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Key Points 

• Question: Are there distinct sleep/circadian profiles in older men, and if so, are they 

associated with the incidence of dementia and cardiovascular disease (CVD) events 

over 12 years? 

• Findings: Three actigraphy-based profiles were identified: active healthy sleepers [AHS], 

fragmented poor sleepers [FPS], and long and frequent nappers [LFN]. Compared to 

AHS, FPS had increased risks of dementia and CVD events whereas LFN had marginal 

risk of CVD events. 

• Meaning: Older men with distinct sleep/circadian profiles are at increased risk of incident 

dementia and CVD events, suggesting their potential as target populations for sleep 

interventions and screening for adverse outcomes. 
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Abstract 

Importance: Sleep health comprises several dimensions such as duration and fragmentation of 

sleep, circadian activity, and daytime behavior. Yet, most research has focused on individual 

sleep characteristics. Studies are needed to identify sleep profiles incorporating multiple 

dimensions and to assess how different profiles may be linked to adverse health outcomes.  

Objective: To identify actigraphy-based 24-hour sleep/circadian profiles in older men and to 

investigate whether these profiles are associated with the incidence of dementia and 

cardiovascular disease (CVD) events over 12 years.   

Design: Data came from a prospective sleep study with participants recruited between 2003-

2005 and followed until 2015-2016. 

Setting: Multicenter population-based cohort study. 

Participants: Among the 3,135 men enrolled, we excluded 331 men with missing or invalid 

actigraphy data and 137 with significant cognitive impairment at baseline, leading to a sample of 

2,667 participants. 

Exposures: Leveraging 20 actigraphy-derived sleep and circadian activity rhythm variables, we 

determined sleep/circadian profiles using an unsupervised machine learning technique based 

on multiple coalesced generalized hyperbolic mixture modeling. 

Main Outcomes and Measures: Incidence of dementia and CVD events. 

Results: We identified three distinct sleep/circadian profiles: active healthy sleepers (AHS; 

n=1,707 (64.0%); characterized by normal sleep duration, higher sleep quality, stronger 

circadian rhythmicity, and higher activity during wake periods), fragmented poor sleepers (FPS; 

n=376 (14.1%); lower sleep quality, higher sleep fragmentation, shorter sleep duration, and 

weaker circadian rhythmicity), and long and frequent nappers (LFN; n=584 (21.9%); longer and 
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more frequent naps, higher sleep quality, normal sleep duration, and more fragmented circadian 

rhythmicity). Over the 12-year follow-up, compared to AHS, FPS had increased risks of 

dementia and CVD events (Hazard Ratio (HR)=1.35, 95% confidence interval (CI)=1.02-1.78 

and HR=1.32, 95% CI=1.08-1.60, respectively) after multivariable adjustment, whereas LFN 

showed a marginal association with increased CVD events risk (HR=1.16, 95% CI=0.98-1.37) 

but not with dementia (HR=1.09, 95%CI=0.86-1.38). 

Conclusion and Relevance: We identified three distinct multidimensional profiles of sleep 

health. Compared to healthy sleepers, older men with overall poor sleep and circadian activity 

rhythms exhibited worse incident cognitive and cardiovascular health. These results highlight 

potential targets for sleep interventions and the need for more comprehensive screening of poor 

sleepers for adverse outcomes. 
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Introduction 

Growing evidence has linked individual sleep characteristics and disturbed circadian rhythms 

with adverse health outcomes in older adults, including neurodegenerative and cardiovascular 

diseases (CVDs), two leading causes of disability and mortality worldwide.1–4 However, the 

literature remains inconsistent.5–8 Some studies have associated both short and long sleep 

duration with increased dementia risk,9 while others found conflicting associations.7,10,11 

Similarly, although some research has suggested that more frequent or long naps were 

associated with a higher risk of CVD,4,12 others showed a protective effect.13 

These conflicting findings may be partly due to the lack of consideration of the multidimensional 

nature of sleep. Research has primarily examined sleep characteristics in isolation, whereas 

sleep involves a complex interplay of multiple dimensions such as duration, continuity, quality, 

circadian rhythmicity, and napping.14 Adopting a holistic approach by considering common 

combinations of sleep characteristics could improve our understanding of multidimensional 

sleep patterns and their associations with outcomes. Investigating these associations can 

provide valuable insights for public health strategies, aiding the identification of at-risk 

populations and targeted treatments or interventions.  

In a community-dwelling cohort of older men, our objectives were: (1) to identify actigraphy-

derived sleep health profiles based on multidimensional objective sleep and rest-activity 

variables, by using a novel and flexible clustering method; and (2) to investigate the longitudinal 

associations between these profiles and the incidence of dementia and CVD events over 12 

years.  

Methods 
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We followed the Strengthening the Reporting of Observational Studies in Epidemiology 

(STROBE) reporting guidelines. 

Study Design 

From 2000 to 2002, the Osteoporotic Fractures in Men Study (MrOS) enrolled 5,994 

community-dwelling men aged ≥65 years, able to walk without assistance, and without bilateral 

hip replacements, at six clinical centers across the United States.15,16 Among them, 3,135 were 

recruited into the ancillary MrOS sleep study and underwent a comprehensive sleep 

assessment between 2003 and 2005 (our study baseline). We excluded 331 men with missing 

or invalid actigraphy data (< 3 “in-bed” and “out-of-bed” intervals), and 137 with significant 

cognitive impairment at baseline (Modified Mini-Mental State Examination (3MS) score <80 or 

taking dementia medication), leading to a sample of 2,667 participants (eFigure 1). All 

participants provided written informed consent and the study was approved by the Institutional 

Review Board at each site. 

Actigraphy  

Participants wore a SleepWatch-O actigraph (Ambulatory Monitoring, Inc) continuously on their 

nondominant wrist for ≥4 consecutive 24-hours periods (median 5, range 3-13). Data were 

collected in proportional integration mode and scored by epoch to estimate “wake” and “sleep” 

periods using Action W-2 software and the University of California, San Diego scoring 

algorithm.17 Trained scorers at the San Francisco Coordinating Center edited the data using 

participants’ sleep diaries to identify time in and out of bed as well as periods when the interval 

should be deleted because the watch was removed. Sleep indices were summarized across the 

monitoring period using means and standard deviations (SDs).18,19 Circadian rest-activity rhythm 

indices were generated using parametric extended cosine models and nonparametric 

variables.20,21 A total of 37 actigraphy variables were examined and described in Table 1.  
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Dementia Incidence 

Over 12 years, participants attended four follow-up visits where they reported any physician-

diagnosed dementia and their medication use, bringing all medications taken within the past 30 

days. Dementia medication use was categorized based on the Iowa Drug Information Service 

Drug Vocabulary.22 In addition, trained staff administered the 3MS test to assess global cognitive 

function. Incident dementia at any follow-up visit was defined by meeting at least one of the 

following criteria: (i) self-reported physician-diagnosed dementia; (ii) dementia medication use; 

or (iii) a change in 3MS score of ≥1.5 SDs worse than the mean change from baseline to any 

follow-up visit. Participants were censored at the date of the diagnostic visit, death, or last visit. 

Cardiovascular Disease Event Incidence 

Participants were surveyed for incident CVD events by postcard and phone contact every four 

months for approximately 12 years, with a response rate over 99%. Relevant medical records 

and documentation from any potential incident clinical events were obtained by the clinical 

center. For both nonfatal and fatal CVD events, all documents were adjudicated by a board-

certified cardiologist using a prespecified adjudication protocol. Inter-rater agreement was 

periodically evaluated by one or more expert adjudicator(s) in a random subset of events to 

ensure quality control. Confirmed incident all-cause CVD events combined coronary heart 

disease, cerebrovascular, and peripheral vascular disease events (eMethod). Participants were 

censored at the date of the first CVD event, death, last contact before March 1, 2015, or on 

March 1, 2015. 

Statistical Analysis 

We conducted a cluster analysis to identify distinct sleep/circadian profiles. Firstly, we selected 

20 actigraphy variables, choosing one of the two variables when their correlation was above 

0.70 (eFigure 2). Secondly, we performed a principal component analysis (PCA) on the selected 
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variables to reduce data dimensionality (while preserving most of the data variation) and 

enhance the efficacy of subsequent clustering. The number of principal components was 

determined considering components with eigenvalues >1 and by visual inspection of the scree 

plot (eFigure 3).23,24 Thirdly, sleep/circadian profiles were identified using Multiple Coalesced 

Generalized Hyperbolic Distribution (MixGHD package in R) mixture models.25,26 This method, 

as opposed to standard clustering approaches, was chosen for its ability to accommodate 

potentially skewed and/or asymmetric clusters, an important consideration given the skewed 

distributions often observed in actigraphy data (eFigure 4). We explored models comprising one 

to five clusters, using k-medoids as the starting criterion, and determined the optimal number of 

clusters by examining the Bayesian Information Criteria (BIC), the Akaike Information Criteria 

(AIC) and the Integrated Complete-data Likelihood (ICL) (see eMethods for additional 

information).  

We performed unadjusted and multivariable adjusted Cox proportional hazards models with age 

as time scale to investigate whether identified sleep profiles were associated with the incidence 

of dementia and CVD events over 12 years. Covariates were selected based on potential 

biological plausibility, and included study site, race/ethnicity, education, smoking status, caffeine 

intake, alcohol use, physical activity, body mass index (BMI), history of diabetes mellitus and 

hypertension, depressive symptoms, and sleep-related medications use (eMethods).  

In sensitivity analyses, models were further adjusted for (i) history of heart attack and stroke, (ii) 

baseline apnea-hypopnea index (AHI), and (iii) baseline 3MS score (for dementia analysis). We 

also excluded participants with incident dementia at the first follow-up visit to minimize reverse 

causation (for dementia analysis), and those with history of heart attack and stroke to minimize 

confounding bias (for CVD analysis). 

Significance level was set at a two-sided p < 0.05 and statistical analyses were performed using 

R version 4.3.0. 
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Results 

A total of 2,667 men were eligible for cluster analysis. At baseline, participants had a median 

age of 75 years (interquartile range [IQR]= 72-80), 20.2% had a high school education or lower, 

and 90.0% were White. Compared to included participants, excluded men (n=468) were older, 

less educated, more likely to be non-White, and had less physical activity and alcohol 

consumption, but higher depressive symptoms and sleep medication use (eTable 1). 

 Sleep profiles 

After examining the AIC, BIC, and ICL, three distinct sleep/circadian profiles were identified 

(eFigure 5): active healthy sleepers [AHS; n=1,707 (64.0%)], fragmented poor sleepers [FPS; 

n=376 (14.1%)], and long and frequent nappers [LFN; n=584 (21.9%)]. All sleep characteristics 

are described in Table 2.  

AHS were characterized by normal nighttime sleep duration (median= 6.7 hours), higher sleep 

quality (median sleep efficiency= 83%, sleep maintenance= 87%, minimum= 234, L5= 292), 

earlier timing of sleep (median sleep onset time= 23.1, start and midpoint of L5= 0.23 and 2.73, 

midpoint of bed and onset interval= 2.79 and 2.92), stronger circadian rhythmicity (median 

amplitude= 3712, pseudo-F= 1078, intradaily variability=0.60, interdaily stability= 0.76, relative 

amplitude= 0.86), and higher activity during wake periods (median M10= 4049, alpha= -0.40) 

(see Table 1 for description and interpretation of sleep data).  

FPS were characterized by shorter nighttime sleep duration (median= 5.6 hours) and longer 

time in bed (median= 8.8 hours), lower sleep quality (median sleep efficiency= 64%, sleep 

maintenance= 71), higher sleep fragmentation (median sleep latency= 53 min, wake after sleep 

onset= 126 min, L5= 525, and median SD for sleep onset= 1.14, bedtime= 0.68, wake-up time= 

0.72, midpoint of bed and onset interval= 0.58 and 0.75), later timing of sleep and activity 

(median acrophase= 14.69, wake-up time= 7.5, start of M10= 8.7, up-mesor= 7.4, sleep onset 
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time= 23.7, midpoint of onset interval= 3.48), and weaker circadian rhythmicity (median 

amplitude= 3294, relative amplitude= 0.77).  

LFN were characterized by longer (median= 79 min) and more frequent naps (median= 5.5), 

normal nighttime sleep duration (median= 6.4 hours), good sleep quality (median sleep 

efficiency= 82%, sleep maintenance= 85%), earlier timing of activity (median acrophase= 13.51, 

start and midpoint of M10= 7.6 and 12.6, down-mesor= 19.9), and more fragmented circadian 

rhythmicity (median pseudo-F= 805, intradaily variability= 0.70, interdaily stability= 0.73, 

amplitude= 3250). 

All sleep and circadian variables differed significantly across the three profiles (p<0.0001). 

Among the cluster analysis variables, large effect sizes were found for minutes napping, sleep 

latency, wake after sleep onset, alpha, and minimum; with the circadian variables alpha 

(η2=0.213) and minimum (η2=0.193) being the largest contributors. Other variables with large 

effect sizes included number of naps, sleep efficiency, sleep maintenance, down-mesor, L5, and 

relative amplitude (Table 2). Sleep profiles based on the largest contributors were illustrated in 

Figure 1.   

Compared to AHS, FPS were less educated and less physically active, while LFN were slightly 

older. Both FPS and LFN were more likely to be non-White, smokers, to have a history of 

hypertension and a higher BMI. AHS consumed less caffeine than FPS (Table 3).   

Dementia incidence 

Among the 2,562 men with dementia data, 461 (18.0%) incident dementia cases were identified 

over 12 years of follow-up (median=6.1 [IQR= 3.2-10.5]). Kaplan-Meier curves are shown in 

Figure 2. In unadjusted models, FPS had an increased risk of dementia (hazard ratios 

(HR)=1.34, 95% confidence intervals (CI)=1.03-1.74) compared to AHS. There was no 

association with dementia risk for LFN (HR=1.11, 95% CI=0.89-1.39). After adjusting for 
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demographics, behaviors, comorbidities and sleep medication use, results were similar 

(HR=1.35, 95% CI=1.02-1.78 for FPS and HR= 1.09, 95% CI=0.86-1.38 for LFN). Sensitivity 

analyses displayed comparable findings (eTable 2, 3, 4, and 5). 

CVD event incidence 

Among 2,606 men with CVD data, 839 (32.2%) incident CVD events were identified over 12 

years of follow-up (median=9.7 [IQR= 4.5-10.5]). Kaplan-Meier curves are shown in Figure 2. In 

unadjusted models, both FPS and LFN were significantly associated with a higher risk of CVD 

events compared to AHS (HR=1.44, 95% CI=1.19-1.74 and HR=1.21, 95% CI=1.02-1.42, 

respectively). After multivariable adjustment, FPS were significantly associated with a higher risk 

of CVD events compared to AHS (HR=1.32, 95% CI=1.08-1.60), while LFN showed a borderline 

association (HR=1.16, 95% CI=0.98-1.37, p=0.08). Results remained consistent in the 

sensitivity analysis (eTable 2, 3 and 6), although the association for LFN was strongly 

attenuated after exclusion participants with a history of heart attack or stroke (eTable 6). 

Discussion 

In a prospective cohort of older men, we identified three distinct multidimensional 

sleep/circadian profiles using machine learning: active healthy sleepers [AHS], fragmented poor 

sleepers [FPS], and long and frequent nappers [LFN]. Compared to AHS, FPS had increased 

risks of developing dementia and CVD events over 12 years whereas LFN tended to have an 

increased risk of CVD events, but not dementia. These results suggest that poor sleep and 

disrupted circadian rhythms may be risk factors or preclinical markers of dementia and CVD and 

highlight potential target populations for sleep interventions.   

Few studies have used clustering27–29 or latent class30–32 analyses to discern sleep profiles in 

older adults. Moreover, these studies faced significant limitations, including cross-sectional 

design,27 reliance on self-reported sleep data,27,30,31 lack of rest-activity variables,27,29–31 and a 
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focus on clinical populations.29 To the best of our knowledge, this study is the first to identify 

objective sleep and circadian profiles in community-dwelling older men using both sleep and 

rest-activity parameters with prospective follow-up for health outcomes. We identified three 

sleep profiles with high heterogeneity. The AHS group was the most common profile (64%), 

characterized by a combination of favorable characteristics: normal nighttime sleep duration, 

higher sleep quality, and stronger circadian rhythmicity. The LFN (21.9%) were characterized by 

longer and more frequent naps, alongside a combination of favorable and unfavorable 

dimensions: normal nighttime sleep duration, good sleep quality, and more fragmented circadian 

rhythms. The third group was the FPS (14.1%) who had a combination of unfavorable 

characteristics: shorter nighttime sleep duration, lower sleep quality, higher sleep fragmentation, 

delayed sleep/activity timing, and weaker circadian rhythmicity. Compared to prior research, our 

study provides a deeper characterization of nighttime and daytime sleep patterns by using a 

broader set of objective parameters, including extensive analysis of circadian rhythms. This 

provided a more nuanced and complete understanding of participants’ multidimensional sleep 

and circadian patterns. Additionally, the advanced machine learning technique has further 

enhanced classification accuracy. 

Compared to AHS, FPS had a higher risk of dementia, consistent with variable-centered 

research linking short sleep duration, sleep fragmentation, poor sleep efficiency, and weak 

circadian rhythms with dementia incidence.2,6,33–35 This result is also in line with our previous 

work demonstrating the association between a multidimensional measure of sleep health and 

long-term cognitive decline.36 Our result extends those of a recent cross-sectional, person-

centered study that used self-reported sleep, which found that the “poor sleepers” group 

performed worse on several cognitive tests compared to the “healthy sleepers” group.27 

Potential underlying mechanisms include accumulation of amyloid-beta and tau proteins, 

disturbed glymphatic clearance, metabolic dysfunction, and inflammation.37–39 However, we 
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cannot exclude the fact that preclinical dementia-related changes may also influence sleep and 

circadian patterns.40–42 FPS also had an increased risk of CVD events, in line with several prior 

studies of individual sleep parameters.43–45 Increase sympathetic activity and blood pressure, 

disrupted endothelial function, and inflammatory processes may explain in part this 

association.46 Taken together, these results showed that FPS were associated with poor incident 

cognitive and cardiovascular health.  

We did not observe an association between LFN and dementia incidence. This finding 

contributes to the ongoing debate on napping and dementia. Some studies have reported that 

longer or more frequent naps were linked to a higher risk of dementia and faster cognitive 

decline,5,47 while others have found a lower risk48,49 or no association.7,50 Our study 

demonstrated that long and frequent napping, when combined with good nighttime sleep 

dimensions, might not affect the risk of dementia. This underscores the importance of clustering 

analysis and considering combination of sleep and circadian dimensions, as longer and more 

frequent naps alone were associated with a higher risk of dementia in our sample. Furthermore, 

this is in line with a previous clustering study which showed that a “high sleep propensity” group 

(characterized by long naps) was protective against all-cause mortality, while napping alone was 

associated with a higher risk.28 Interestingly, LFN were linked to increased risk of CVD events, 

although the association was of marginal significance. Prior research on napping and CVD has 

been mixed, with several studies suggesting a higher risk of CVD associated with more frequent 

or longer naps,4,12 while others suggested a protective effect.13 Daytime napping may result from 

short or poor nighttime sleep (as a compensatory mechanism) or indicate poor overall health, 

both of which can contribute to increase CVD risk. However, these hypotheses do not fully 

explain our findings since LFN had normal nighttime sleep duration with good sleep quality, and  

LFN did not differ from AHS regarding sociodemographic factors and comorbidities. Although 

the exact reasons why LFN might be associated with CVD but not dementia are not well-
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understood, assumptions include autonomic nervous system disruptions or other metabolic 

changes not examined in this study,51,52 which may impact more the cardiovascular risk. It may 

also involve cardiovascular mechanisms that do not relate to dementia risk or have a less direct 

effect on it. Further research, including mediation analyses, is needed to better understand the 

role of napping in relation to adverse health outcomes and their underlying mechanisms. 

Our findings have important clinical and public health implications. By identifying common 

multidimensional sleep and circadian patterns in older men using advanced machine learning 

techniques, this study enhances our understanding of the interrelations between numerous 

sleep/circadian parameters and underscores the critical need for comprehensive sleep health 

assessment in clinical practice and research settings. Both FPS and LFN exhibited poor 

circadian activity rhythmicity, emphasizing the importance of this dimension of sleep health. 

Future studies should incorporate circadian rhythms when examining adverse outcomes. 

Moreover, our results highlight specific at-risk groups that could benefit from sleep interventions 

and prevention efforts, and support poor sleep patterns as a marker or risk factor for cognitive 

and cardiovascular health. Public health initiatives may consider prioritizing the screening and 

monitoring of older adults with weak circadian rhythms combined with poor nighttime sleep or 

with high daytime napping.  

Strengths and Limitations 

Strengths of this study include a 12-year longitudinal design with high retention rates, a 

multidimensional measure of sleep and rest-activity rhythms using objective measures, and 

consideration of numerous potential confounders. We also used an innovative machine learning 

approach capable of detecting clusters with flexible shapes, which standard clustering methods 

cannot achieve. However, there are also limitations. The diagnosis of dementia relied on 

cognitive tests and self-reported data, which may lead to outcome misclassification. Moreover, 
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the timing of dementia incidence was based on study visit dates, which may not reflect the 

actual onset of dementia, and information on dementia subtypes was lacking. This study 

predominantly involves White older men, limiting the generalizability of the results. Future 

research should replicate these methods in more diverse samples. Lastly, as an observational 

study, we cannot assume causal relationships between sleep profiles and dementia or CVD 

events.  

Conclusions 

In older men, we identified three multidimensional actigraphy-derived sleep/circadian profiles. 

Compared to AHS, FPS were associated with less favorable cognitive and cardiovascular health 

over 12 years, while FPS were linked to increased risk of CVD events, but not dementia. These 

results suggest potential targets for sleep interventions and prevention efforts and emphasize 

the need for careful screening of poor sleepers for adverse outcomes. Moreover, our study 

highlights the importance of future research to consider combinations of sleep characteristics.   
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Figure Legends 

 

Figure 1. Radial plots displaying the median quantile rankings of sleep and circadian 

characteristics with large effect sizes for each sleep profile.  

The sample’s highest ranked value is represented by the maximum value of 1, the median 

ranked value by 0.50, and the lowest ranked value by 0.  

 

Figure 2. Kaplan-Meier curves depicting the probability of dementia-free and cardiovascular 

disease-free survival between sleep profiles. 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.19.24312248doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.19.24312248
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

Table 1. Description and interpretation of all actigraphy-derived variables. 

Actigraphy-derived variables Definition Interpretation 
Sleep variables   

Number of Naps Mean of number of naps per day of 
duration ≥ 5 minutes. 

 

Minutes Napping Mean of minutes napping per day, 
considering only naps ≥ 5 minutes. 

 

Time in Bed Mean of minutes from Bed to Wake-Up 
Time. 

 

Time from Onset to Wake-Up 
(TOW) 

Mean of minutes from Sleep Onset to 
Wake-Up Time. 

 

Total Sleep Time (TST) Mean of minutes of sleep from Bed Time to 
Wake-Up Time. 

 

Bed Time Mean of Bed Time.  
Sleep Onset Time Mean of Sleep Onset Time.  
Midpoint (Bed Interval) Mean of midpoint of Bed to Wake-Up Time.  

Midpoint (Onset Interval) Mean of midpoint of Sleep Onset to Wake-
Up Time. 

 

Wake-Up Time Mean of Wake-Up Time.  

Sleep Latency Mean of minutes from Bed to Sleep Onset 
Time. 

 

Wake After Sleep Onset Mean of minutes awake after sleep onset. Higher value indicates more sleep 
fragmentation. 

Sleep Efficiency TST / TIB x 100 Higher value indicates better sleep efficiency. 

Sleep Maintenance TST / TOW x 100 Higher value indicates better sleep 
maintenance. 

SD Bed Time Standard deviation of Bed Time. Higher value indicates poorer rhythmicity.  
SD Sleep Onset Standard deviation of Sleep Onset Time. Higher value indicates poorer rhythmicity. 
SD Midpoint Time (Bed 
interval) 

Standard deviation of midpoint of Bed to 
Wake-Up Time. 

Higher value indicates poorer rhythmicity. 

SD Midpoint (Onset interval) Standard deviation of midpoint Sleep 
Onset to Wake-Up Time. 

Higher value indicates poorer rhythmicity. 

SD Wake-Up Time Standard deviation of Wake-Up Time. Higher value indicates poorer rhythmicity. 
Circadian activity rhythm variables  
Parameters computed from extended cosine model (ECM)  

Mesor (Minimum + Amplitude) / 2; mean level of 
activity from the ECM. 

Higher value indicates higher average level 
of activity. 

Amplitude Peak to nadir difference from the ECM. Higher value indicates higher overall 
rhythmicity.  

Acrophase Time of peak (i.e., highest) activity from the 
ECM. 

Later value indicates later peak of activity 
and may reflect a more delayed phase.  

Alpha Width of peaks relative to troughs from 
ECM.  

Higher value indicates that the peaks are 
narrow (shorter period of activity) and the 
troughs are wide (longer period of 
inactivity/sleep). 

Beta Steepness of the rise and fall of the fitted 
curve.  

Higher value (more square-shaped curve) 
indicates steeper rise and fall and may reflect 
a more constant level of daytime activity.  

Minimum Minimum value of activity from the ECM. Higher value indicates more nighttime 
activity.  

Up-Mesor Time of switch from low to high activity 
(above to below mesor) from the ECM. 

Later value indicates later time of increasing 
activity. 

Down-Mesor Time of switch from high to low activity Later value indicates later time of declining 
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(below to above mesor) from the ECM.  activity. 

Pseudo-F Goodness of model fit.  
Higher value indicates greater robustness of 
the rest-activity rhythm and greater overall 
rhythmicity.  

Nonparametric parameters   

Intradaily variability (IV) Within-day fragmentation of the 24-hour 
rest-activity rhythm.  

Higher value indicates a more fragmented 
rest-activity rhythm within-day. 

Interdaily stability (IS) Consistency of the 24-hour rest-activity 
rhythm between days. 

Higher value indicates better consistency of 
the 24-hour rest-activity rhythm between 
days. 

L5 Mean activity level during the least active 5 
consecutive hours.  

Higher value indicates less restful sleep. 

Start of L5 Start time of L5. Indicates the phase of the most restful hours. 

Midpoint of L5 Midpoint time of L5.  Indicates whether a person goes to bed 
earlier or later in the day. 

M10 Mean activity level during the most active 
consecutive 10 hour period of the day.  

Higher value indicates a more active wake 
period. 

Start of M10 Start time of M10. Indicates the phase of the most active hours. 

Midpoint of M10 Midpoint time of M10.  Indicates whether a person is most active 
earlier or later in the day. 

Relative amplitude (RA) (M10 – L5) / (M10 + L5).  
Higher value indicates a more robust 24-hour 
rhythm; reflecting higher activity during wake 
and relatively lower activity during night. 
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Table 2. Sleep characteristics among the 2,667 participants according to identified multidimensional sleep clusters.  

 

Active Healthy 
Sleepers  
(n=1707) 

Fragmented Poor 
Sleepers  

(n=376) 

Long and Frequent 
Nappers  
(n=584)    

Sleep variables Median (IQR) Median (IQR) Median (IQR) 
Effect 

size (η2) p-valuec Post hocd 
Variables used to create the clusters   
Minutes Napping 34 (16;60) 31 (13;53) 79 (48;127) 0.160 <.0001 LFN > AHS,FPS 
Time in Bed 489 (453;524) 530 (482;570) 475 (440;514) 0.056 <.0001 FPS > AHS > LFN 
Total Sleep Duration 400 (362;438) 336 (273;395) 381 (342;424) 0.074 <.0001 AHS > LFN > FPS 
Sleep Onset Time 23.1 (22.4;23.7) 23.7 (22.7;24.9) 23.4 (22.8;24.1) 0.037 <.0001 FPS > LFN > AHS 
Wake-Up Time 6.9 (6.2;7.5) 7.5 (6.6;8.1) 6.9 (6.4;7.5) 0.028 <.0001 FPS > AHS,LFN 
SD Sleep Onset 0.57 (0.37;0.83) 1.14 (0.80;1.64) 0.58 (0.37;0.90) 0.131 <.0001 FPS > AHS,LFN 
SD Wake-Up Time 0.56 (0.37;0.80) 0.72 (0.44;1.16) 0.49 (0.31;0.77) 0.027 <.0001 FPS > AHS > LFN 
Sleep Latency 18 (11;30) 53 (31;96) 19 (11;32) 0.157 <.0001 FPS > AHS,LFN 
Wake After Sleep Onset 61 (42;85) 126 (97;159) 65 (43;93) 0.188 <.0001 FPS > AHS,LFN 
Mesora 2102 (1850;2359) 2170 (1863;2433) 2257 (1893;2678) 0.020 <.0001 LFN > FPS > AHS 
Pseudo-Fa 1078 (781;1421) 861 (637;1169) 805 (558;1109) 0.065 <.0001 AHS > FPS > LFN 
Betaa 8.03 (4.89;17.02) 8.59 (5.02;20.14) 12.33 (4.43;40.20) 0.007 <.0001 LFN > AHS,FPS 
Alphaa -0.40 (-0.50;-0.28) -0.35 (-0.46;-0.22) -0.09 (-0.25;0.10) 0.213 <.0001 LFN > FPS > AHS 
Acrophasea 14.38 (13.77;14.98) 14.69 (13.89;15.57) 13.51 (12.90;14.16) 0.114 <.0001 FPS > AHS > LFN 
Minimuma 234 (3;385) 521 (265;756) 588 (330;781) 0.193 <.0001 FPS,LFN > AHS 
Intradaily variability (IV)b 0.60 (0.48;0.72) 0.63 (0.51;0.77) 0.70 (0.54;0.85) 0.037 <.0001 LFN > FPS > AHS 
Interdaily stability (IS)b 0.76 (0.69;0.82) 0.72 (0.64;0.79) 0.73 (0.66;0.80) 0.021 <.0001 AHS > FPS,LFN 
Start of M10b 8.2 (7.3;9.2) 8.7 (7.7;10.1) 7.6 (6.9;8.6) 0.039 <.0001 FPS > AHS > LFN 
Start of L5b 0.23 (-0.70;1.13) 0.73 (-0.38;1.97) 0.55 (-0.27;1.35) 0.016 <.0001 FPS,LFN > AHS 
Midpoint of L5b 2.73 (1.80;3.63) 3.23 (2.12;4.47) 3.05 (2.23;3.85) 0.016 <.0001 FPS,LFN > AHS 
Other variables    
Number of Naps 2.5 (1.3;4.3) 2.3 (1.1;3.8) 5.5 (3.5;8.5) 0.167 <.0001 LFN > AHS,FPS 
Time from Onset to Wake-Up  460 (423;495) 453 (387;508) 444 (409;484) 0.009 <.0001 AHS > LFN 
Bed Time 22.7 (22.1;23.4) 22.6 (21.8;23.5) 23.0 (22.4;23.7) 0.017 <.0001 LFN > AHS,FPS 
SD Bed Time 0.51 (0.33;0.75) 0.68 (0.41;1.01) 0.51 (0.31;0.83) 0.020 <.0001 FPS > AHS,LFN 
Midpoint (Bed Interval) 2.79 (2.24;3.33) 2.95 (2.30;3.73) 2.97 (2.44;3.52) 0.011 <.0001 FPS,LFN > AHS 
Midpoint (Onset Interval) 2.92 (2.37;3.48) 3.48 (2.68;4.36) 3.09 (2.57;3.65) 0.038 <.0001 FPS > LFN > AHS 
SD Midpoint (Bed interval) 0.43 (0.30;0.61) 0.58 (0.37;0.87) 0.40 (0.25;0.63) 0.026 <.0001 FPS > AHS,LFN 
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SD Midpoint (Onset interval) 0.45 (0.30;0.63) 0.75 (0.53;1.05) 0.43 (0.27;0.68) 0.089 <.0001 FPS > AHS,LFN 
Sleep Efficiency 83 (77;87) 64 (54;72) 82 (75;87) 0.218 <.0001 AHS > LFN > FPS 
Sleep Maintenance 87 (82;91) 71 (62;79) 85 (79;90) 0.190 <.0001 AHS > LFN > FPS 
Amplitudea 3712 (3154;4280) 3294 (2611;3894) 3250 (2591;4125) 0.038 <.0001 AHS > FPS,LFN 
Up-Mesora 6.9 (6.3;7.5) 7.4 (6.6;8.1) 7.0 (6.5;7.9) 0.028 <.0001 FPS > LFN > AHS 
Down-Mesora 22.0 (21.1;22.8) 22.0 (21.0;23.1) 19.9 (18.9;20.9) 0.202 <.0001 AHS,FPS > LFN 
M10b 4049 (3543;4534) 3884 (3370;4406) 3736 (3111;4332) 0.023 <.0001 AHS > FPS > LFN 
Midpoint of M10b 13.2 (12.3;14.2) 13.7 (12.7;15.1) 12.6 (11.9;13.6) 0.039 <.0001 FPS > AHS > LFN 
L5b 292 (217;383) 525 (414;682) 323 (232;442) 0.164 <.0001 FPS > LFN > AHS 
Relative amplitude (RA)b 0.86 (0.82;0.90) 0.77 (0.68;0.81) 0.84 (0.78;0.88) 0.169 <.0001 AHS > LFN > FPS 

Abbreviations: IQR, interquartile range. 
a computed from extended cosine model; b nonparametric measures; c Kruskal-Wallis test was used; d Dunn test adjusted for multiple comparisons 
using Bonferroni method was used.
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Table 3. Baseline characteristics according to identified sleep clusters among the 2,667 participants. 

 
Active Healthy 

Sleepers 
Fragmented Poor 

Sleepers 
Long and Frequent 

Nappers   
 (n=1707) (n=376) (n=584)   

Characteristics 
Median (IQR) 

 or No. (%) 
Median (IQR) 

 or No. (%) 
Median (IQR) 

 or No. (%) p-valuea Post hocb 
Age (years) 75 (71;79) 76 (72;80.3) 76 (72;81) 0.002 LFN > AHS 
Education, ≤High school 313 (18.3) 92 (24.5) 134 (22.9) 0.005 FPS > AHS 
Race/ethnicity    <.0001  
 White 1575 (92.3) 327 (87.0) 523 (89.6)   
 Black/African American 36 (2.1) 24 (6.4) 22 (3.8)   
 Other 96 (5.6) 25 (6.6) 39 (6.7)   
PASE score 145 (101;190) 125 (84;176) 138 (96;183) <.0001 AHS > FPS 
GDS score, ≥6 90 (5.3) 28 (7.5) 38 (6.5) 0.20 - 
Smoking status    0.01  
 Never 704 (41.3) 125 (33.2) 225 (38.5)   
 Past 976 (57.2) 238 (63.3) 347 (59.4)   
 Current 26 (1.5) 13 (3.5) 12 (2.1)   
Caffeine intake (mg/day) 184 (36;368) 214 (48;405) 136 (0;356) 0.009 FPS > LFN 
Alcoholic drink per week, >1 937 (55.2) 207 (55.5) 308 (52.9) 0.61 - 
Body mass index (kg/m2) 26.6 (24.4;28.8) 27.6 (25.3;30.7) 27.0 (24.8;29.6) <.0001 FPS,LFN > AHS 
History of heart attack 288 (16.9) 67 (17.8) 95 (16.3) 0.82 - 
History of stroke 56 (3.3) 9 (2.4) 28 (4.8) 0.10 - 
History of diabetes mellitus 207 (12.1) 60 (16.0) 85 (14.6) 0.08 - 
History of hypertension 802 (47.0) 208 (55.3) 314 (53.8) 0.001 FPS,LFN > AHS 
Current sleep medication 185 (10.8) 57 (15.2) 62 (10.6) 0.05 - 
 Antidepressants 111 (6.5) 37 (9.8) 39 (6.7) 0.07 - 
 Benzodiazepine 69 (4.0) 16 (4.3) 22 (3.8) 0.93 - 
 Other sleep medications 32 (1.9) 8 (2.1) 10 (1.7) 0.90 - 

Abbreviations: GDS, Geriatric Depression Scale; IQR, interquartile range; PASE, Physical Activity Scale for the Elderly. 

a: Kruskal-Wallis test was used for continuous variables, Chi-square test for categorical variables. 
b: Dunn test adjusted for multiple comparisons using Bonferroni method was used for continuous variables, pairwise comparisons with Chi-square 
test adjusted for multiple comparisons using Bonferroni method was used for categorical variables. 
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