirety by increased awareness, broadening of diagnostic crite-
ria, or improved detection of ASD [5-8]. In fact, these studies sug-
gest that factors other than diagnostic drift likely account for
more than one-half of new cases. Given that the economic cost
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of healthcare, schooling, and caregiver services for a child with
ASD are estimated to start at $17, 000 more per year compared
with a child without ASD [9], these sobering statistics underscore
the need to identify factors that confer risk for ASD.

Evidence Suggesting Environmental Factors
Influence ASD Risk

To date, much of the research on ASD etiology has focused on
genetic factors [10, 11]. Although ASD is considered one of the
most heritable neurodevelopmental disorders [12, 13], single ge-
netic anomalies account for only a small proportion of affected
cases [14, 15]. Furthermore, genes linked to ASD rarely segregate
in a simple Mendelian manner [12]. These results have been in-
terpreted as an indication that genetic mutations are not neces-
sarily causal but rather act as modifying risk factors that singly
or in combination contribute to ASD risk and/or severity.
Numerous mechanisms have been proposed to explain how ge-
netic mutations influence ASD, including inheritance of multi-
ple gene variants with small to moderate effects on ASD, rare de
novo single gene mutations, copy number variants, or alter-
ations in the epigenome [16-21].

An alternative hypothesis that is gaining consensus in the
field is that the genetic substrate confers increased susceptibil-
ity to environmental factors that interfere with normal neuro-
development. It is the interaction between genes and the
environment that determines individual ASD risk, clinical phe-
notype, and/or treatment outcome. Evidence supporting envi-
ronmental contributions to ASD risk include observations of
incomplete concordance for autism among monozygotic twins
and incomplete penetrance within individuals expressing a
given ASD-linked gene mutation, whereby a significant percent-
age of carriers do not express autistic phenotypes [14, 19, 22].
Two large, independent twin studies that examined the relative
contributions of genetic heritability versus the shared environ-
ment similarly concluded that environmental factors were
more predominant than genetic factors in determining autism
risk [23, 24]. A significant role for environmental factors in de-
termining ASD risk is consistent with the clinical heterogeneity
that is a hallmark characteristic of these neurodevelopmental
disorders and suggests a plausible explanation for the exponen-
tial rise in ASD cases over the past several decades.

Diverse environmental factors have been implicated as risk
factors for ASD, including maternal stress and drug use, pater-
nal age, nutritional status, hormones, and environmental
chemicals [14, 25-29]. In this review, we focus on environmental
chemicals. Environmental chemicals that have been implicated
as risk factors for ASD include polychlorinated biphenyls (PCBs),
lead, bisphenol A (BPA), mercury, and pesticides (Tables 1-2)
[52-62]. However, mechanisms by which these environmental
factors interact with genetic susceptibilities to confer individual
risk for ASD remain largely speculative. Emerging evidence sug-
gests that environmental chemicals can alter DNA methylation
patterns in the developing brain, and these reports have led to a
prevailing hypothesis in the field that environmental factors
confer risk to genetically susceptible individuals via modulation
of the developing brain methylome. Here, we review the evi-
dence and the critical gaps in knowledge relevant to this hy-
pothesis. In the following sections, we provide an overview of
DNA methylation and its importance in neurodevelopment,
then review experimental evidence demonstrating that envi-
ronmental chemicals hypothesized to confer ASD risk alter the
epigenome, specifically DNA methylation, using PCBs, lead, and

BPA as examples (Table 1). We conclude with a discussion of the
evidence linking effects of environmental chemicals on DNA
methylation to increased risk of ASD.

An Overview of DNA Methylation and Its
Importance in Neurodevelopment

Epigenetic modifications such as DNA methylation, histone pro-
tein modifications, and microRNAs function to regulate the
transcriptional potential of a cell without altering its DNA se-
quence. The establishment, maintenance, and removal of epi-
genetic marks are critical during neurodevelopment and when
disrupted can have significant impacts on neurodevelopment
and cognitive function [63-66]. DNA methylation, the focus of
this review is one of the most widely studied epigenetic modifi-
cations in development and disease, including ASD.

DNA methylation refers to the addition of a methyl group to
the 5 position of cytosine. This typically occurs at regions rich
in CpG [67, 68]. DNA methylation is generally associated with
transcriptional repression either through direct inhibition of
transcription factor binding or the recruitment of methyl CpG
binding domain (MBD) proteins, which interact with histone
modifiers to confer a repressive chromatin state [69]. DNA
methylation is catalysed by the DNA methyltransferase (DNMT)
protein family. DNMT1 functions primarily in maintenance of
DNA methylation whereas DNMT3A and DNMT3B are primarily
involved in de novo DNA methylation [69]. Global deletion of
mouse Dnmtl, Dnmt3b, or both Dnmt3a+ Dnmt3b results in
midgestation lethality [gestational day (GD) 9.5-11.5], while de-
letion of only Dnmt3a produces severe growth retardation and
lethality by 4 weeks of age [70-72].

Pharmacological approaches and conditional deletion
studies confirm roles for Dnmts in the developing central ner-
vous system [73, 74]. Conditional deletion of Dnmt1 in develop-
ing excitatory neurons and astroglia of the mouse cortex and
hippocampus results in neuronal cell death between GD14.5
to 3 weeks postnatally and results in deficits in learning and
memory in adulthood [63]. A fraction of hypomethylated neu-
rons survive postnatally but exhibit increased dendritic
branching and impaired excitability, likely through mecha-
nisms related to neuronal layer specification, cell death, and
ion channel function [63]. Mice lacking Dnmtl and Dnmt3a in
postmitotic neurons show abnormal long-term plasticity in
CA1 hippocampal neurons along with deficits in learning and
memory [75]. Additionally, inhibiting DNMT activity increases
miniature excitatory postsynaptic currents in cultured cortical
neurons, suggesting that DNA methylation regulates glutama-
tergic synaptic strength [76]. Together, these studies not only
demonstrate the requirement for DNA methylation during
neurodevelopment but also suggest that tight spatial and tem-
poral regulation of Dnmts is important for activity-dependent
synaptic plasticity. The relevance of these observations to
ASD is indicated by recent advances in defining the molecular
and cellular pathology of ASD that point to altered patterns of
neuronal connectivity and synaptic plasticity in the develop-
ing brain as the neurobiological substrate underlying these
disorders [11, 77, 78].

Epigenetic alterations can be stable and heritable and they
can also be malleable and surprisingly dynamic in a spatially
and temporally defined manner. The dynamic nature of DNA
methylation is especially evident following fertilization in
preimplantation embryos when a rapid wave of paternal ge-
nome demethylation occurs, followed by reestablishment of
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DNA methylation patterns to permit embryonic specification in
the blastocyst [79, 80]. The ability to alter DNA methylation pat-
terns in a cell- and stage-specific fashion is retained throughout
life and is a key component of cell differentiation, specification,
and maturation. Altered patterns of DNA methylation are often
a hallmark of disease onset and progression [66, 69].

The fact that DNA methylation is malleable suggests that
DNA methylation marks can also be removed. Identification of
passive and active mechanisms by which DNA methylation
marks can be lost has significantly impacted our understanding
of transcriptional control of gene expression. Passive mecha-
nisms of DNA demethylation include a reduction or loss of
DNMT abundance or activity that reduce DNA methylation dur-
ing subsequent rounds of DNA replication. In terms of active
mechanisms of DNA demethylation, evidence points to MBD2,
and even the DNMTs themselves, as having demethylase capa-
bility [81-83]; however, this is still controversial and does not
preclude the participation of other factors leading to
demethylation.

Significantly more is known about removal of DNA methyla-
tion through base modification of methylated cytosines fol-
lowed by base excision and repair pathways [84, 85]. One
example is the conversion of methylated cytosine to hydroxy-
methylcytosine. This is catalysed by members of the 10 eleven
translocation (Tet) gene family and is the primary mechanism
responsible for paternal erasure of DNA methylation during fer-
tilization [84-88]. Hydroxymethylation is found at a relatively
high level in neurons compared with other cell types and accu-
mulates over time. Importantly, the Tet genes have been impli-
cated in activity-dependent learning and memory [89-91]. DNA
hydroxymethylation has also been shown to regulate gene ex-
pression in the cerebellum of patients with autism [92]. Our un-
derstanding of DNA hydroxymethylation is in its infancy and
will no doubt evolve as previously unrecognized mechanisms
are discovered, some of which may be important for under-
standing ASD etiology.

Although the dynamic nature of DNA methylation is neces-
sary for normal development and differentiation, it also ren-
ders these events susceptible to modulation by environmental
factors such as diet, hormones, stress, drugs, or exposure to
environmental chemicals. In the following sections, we dis-
cuss: (i) the effects of environmental chemicals implicated as
ASD risk factors on DNA methylation; (ii) evidence implicating
DNA methylation as a critical gene expression regulatory
mechanism in ASD; and (iii) why environmentally induced
changes in DNA methylation may underlie gene by environ-
ment interactions that determine individual risk of ASD (see
also Tables 1-2).

Effect of Environmental Chemicals on DNA
Methylation

Polychlorinated Biphenyls

PCBs are persistent organic pollutants that were initially syn-
thesized in the 1930s for use in industrial mixtures as coolants
and lubricants. Despite being banned from production in the
1970s, PCBs remain a current and significant public health risk
due to the release of legacy PCBs from aging structures and
landfills, and the inadvertent production of contemporary PCBs
by industrial processes, primarily commercial paint pigments
[93]. Recent studies have documented PCBs levels in excess of
Environmental Protection Agency (EPA) standards in indoor air
samples from elementary schools in USA [94], and the latest
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National Health and Nutrition Examination Survey (NHANES)
data confirm widespread PCB exposures in women of childbear-
ing age [58].

The weight of evidence from epidemiological studies sup-
ports a negative association between developmental exposure
to PCBs and neuropsychological function in infancy and child-
hood [56, 95-99]. Identifying the mechanism(s) by which PCBs
interfere with normal neurodevelopment has been confounded
by the existence of 209 PCB congeners, which are grouped ac-
cording to their molecular structure as dioxin-like (DL) and non-
dioxin like (NDL). DL PCBs are so named because like dioxin,
these congeners bind to and activate the aryl hydrocarbon re-
ceptor (AHR); in contrast, NDL PCBs have negligible AHR activity
[100]. Although both DL and NDL PCBs are ubiquitous in the en-
vironment, recent evidence indicates that NDL PCBs predomi-
nate over DL PCBs in environmental samples and human
tissues [101-103]. This is of significant concern because data
from experimental models suggest that PCB developmental
neurotoxicity is mediated predominantly by NDL PCBs [27, 104].
NDL PCBs are thought to disrupt normal neurodevelopment via
modulation of signaling by biogenic amines, thyroid hormone,
and intracellular calcium during critical windows of brain devel-
opment [105]. Although PCBs have yet to be causally linked to
ASD, several lines of evidence implicate PCBs as risk factors for
ASD. First, studies in rodent models have shown that develop-
mental PCB exposure causes deficits in social behavior [106].
Second, NDL PCB congeners modulate dendritic arborization
and spine formation [107, 108], and similar changes in neuronal
connectivity have been observed in the autistic brain [109, 110].
Third, NDL PCBs have been reported to activate calcium-
dependent signaling pathways implicated in the pathogenesis
of ASD [27].

PCBs and Altered DNA Methylation

Emerging evidence from in vitro, in vivo, and epidemiological
studies suggest that PCB developmental neurotoxicity may be
mediated in part by PCB effects on DNA methylation in the devel-
oping brain. Exposure to the NDL congener PCB 153 decreases
DNMT activity in preimplantation mouse blastocytes [30], and
decreases global DNA methylation levels in the N2A murine neu-
roblastoma cell line [31]. However, the latter finding may be
unique to mouse cell lines since the DNA hypomethylating ef-
fects of PCB 153 were not observed in the human SK-N-AS neuro-
blastoma cell line [31]. Animal studies also link PCBs to reduced
Dnmt abundance. In utero and lactational exposure to a mixture
of 14 NDL + DL PCBs at 1.1 mg/kg/day from GD1 to postnatal day
(P) 21 reduced levels of the methyl donor S-adenosylmethionine
as well as levels of Dnmt1, 3a, and 3b to 4, 54, and 17 of control
values, respectively, in liver of prepubertal female Sprague-
Dawley rats [32]. Similarly, postnatal exposure (P1, 5, 10, 15, and
20) to a 1000 x mixture of AHR agonists detected in human breast
milk, including 3 DL PCBs (77, 126, and 169), reduced Dnmtl
mRNA abundance levels to 32% of controls in the hypothalamus
of P21 female Sprague-Dawley rats [33]. Although both of these
studies demonstrate reduced Dnmt abundance following early
life PCB exposure, it should be noted that the PCB mixtures used
differed between the studies. The Desaulniers et al. [32] study
employed a PCB mixture of NDL + DL PCBs comprised predomi-
nantly of NDL PCB congeners. In contrast, the Desaulniers et al.
[33] study used a mixture containing three DL PCBs as well as
non-PCB AhR agonists including polychlorinated dibenzodioxins
and polychlorinated dibenzofurans. There was no overlap in the
PCBs examined between the two studies. Whether the reduction
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in Dnmt mRNA abundance is a consequence of all or just a subset
of PCB congeners remains to be determined. Since humans are
exposed to complex PCB mixtures, this is an important consider-
ation when analysing DNA methylation following PCB
exposures.

PCB-associated changes in DNA methylation have been
shown to influence sexual development and alter sex-specific
patterns of gene expression in the brain [34]. This is important
since many hormones are required for or have significant im-
pacts on neurodevelopment. Indeed, endocrine disruption has
been hypothesized to contribute to ASD, in part because ASD
is more prevalent in males than females [111-113]. Exposure
of Sprague-Dawley rats to Aroclor 1221, a technical mixture of
PCBs, at 1 mg/kg on GD16 and GD18 alters gene expression in a
sex-specific manner, perturbing reproductive function by de-
laying time to puberty in males and altering cyclicity of es-
trous in females [35]. This study also examined impacts of PCB
exposure on DNA methylation in the anteroventral periven-
tricular (AVPV) nucleus and arcuate nucleus, which are re-
gions of the brain known to regulate reproductive function. In
female rats, PCB exposure increases gene expression profiles
from P15-90 such that they are more similar to vehicle-treated
male rats [35]. This masculinization pattern is seen in Dnmt1
expression as well, with PCB treatment increasing expression
of Dnmt1 from P15-90 in the female rat AVPV to levels that are
more typical of male expression [35]. The functional conse-
quence of increased AVPV Dnmt1 transcript abundance in this
study is unclear. Although PCB-induced changes in promoter
DNA methylation were not detected in two genes upregulated
by PCBs, including the androgen receptor (Ar), DNA methyla-
tion at 4 CpG sites of Ar was positively correlated with Ar
mRNA expression uniquely in the AVPV of females exposed to
PCBs versus control females [35]. These results are con-
founded by the fact that DNA methylation levels for genes ex-
pressed in the AVPV at P15 are already low, which could limit
levels of detection [35]. Nonetheless, these results indicate
that PCB-dependent changes in DNA methylation may impact
endocrine function with consequences on gene expression in
the brain.

The growing body of evidence from in vitro and experimen-
tal animal models indicating that PCBs alter the methylome
extends to humans. In a cohort of 399 healthy Japanese
women, serum levels of NDL PCBs 17, 52, 69, 74, 183, and DL
PCB 114 were inversely associated with global DNA methyla-
tion levels in leukocytes [36]. A similar trend was observed in a
second population of healthy Koreans for NDL PCB 153, 183,
and 187 [37] and in a population of Greenlandic Inuits [38].
Conversely, in a separate study of 524 elderly men and women
(70 years of age) living in Uppsala, Sweden, high levels of DL
PCBs were associated with global DNA hypermethylation [39].
While there were significant differences in age, geographical
location, and lifetime exposure levels to different PCBs be-
tween these study populations, these studies raise the possi-
bility that the composition or congener profile of the PCB
exposure is an important determinant of the outcome on the
methylome [114]. There is evidence to suggest that the DL and
NDL PCBs have opposing actions on DNA methylation, with DL
PCBs shifting the balance toward DNA hypermethylation, as
was observed in the Sweden study [39], and NDL PCBs favoring
DNA hypomethylation as observed in the Korean and Inuit
studies [36, 38]. This possibility is further supported by reports
that 2,3,7,8-tetrachlorodibenzo-p-dioxin induces DNA hyper-
methylation [30, 115]. Although it is known these NDL and DL
PCB congeners act through different signaling pathways, the

question of whether they differentially alter DNA methylation
remains to be carefully investigated.

Lifetime exposure levels are also likely confounding vari-
ables in epidemiological studies. For example, in healthy
Koreans, exposure to PCBs exhibits an inverted U-shape dose-
response relationship with DNA methylation of the promoter
region of the DNA repair gene, O6-methylguanin-DNA methyl-
transferase [116]. Interestingly, a nonmonotonic dose-response
relationship has also been reported for NDL PCB effects on den-
dritic arborization of cultured rat hippocampal neurons [107]
and learning and memory deficits in rats exposed throughout
gestation and lactation to NDL PCBs in the maternal diet [117].
This raises the interesting question of whether there may be a
link between PCB effects on DNA methylation and PCB effects
on neurodevelopmental outcomes of relevance to autism.

Lead

Common sources of lead exposure include paint, household
items, air, and water. Children are often exposed to higher lev-
els than adults, with an estimated 535 000 US children aged 1-5
years of age having blood lead levels higher than the reference
level set by the CDC [118]. Studies of lead exposure in children
provide evidence of impaired executive function and attention
[119]. Animal models of developmental lead exposure also indi-
cate changes in behavioral and neurochemical endpoints simi-
lar to those seen in children with ASD [119, 120].

Lead and Altered DNA Methylation

There is evidence to implicate DNA methylation as a potential
mechanism by which developmental lead exposure alters neu-
rodevelopment and function throughout life [121, 122]. In cul-
tured human embryonic stem cells, physiologically relevant
concentrations of lead (0.4-1.9uM) cause dose-dependent
changes in DNA methylation of 1275 genes during neural pro-
genitor differentiation, with the majority displaying DNA hypo-
methylation [41]. The top hypomethylated genes are involved in
neurological system processes, calcium ion import, and actin
cytoskeleton arrangement while the top hypermethylated
genes belong to families responsible for calcium ion import and
development of neuronal projections [41]. These are pathways
that are also dysregulated in ASD [27, 105, 123].

Lead-induced changes in DNA methylation are stage spe-
cific, with the greatest number of changes observed in differen-
tiating human embryonic stem cells relative to undifferentiated
human embryonic stem cells or neural progenitor cells [41].
Consistent with this evidence of stage-specific changes in DNA
methylation, lead exposure also produces differential effects on
neurite outgrowth dependent upon the developmental stage at
the time of exposure. Lead exposure during neural rosette for-
mation produces shorter neurites and reduces branching com-
pared with controls, whereas lead exposure during later
developmental stages increases the number and length of neu-
rites [41]. These findings are important for two reasons: (i) they
reveal a sensitive developmental window during which lead ex-
posure produces a greater number of changes in DNA methyla-
tion and (ii) they link altered DNA methylation to changes in
neuronal morphology. Whether lead-induced changes in DNA
methylation are causally linked to effects on neurite morphol-
ogy has yet to be determined. Additional questions that remain
include the functional consequences of lead-induced changes
in DNA methylation and neurite morphology in terms of synap-
tic connectivity or higher orders of function, such as learning



and memory or social interactions. Despite these challenges,
the observation that lead changes DNA methylation in a human
embryonic stem cell line supports the hypothesis that epige-
netic mechanisms underlie lead developmental neurotoxicity
in humans.

The findings of Senut et al. [41] in terms of developmental
windows of lead sensitivity are corroborated by experimental
animal studies. Analyses of Dnmtl expression in rats exposed
to lead throughout gestation and lactation versus only during
lactation reveal that dose, developmental age during which
exposure occurs, and sex influence the lasting impacts of lead
on DNMT expression. Exposure to lead (150, 375, 750 ppm) in
utero and throughout lactation significantly reduced DNMT1
protein abundance by ~25% uniquely in the female P55 Long
Evans rat hippocampus [42]. In contrast, lactational exposure
only (P1-21) had no effect on DNMT1 abundance in the female
P55 hippocampus. However, in the male P55 hippocampus,
lactational exposure to lead diminished DNMT1 expression by
18-23% at the lower doses of 150, 375ppm and enhanced
DNMT1 expression by 20% at the highest dose of 750 ppm [42].
Sex- and stage-specific changes are also observed for DNMT3A
and methyl CpG binding Protein 2 (MECP2) [42]. A serious cav-
eat with these studies is that the levels of lead used are not
relevant to most human lead exposures. However, consistent
with these findings, developmental exposure to more physio-
logically relevant levels of lead (3, 30 ppm) has been reported
to cause differential DNA methylation in male versus female
cortex and hippocampus of young adult mice [43]. In this
study, developmental lead exposure (3, 30 ppm) resulted in
over 1000 differentially methylated CpG sites, predominantly
DNA hypermethylation, in regions corresponding to 117
unique genes in the adult female mouse hippocampus
whereas no changes were observed in male mice [43].
Importantly, differential DNA methylation is retained when
blood levels of lead from developmentally exposed animals
have returned to levels of unexposed control animals [43].
Thus, developmental exposure to lead is sufficient to induce
persistent changes in DNA methylation in a sex- and brain re-
gion-specific fashion, with female mice showing greater
changes than male mice, and hippocampus showing greater
changes than cortex. The functional consequence of lead-in-
duced DNA hypermethylation in this context has yet to be de-
fined but may account for changes in gene expression
important for synapse and memory formation [43].

Epidemiological studies also suggest that lead can induce
changes in DNA methylation [44, 46, 124]. In men, patellar
lead levels are inversely associated with global LINE-1 DNA
methylation levels in blood [44]. Similarly, maternal lead lev-
els are inversely correlated with genomic DNA methylation of
the LINE-1 element in umbilical cord blood [45]. Gene-specific
alterations in DNA methylation are also linked to lead expo-
sure. In a study of adult men exposed to lead, those with the
highest blood lead levels had complete DNA methylation of
the p16 gene, a tumor suppressor gene involved in neurode-
generation [125]. In contrast, men with lower lead levels had
partial to no DNA methylation of the p16 gene [46]. Thus, p16
DNA methylation may serve as a biomarker of lead exposure.
These data also raise the intriguing hypothesis that changes
in p16 expression in the brain may contribute to neurodeve-
lopmental and/or neurodegenerative effects of lead.
Together, these observations support the possibility that
lead-induced changes in DNA methylation may play a role in
developmental neurodevelopmental disorders, possibly by al-
tering genes important for calcium ion import, neuron
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projection development, actin cytoskeletal arrangement, and
neurodegeneration.

BPA

BPA is found in household plastics and other products, includ-
ing food and beverage cans [126]. According to 2003-04 NHANES
data, detectable levels of urinary BPA were found in over 92% of
people 6 years of age or older sampled in USA [127]. Alarmingly,
levels were highest among children [127]. BPA is thought to be
an endocrine disruptor that acts as an estrogen mimetic [128-
131], thus research has focused largely on its effects in repro-
ductive tissues. However, BPA exposure has also been linked to
effects in the developing brain, including altered synapse for-
mation and abnormalities in neurite and dendrite morphology
[132], and it is associated with cognitive and social impairments
in rodents [48, 133-135]. In a cohort of 198 children ages 3-5,
high levels of maternal BPA were associated with altered emo-
tional reactivity including increased aggressive behavior in boys
[136]. Furthermore, in a recent report of 46 children with ASD
and 52 age-matched neurotypical control children, total urine
BPA concentrations were higher in children with ASD compared
with controls [137].

BPA and Altered DNA Methylation

Epigenetic alterations have been implicated in BPA-associated
changes in pathology and function in several hormone-respon-
sive tissues including the brain [49, 130, 138-141]. In embryonic
hypothalamic mouse cell lines, BPA (200 pM) decreases Dnmtl
and 3a expression by ~30% but increases Dnmt3b abundance
nearly 2-fold relative to control levels [47]. This is an interesting
observation considering micromolar concentrations of BPA are
also capable of decreasing synaptic density in cultured rat hypo-
thalamic neurons [142]. Whether these two observations are
causally linked is unknown but raises the intriguing hypothesis
that DNA methylation mediates the effects of BPA on neuronal
connectivity.

In mouse models, gestational BPA exposure (1.25mg/kg in
the maternal diet; resulting in 5 micrograms of BPA ingested
daily) selectively decreased Dnmtl abundance in the GD18 fe-
male mouse brain while male levels were unaltered [48].
Importantly, this exposure produced blood BPA levels within
the range detected in humans. Changes in Dnmt1 abundance do
not necessarily lead to changes in global or gene-specific DNA
methylation but this question was not examined in this study.
However, under this experimental paradigm, BPA exposure in-
creased expression of the glutamate transporter Scllal in fe-
male but not male brain at GD18 [48]. Gestational exposure to
BPA also increased sex-dependent changes in social interaction,
uniquely increasing social interaction among juvenile female
mice [48]. Whether changes in Slclal DNA methylation drive
changes in protein expression and/or behavior can not be con-
cluded from these studies but raises the possibility. An interest-
ing observation in this study is that BPA uniquely impacted
Dnmt3a expression in female but not male mouse brain, but un-
like its effects on Dnmt1, BPA prevented female-specific reduc-
tion in Dnmt3a expression [48]. Thus, in the female GD18 brain,
BPA exposure resulted in Dnmt3a expression typical of male
mice. This observation is consistent with BPA acting as an endo-
crine disruptor and is also reminiscent of masculinization phe-
notypes observed with PCB exposure as mentioned earlier [35].
The consequences of increased Dnmtl but decreased Dnmt3a
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expression are not known but are likely gene, tissue, and stage
specific.

Although not conclusive, these are among the first studies to
provide evidence that there may be sex-dependent differences
in sensitivity to BPA during brain development that translate to
altered Dnmt gene expression and behavior in juvenile animals.
Subsequent studies support this possibility. In utero exposure to
BPA was shown to cause sex-, dose-, and brain region-specific
changes in Dnmt expression [49]. In utero BPA exposure (2, 20,
200 ug/kg/day) significantly decreased Dnmtl expression in the
prefrontal cortex of both male and female mice. This same ex-
posure paradigm produced a nonmonotonic dose response for
Dnmtl expression in the hypothalamus and Dnmt3a expression
in the prefrontal cortex. Interestingly, a U-shaped dose-
response relationship was observed in female mice, whereas an
inverted U-shaped dose-response relationship was observed in
male mice [49].

BPA exposure also alters social exploratory and anxiety-like
behaviors in young adult mice (P30-70) by disrupting sexually
dimorphic behaviors. Exposure to BPA reduced chasing behavior
in males to levels similar to that of females and reversed the
sex-dependent differences in open field behavior in distance
traveled and inner area time such that each parameter was re-
duced in females and increased in male mice [49]. High doses of
BPA are also associated with increasing aggressive behavior
[49]. These sexually dimorphic changes were linked to BPA-in-
duced alterations in DNA methylation and expression of estro-
gen Receptor 1 in the brain [49]. Why this study observed
unique changes in male and female mice while the earlier study
[48] only observed alterations in female mice is likely due to dif-
ferences in BPA administration (dietary versus oral dosing),
strain of mice used (C57Bl/6 versus BALB/c), the developmental
ages examined, and the endpoints measured. However, both
studies are consistent in demonstrating that in utero exposure
to BPA has epigenetic effects on the brain that are associated
with permanent sex-dependent differences in Dnmt expression
and behavior in mice. Considering ASD is more prevalent in
boys than girls, examining mechanisms underlying sex-depen-
dent differences in Dnmts and DNA methylation are warranted.
These studies further confirm a nonmonotonic dose-response
relationship in regard to changes in Dnmt expression and mouse
social behavior, important points to consider when conducting
and analysing these types of studies.

Epigenetic “Memory” of Past Environmental
Exposures

Environmental exposures have been linked to epigenetic
mechanisms of transgenerational changes in gene expression
and behavior. Transgenerational inheritance is considered a
permanent alteration in the epigenome of the germ line that re-
sults in heritable transmission [143]. Evidence of transgenera-
tional effects of environmental chemical exposures that are
relevant to neurocognitive function come from studies using
BPA and vinclozolin, an endocrine disruptor with antiandro-
genic effects. One study examined mate preference in rats, a
task that relies on multiple brain regions including amygdala,
hippocampus, olfactory bulb, cingulated cortex, entorhinal cor-
tex, and preoptic area-anterior hypothalamus [144, 145]. Third
generation female (F3) descendents of rats exposed to vehicle or
vinclozolin (100 mg/kg) from GD8-14, preferred F3 vehicle line-
age male rats versus F3 vinclozolin lineage male rats, suggesting
differential mate preference [144]. F3 vinclozolin lineage male

and female rats exhibited sexually dimorphic disruption of
transcription in the hippocampus and amygdala, including
changes in pathways involved in axon guidance and long-term
potentiation [146]. Since these brain regions are associated with
learning, memory, and anxiety, it is not surprising that vinclo-
zolin transgenerational exposure is also linked to behavior. F3
vinclozolin male rats displayed a decrease in anxiety-like be-
haviors while F3 vinclozolin female rats exhibited an increase
in anxiety-like behaviors [146]. Thus, epigenetic reprogramming
of the germline by environmental exposures can alter the brain
transcriptome and influence behavior.

In utero BPA exposure has also been implicated in transge-
nerational effects on rodent brain development and behavior.
In one study, compared with controls, F3 juvenile mice from the
BPA exposed line (5 mg/kg diet) showed increased locomoter ac-
tivity in the open field test and increased investigation of a
stimulus mouse upon subsequent trials [147]. Despite intact
olfactory senses, F3 mice from the BPA lineage did not become
habituated to a familiar stimulus mouse and did not switch
their interaction preference after the introduction of a novel
mouse [147]. Reduced expression of estrogen receptor, oxytocin,
and vasopressin in the brain were observed and postulated to
underlie the deficits in behavior of mice in the BPA lineages
[148]. Together, these results suggest that BPA exposure has
transgenerational effects on brain transcript abundance and so-
cial recognition tasks in mice.

Neuroanatomic consequences have also been linked to
transgenerational epigenetic reprogramming and altered learn-
ing and memory. Female F2 descendents of mice exposed to
BPA (1, 10mg/kg) on GD6-17 displayed a decreased number of
newly generated hippocampal cells compared with vehicle lines
[149]. This change was associated with deficits in learning and
memory. Although Morris water maze testing did not reveal sig-
nificant differences between treatment groups, F2 mice of the
BPA lineage did exhibit reduced cross over latency in passive
avoidance testing, suggesting impaired ability to remember
past foot shock [149]. These mice also displayed deficits in
brain-derived neurotrophic factor (BDNF), phosphorylated cAMP
response element binding protein (p-CREB) and phosphorylated
extracellular signal-regulated kinase, which were accompanied
by changes in DNA methylation of the CREB regulated transcrip-
tion factor coactivator 1 gene [149]. These data are important
because they establish the link between environmental expo-
sures and transgenerational impacts on the brain transcriptome
coincident with altered behavior.

The observation that effects of environmental exposures can
be transgenerationally inherited via the germline epigenome
further strengthens the hypothesis that the epigenome medi-
ates the effects of gene by environment interactions on adverse
neurodevelopmental outcomes of relevance to ASD. Further, it
suggests the possibility that autism risk can change over gener-
ations. Understanding the complex epigenetic changes occur-
ring in animal models will undoubtedly shed light on the
etiology of brain development and ASD.

DNA Methylation Changes Observed in ASD

Several genetic disorders with high penetrance of ASD, including
Rett, Fragile-X, Prader-Willi, and Angelman syndromes, result
from alterations in genes involved in epigenetic modifications.
For example, Rett syndrome is associated with mutations in the
MECP2 [150, 151]. Independent of specific genetic mutations,
changes in global DNA methylation and DNMT expression have
also been observed in patients with ASD. In the cerebellum of



autistic patients, DNMT1, 3A, and 3B expression are elevated
compared with neurotypical controls [92, 152], which aligns with
findings of increased global DNA methylation and hydroxyme-
thylation in these patients [92, 152]. Additionally, there are nu-
merous reports linking changes in DNA methylation to altered
gene expression in patients with ASD versus neurotypical con-
trols. Some examples are highlighted later and readers are re-
ferred to recent reviews on the topic [65, 151, 153-155].

Altered DNA methylation has been linked to reduced expres-
sion of genes in the GABAergic inhibitory system, a neurotrans-
mitter system implicated in the pathophysiology of ASD [156].
Two examples include glutamate decarboxylase 67 (GAD1),
which decarboxylates glutamate to form gamma-aminobutyric
acid (GABA), and reelin, a gene expressed in GABAergic neurons
that functions in neural migration and cortical lamination dur-
ing development [157]. Both genes are reduced in patients with
ASD relative to neurotypical controls and are associated with
changes in DNA methylation and hydroxymethylation marks
within the promoter region leading to MECP2-dependent repres-
sion [158].

Imbalances in synaptic connectivity have also been posited
as a mechanism underlying ASD pathogenesis [77, 159] and may
provide a biological substrate for enhanced susceptibility to envi-
ronmental factors [27, 77, 159]. The synaptic protein SH3 and
multiple repeat domains 3, SHANKS3, is a postsynaptic scaffolding
protein of excitatory glutamatergic synapses. Translocation and
breakpoint mutations in SHANK3 have been consistently impli-
cated in developmental delays and ASD [160]. SHANK3 expres-
sion in brain and other tissues is regulated by DNA methylation
[161, 162], and increased levels of SHANK3 DNA methylation, cor-
responding to decreased isoform-specific expression of SHANKS3,
have been observed in postmortem brain tissues of ASD patients
compared with neurotypical control tissues [162].

Neonatal levels of BDNF, a critically important gene in neural
development, neuronal connectivity, and activity-dependent
synaptic plasticity [50, 163], are reduced in children later diag-
nosed with ASD compared with age-matched controls [164].
However, when examined in older children (4 and 11 years of
age), serum levels of BDNF are elevated in children with ASD
versus neurotypical controls [165, 166]. The reason for the dis-
crepancy in these two findings is unknown but may be specific
to the developmental stage examined. BDNF transcription is
regulated by DNA methylation [167, 168] and altered patterns of
BDNF DNA methylation has been found in patients with cogni-
tive impairments [167, 169, 170]. Whether changes in BDNF DNA
methylation contribute to altered BDNF expression observed in
ASD patients has yet to be determined.

DNA methylation is complex and not always directly associ-
ated with decreased gene expression. For example, overexpres-
sion of engrailed 2 (EN2), another gene implicated in autism, is
associated with DNA hypermethylation in the cerebellum of ASD
patients [171]. Although seemingly counterintuitive, follow-up
studies to distinguish DNA methylation from hydroxymethyla-
tion, confirmed elevated EN2 DNA hydroxymethylation in ASD
cerebellum relative to controls [92]. The authors further showed
that repressive MECP2 binding was reduced in areas of DNA
hydroxymethylation, likely due to MECP2’s lower affinity for
DNA hydroxymethylation versus DNA methylation [172]. This
observation provides a plausible mechanism for the elevated EN2
expression and increased DNA methyl marks in ASD cerebellum.
These results are important because they highlight the complex
interaction between DNA methyl marks and gene expression and
serve as a reminder that elevated DNA methylation is not neces-
sarily inconsistent with elevated gene expression.
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Studies of monozygotic twins provide additional evidence
that epigenetic mechanisms play a role in ASD etiology [21,
173]. Among 50 pairs of disease discordant monozygotic twins,
several genes were found to be differentially methylated be-
tween the twin diagnosed with ASD and the nonsymptomatic
twin, including genes previously implicated in ASD pathology
such as GABRB3, AFF2, NLGN2, JMJD1C, SNRPN, SNURF, UBE3A,
and KCNJ10 [21]. Further, there were significant DNA methyla-
tion differences between autistic twin pairs discordant for autis-
tic traits (social, restrictive repetitive behaviors and interests,
and communication) [21]. The changes in DNA methylation at
differentially methylated CpG sites also correlated with total
childhood autism symptoms test scores [21]. Together, these
studies support a role for epigenetic mechanisms, and in partic-
ular, DNA methylation, in determining ASD susceptibility and
raise new questions as to how environmentally mediated
changes in the epigenome contribute to autism etiology.

DNA Methylation: Bridging the Gap between
Environmental Exposure and ASD
Susceptibility

In the sections earlier, we highlighted evidence demonstrating
that: (i) environmental factors contribute to determining individ-
ual ASD risk and/or severity; (ii) developmental exposures to envi-
ronmental chemicals can alter DNA methylation in multiple
tissues, including the brain; and (iii) changes in DNA methylation
have been documented in autistic individuals and implicated in
ASD pathogenesis. The question remaining is whether these
events are causally linked. Currently, evidence pointing to
changes in DNA methylation as a mechanism by which environ-
mental chemicals contribute to ASD risk is limited (Table 2) but
the few studies that have addressed this question have potentially
significant implications regarding the importance of environmen-
tal epigenetics in the etiology of ASD. Perhaps most intriguing are
recent data suggesting a link between PCB exposure, DNA methyl-
ation, and autism risk. The goal of this study [40] was to quantify
levels of specific PCB and polybrominated diphenyl ether (PBDE)
congeners in postmortem brain tissues from neurotypic controls
versus patients with autism of unknown etiology and autistic pa-
tients comorbid for other neurodevelopmental disorders with a
known genetic cause such as maternal Chromosome 15 q11-q13
duplication (159 duplication). Of the eight PCB congeners exam-
ined, the only environmental chemical that varied significantly
between groups was the NDL congener PCB 95. 15q duplication
was the strongest predictor of PCB 95 exposure and these individ-
uals also exhibited DNA hypomethylation of the LINE-1 element
[40]. Although it has yet to be determined whether there is a
causal relationship between PCB 95 exposure and 15q duplication,
and if so the nature of the relationship (e.g. did the PCB 95 expo-
sure increase the risk of 15q duplication or did the genetic anom-
aly contribute to increased accumulation of PCB 95 in the brain),
these findings are consistent with the hypothesis that complex
genetic, epigenetic, and environmental factors interact to deter-
mine risk for autism. They further support the possibility that the
epigenome may be a convergence point for effects of environmen-
tal neurotoxicants like PCBs on genes that confer susceptibility for
ASD or other neurodevelopmental disorders.

In animal models, in utero exposure to BPA (200 nug/kg/day)
produces sex-dependent alterations in DNA methylation and ex-
pression of mouse hippocampal genes [50]. Exposure to BPA in-
creased hippocampal expression of Bdnf in female P28 mice but
decreased it in male mice, and these effects persisted to at least
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P60 [50]. Concurrently, changes in Bdnf expression were associ-
ated with sex-specific changes in DNA methylation driven by
male-induced hypermethylation of a CpG site within the Bdnf
promoter [50]. BPA-induced changes in hippocampal gene ex-
pression and DNA methylation were accompanied by decreased
exploration of a novel object [50], an endpoint used to indicate
deficits in learning and memory. BPA-induced changes in BDNF
DNA methylation are also observed in humans. BDNF DNA meth-
ylation is higher in cord blood from boys whose mother had
higher levels of BPA during pregnancy [50]. Intriguingly, these
boys at 3-5 years of age displayed increased aggressive behavior
and their emotionally reactive symptom scores were 1.62 times
higher compared with boys with low prenatal BPA concentra-
tions [136]. Thus, BDNF DNA methylation may serve as a bio-
marker for BPA exposure, and potentially as an indicator of
behavioral deficits in children [50]. These results corroborate
findings that total BPA concentrations are positively associated
with LINE-1 global DNA methylation in human placenta [51].

Together, these results link exposure to the environmental
chemicals PCBs and BPA to changes in DNA methylation, gene
expression, and behavior. Whether these events are causally
linked is unknown but future studies aimed at addressing this
important question are warranted.

Challenges for the Future

The studies highlighted in this review identify a common theme:
developmental exposures to environmental chemicals decrease
Dnmt expression or decrease global DNA methylation levels
(Table 1). This suggests two possible mechanisms by which envi-
ronmental chemicals change DNA methylation: (i) altering Dnmt
expression or activity or (ii) altering DNA base modifications and
repair mechanisms known to participate in reducing DNA meth-
ylation. Since these processes themselves are not completely un-
derstood, how environmental chemicals produce these changes
remains a significant knowledge gap in the field. These changes
likely occur in a sex-, stage,- and gene-specific fashion providing
a further challenge to understanding the functional conse-
quences of the full battery of epigenetic changes elicited by envi-
ronmental exposures during neurodevelopment.

The importance of addressing the impact of environmentally
induced changes in the methylome on neurodevelopmental out-
comes is heightened by the observation that the directional
change in DNMT expression/DNA methylation upon exposure to
environmental chemicals is not always consistent with that ob-
served in ASD patients. These discrepancies highlight the neces-
sity for moving away from assessment of global methylation
toward assessment of gene-specific changes. Addressing
these questions will be challenging, in part because of limitations
in the tools currently available to address these questions.
Pharmacological inhibitors of DNA methylation are available but
lack gene or cell type specificity and can have off-target effects.
Genetically modified animals that enable conditional deletion of
Dnmts are available and have proven invaluable for understanding
the role of Dnmts in a cell type and developmental stage-specific
fashion; however, they do not provide the ability to alter DNA
methylation in a gene-specific fashion. These limitations notwith-
standing, studies examining the effects of environmental chemi-
cal exposures in these genetically modified animals would likely
provide useful insights. Additionally, extending environmental
epigenetic studies focused on neurodevelopmental outcomes
to animal models such as guinea pig and nonhuman primates
with primarily postnatal brain development will be important
for addressing issues related to species differences in prenatal

versus postnatal brain development [174, 175]. Finally, future epi-
demiological studies focused on environmental exposures, global
DNA methylation, gene-specific DNA methylation in the brain,
and ASD severity in cohorts of ASD patients versus neurotypic
controls are needed. As the field of epigenetics continues to grow,
integration of new techniques with proven approaches will no
doubt enhance our understanding of epigenetic mechanisms un-
derlying gene by environment interactions in ASD.

As indicated earlier, a critical knowledge gap is the paucity
of evidence indicating whether environmental chemical effects
on DNA methylation target genes specifically implicated in
ASD. In other words, are DNA methylation changes induced by
developmental exposures to environmental chemicals causally
linked to adverse neurodevelopmental outcomes via altered ex-
pression of ASD susceptibility genes? Additionally, with a het-
erogeneous disease like ASD, how is the degree of impairment
determined? This is an important area of future study with clin-
ical significance. Finally, it is important to remember that differ-
ential DNA methylation is only one of a number of epigenetic
mechanisms that may play a role in determining ASD risk.

Conclusion

The epigenome may mediate effects of environmental risk fac-
tors on the developing brain, especially during developmental
stages when epigenetic patterns are being established. These
early life perturbations can have lasting impacts on gene ex-
pression and behavior and, thus, provide a plausible mecha-
nism by which environmental factors converge on existing
genetic mutations to determine the risk and severity of ASD.
The malleability of the epigenome is both negative, in that it
increases susceptibility to the neurotoxic effects of environmen-
tal chemicals, and positive, in that the very fact that it can be
modulated raises opportunities for therapeutic interventions. On
the other hand, the dynamic nature of the epigenome suggests
that each individual likely has a unique combination of epigenetic
marks based on timing of exposures, frequency and dose of expo-
sure, and the combination of environmental exposures, which in
turn interacts with the individual’s unique genetic substrate. This
makes an approach to reverse abnormal epigenetic marks very
difficult and would likely manifest in a heterogeneous population
response to any given therapeutic strategy. Nonetheless, one
such approach has been to intervene with DNA methylation
through modifying the availability of methyl donors in the diet.
Folic acid along with methionine, choline, and others are essen-
tial methyl donors in the reaction catalysed by Dnmts to add
methyl groups to DNA. Therefore, by altering levels of available
methyl donors, changes in DNA methylation can be studied along
with their downstream consequences. The use of diet in modu-
lating ASD pathogenesis is an active area of research and readers
are referred to reviews on the topic [153, 176]. The fact that chemi-
cal exposures are more readily controlled than genetic factors to
prevent or mitigate deleterious traits related to neurodevelop-
mental disease, coupled with the fact that the epigenome is mal-
leable, underscore the relevance, and potentially significant
impact of investigating epigenetic mechanisms of environmen-
tally induced adverse neurodevelopmental outcomes in ASD.
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