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Abstract

Identification of the most influential spreaders that maximize information propagation in
social networks is a classic optimization problem, called the influence maximization (IM)
problem. A reasonable diffusion model that can accurately simulate information propagation
in social networks is the key step to efficiently solving the IM problem. Synergism of neighbor
nodes plays an important role in information propagation dynamics. Some known diffusion
models have considered the reinforcement mechanism in defining the activation threshold.
Most of these models focus on the synergetic effects of nodes on their common neighbors,
but the accumulation of synergism has been neglected in previous studies. Inspired by
these facts, we first discuss the catalytic role of synergism in the spreading dynamics of
social networks and then propose a novel diffusion model called the synergism-based
three-step cascade model (TSSCM) based on the above analysis and the three-degree
influence theory. Finally, we devise an algorithm for solving the IM problem based on the
TSSCM. Experiments on five real large-scale social networks demonstrate the efficacy of
our method, which achieves competitive results in terms of influence spreading compared to
the four other algorithms tested.

Introduction

The problem of finding the optimal set of influencers, whereby viruses, information, and epi-
demics propagate through network edges via interactions between individual constituents, has
broad applications in a variety of network dynamics areas [1-8]. Viral marketing can inexpen-
sively achieve large-sale product adoption through advertising with a small group of influential
customers [1-3]. The financial crisis that resulted from the cascading bankruptcy of major
financial institutions in 2008 caused estimated US economic losses as high as $22 trillion [9].
The immunization of structurally important persons can efficiently halt global epidemic out-
breaks. The above applications have important characteristics in common, such as budget
restrictions and intervention time constraints, and require efficient real-time applications of
large-scale data. These features can be simplified to an optimization problem, called the
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influence maximization (IM) problem. IM, first studied by Domingos and Richardson et al.
[10,11], is a fundamental research problem in social networks. The issue is described as fol-
lows: an online social network can be modeled as a graph with vertices representing users and
edges representing the links between users. The cascade process on the network is conducted
under a specified diffusion model. The IM problem is defined as finding k seed nodes in the
network as the source of information propagation such that under the specified diffusion
model, the scale of the cascade is maximized. The IM problem is NP-hard. Kempe, Kleinberg
and Tardos [12] proposed a greedy algorithm based on Monte Carlo simulation for solving the
optimization problem. The performance of the greedy algorithm reached 63% of the optimal
solution, but it is not applicable to large-scale networks because it is time consuming. A series
of improved algorithms, including CELF [13], NewGreedy [14] and Mixgreedy [15], were pro-
posed to overcome the inefficiency of the greedy algorithm. Unfortunately, although these
algorithms are hundreds of times more efficient than the greedy algorithm, their computa-
tional complexity remains too high to be applied to growing networks because Monte Carlo
simulations are performed to approximate the influence spread of a given seed set.

Many heuristic algorithms have recently emerged. These algorithms can be grouped into
two categories: algorithms based on network topology and algorithms based on propagation
path. The first group of algorithms mainly use centrality measures, including high degree [15-
17], random selection [18], betweenness centrality [17,19], random walk [20], k-shell [21] and
community detection [22]. Chen et al. [23] proposed a degree discount algorithm based on
degree centrality. In this algorithm, when a node is selected as a seed node, the degree of its
neighbor nodes is discounted. Cao et al. [24] designed a core-covering algorithm based on k-
shell and the influence radius. Zhu et al. [25] solved the IM problem by developing a structural
hole-based algorithm, called SHIM. These algorithms, which are based exclusively on topol-
ogy, decrease the running time by several orders of magnitude, but they are unstable under dif-
ferent networks and diffusion models. The second group of algorithms are path based, and
influence spreading can be efficiently approximated without Monte Carlo simulation. In some
applications, we must identify super blockers. Giant components are fragmented by removing
key nodes, and propagation is blocked. The mining of the optimal immunization set is based
on a diffusion model, such as the susceptible-infected-recovered model [26], the susceptible-
infected-susceptible model [26], the independent cascade model [10], the linear threshold
model [10] and other cascade models [4,27-30]. Wattes [4] proposed a simple model of global
cascades on random networks to explain global cascades that are triggered by small initial
shocks. Wei Wang et al. [27] employed the nonredundant information memory characteristic
in their social contagion model, which better captured the dynamics of social contagions in the
real world, and discussed the cascading process in multiple networks [28,29]. Flaviano and
Hernan A [31] mapped the information spread on social networks onto an optimal percolation
and presented an algorithm, called collective influence (CI), based on the weak connection
between nodes to identify the minimal set of influencers. Based on this information, the
authors leverage the behavior of users in real networks, including Twitter, Facebook, APS and
LiveJournal, and use the CI algorithm to locate influential spreaders. The experimental results
show that the optimal seed set is much smaller than those obtained by other measures. Sen
et al. [32] explored CI in the linear threshold model and proposed a method based on the sub-
critical path to locate influential spreaders. Andrey Y. and David [33] found that the optimal
deployment of the seed set resulted from the interaction between network topology and propa-
gation dynamics. They introduced an effective framework for optimizing the maximization or
minimization of propagation. Qin et al. [34] devised a diffusion model, called the three-step
cascade model (TSCM), that limits the propagation to three-layer neighbors, and they experi-
mentally verified that the model is suitable for simulating information propagation on Sina
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Weibo, a social site similar to Twitter. Then, they proposed an algorithm for solving the IM
problem based on the TSCM. The above study draws on the three-degree influence theory
[35], which we also consider in this work. The above studies show that a reasonable diffusion
model that can accurately simulate information propagation on social networks is the key to
effectively solving the IM problem. Most existing diffusion models have one commonality: the
information spread between a pair of activated and inactivated nodes is independent of the
states of their neighbors, and the accumulation of synergism has been neglected in these
threshold models. Therefore, the scale of information diffusion is sensitive to the average
degree of the network. Some studies show that parameter uncertainty may greatly affect influ-
ence maximization performance, and the interaction of combined nodes produces a collective
influence that is larger than the sum of the individual nodes, which is called synergism [36-
40]. Synergism is a ubiquitous phenomenon in social systems. Many studies have found that
synergism enhances the transmission probability between a pair of nodes and promotes explo-
sive spreading [29,41]. For example, in terms of information spread in social networks, a mes-
sage transmitted by a group of connected users is more credible than a message transmitted by
an individual [42,43]. Therefore, in this paper, we first discuss the catalytic role of synergism
on the spreading dynamics in social networks and then propose a novel diffusion model called
the synergism-based three-step cascade model (TSSCM) based on the above analysis and
three-degree influence theory [35]. Finally, we develop an algorithm for solving the IM prob-
lem with the TSSCM. Experiments on five real networks demonstrate the efficacy of our
method.

Synergism-based three-step cascade model

Definition of TSSCM

Without loss of generality, we define an unweighted, undirected graph G = (V,E), where V is
the set of vertices and E is the set of edges. An online social network can be modeled by the
graph. A node v€V represents an individual in the social network, and an edge e(u,v)€E
denotes that information can spread between u and v. The topology is represented by the adja-
cency matrix {A;;}xn, Where A;; = 1if i and j are connected, and A;; = 0 otherwise.

Many studies have found that synergism enhances the transmission probability and pro-
motes explosive spreading [40]. Therefore, in our model, the probability that a seed node acti-
vates its neighbors is proportional to the number of other activated nodes connected to the
seed node. Furthermore, some real information diffusion findings have supported the hypoth-
esis that influence gradually dissipates and ceases to have a noticeable effect on people beyond
the social frontier of three degrees of separation, which is called intrinsic decay [34,35,44,45].
Many research results on real social networks have confirmed this theory. Qin et al. [34] ana-
lyzed Sina Weibo retweet activities and illustrated that the retweet trees are small and shallow,
and the average number of retweets decreases as the cascade depth increases. More than 96%
of retweets are within three steps, and no retweet tree has deeper than 11 steps. Leskovec et al.
[44] crawled blog links and found that more than 98.8% of the linked trees of all blogs have
depths of less than three. Goel et al. [45] described the diffusion patterns arising from seven
online social networks, including communications platforms, networked games and micro-
blogging services, and found that most adoptions occur within a few steps of the seed node,
even for the largest cascades observed. Based on the above research results, we consider the dif-
fusion process within three steps and propose TSSCM.

In TSSCM, we suppose that node u can influence node v only if the distance from u to v is
no greater than three. When u attempts to activate v, the activation probability a(u,v) is depen-
dent not only on the number of activated neighbors connected to u but also the cascade depth
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dd=123)
a(u,v) = p(u,v)I(d) (1)

plu,v) =1—(1—p)" % (2)

I(d) = %(d ~1,2,3) 3)

where £ is the basic spreading probability, m and k represent the number of activated neigh-
bors connected to u and the degree of node u, respectively, p(u,v) represents the synergism
spreading probability, and I(d) is the information decaying ratio, which is inversely propor-
tional to d.

Eq (2) indicates that the larger the value of ;, the higher the synergism spreading rate. Our
model reduces to the classic decade model for d = 1 and m = 0, where a(u,v) = B. If m>0, then
o(u,v)>p, which means synergism promotes information spread. In addition, k>1 for nonleaf
nodes; thus, the synergistic ability of any activated neighbor of an active node is less than that
of itself. This assumption is based on real disease propagation, where the probability that a sus-
ceptible node is infected by an infected direct neighbor is always greater than the probability of
becoming infected from an infected indirect neighbor [36,37].

For d>1, we describe TSSCM as follows. Let S;C V be the seed set. All nodes in S are acti-
vated in the first time step. In the cascade steps 0<t<3, S,CV is the set of nodes that are acti-
vated at step f. At step t+1, each node u€S, attempts to activate its neighbor node S, with
probability a(u,v). If such activation is successful, then v changes state from inactive to active
and remains in the active state. Each activated node has only one chance to activate its neigh-
bors during the step immediately following its initial activation. The above cascade process is
repeated until no nodes in the network can be activated or ¢ = 3.

As shown in Fig 1, at step £, node 1 is a seed and the other nodes are inactive. For node 1,
there are no active neighbors; thus, m =0, a(1,2) = «(1,3) = a(1,4) =1 — (1 — [f)“ﬁ =,
which means node 1 activates its neighbors with probability 8. At step t+1, node 3 is activated
by node 1. Because it has an active neighbor, node 3 will activate its neighbors, node 5 and
node 6, with a large probability «(3,5) = «(3,6) =1 — (1 — ﬁ)H%. Unlike other diffusion
models, TSSCM accumulates synergism, i.e., active neighbors of an active node cooperate to
spread information. This phenomenon is common in real social systems, such as microblog-
ging retweeting [44], opinion propagation [30], and animal invasion [46].

Influence maximization problem under TSSCM

Given a seed set S, we use orsscp(S) to represent the influential spread of S, which can be quan-
tified as the number of activated nodes under TSSCM when the propagation process ends. The
IM problem under TSSCM is defined as follows.

Definition 1 Given a network G = (V,E), the IM problem under TSSCM aims to find a sub-
set S*CV, |S*| = k such that

§* = arg, maxa 5., (S) (4)

Kempe et al. [12] have proved that the IM problem is NP-hard using the maximum cover-
age problem. Inspired by this proof we consider a similar reduction method and prove that the
IM problem under TSSCM is NP-hard.

Theorem 1: The IM problem under TSSCM is NP-hard.
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(a)Step t (b) Step t+1
Fig 1. Illustration of TSSCM.
https://doi.org/10.1371/journal.pone.0221271.9001

Proof: The problem can be viewed as a Maximum Coverage problem, which is defined as
follows:

Given a ground set U = {uy,u,,. . .,u,,} and a collection of subsets S = {S1,S,,. . .,S,,,}, where
S,QUan(t_i:%‘JQV“m S, = U, we want to find k of the subsets S” = {$,S,,. . .S}, k<n<m, where the

union of §;CS’,is equal to U. We show that the above description can be viewed as a special
instance of the IM problem under TSSCM.

We define a directed bipartite graph containing #n*+m nodes. Node v; and node v; corre-
spond to S; and uj, respectively. For each set S;, there is a corresponding node v;, and for each
element u;, there are n corresponding nodes v, , v, , ..., v, . If ;€S;, a direct edge (v;,v, ), 1 =
1,2, - -, nexists with a spreading probability p = 1. We define X as a set of k of S; and T as the
union of the elements covered by S;€X, TCU. If k nodes corresponding to X are selected, they
activate the nodes corresponding to elements in T; then, the number of active nodes is k+#|T].
Similarly, in the converse direction, the number of active nodes is also k+n|T]|. In summary, we
know that the maximum coverage instance |T| element can be covered by k sets if and only if k
+n|T| nodes can be activated by k seeds in the instance, i.e., orsscam(X) = k+n|T]|. In the
instance, the longest path of the directed bipartite graph includes two nodes; thus, in TSSCM, [
(1) =1and I(2) = I(3) = 0. k active seed nodes correspond to a maximum coverage solution
due to information propagation to all other nodes corresponding to the ground set U. Thus,
the maximum coverage problem is solved.

The optimal solution of the IM problem under TSSCM can be approximated by the greedy

algorithm, Greedy(G,o7sscp(S),k), as shown in Algorithm 1.
Algorithm 1 Greedy (G, Orssem(S) , k)

Input: G: network; k: size of seed set
Output: seed set S

1: initialize S =0

2: while |S|<k do
3: select v = arg max,cy(o(SUV)-0(S));
4 S = SUv;
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5: end while
6: return S;

The approximation ratio of the greedy algorithm can reach 1 —; ~ 0.63

To optimize the global function of the IM problem, Flaviano Morone [30] mapped infor-
mation spread asymptotically onto the optimal percolation and proposed another topological
centrality measure called CI, which is defined as

CL(i) = (k=1) > (k1) (5)

j€dBall(i,])

where k; is the degree of node i, and 9ball(i,]) denotes the set of nodes at a distance / from
node i.

The above CI does not consider the spreading rate between two linked nodes. However, in
the actual information spreading process, a node receives information transmitted by other
neighbor nodes with a certain probability. Clearly, a realistic and efficient algorithm for opti-
mal resource allocation should consider both the topological characteristics and the details of
the dynamics; additionally, propagation should be maximized within a limited time window.
Because TSSCM is inherently probabilistic, we proposed a measure, called three-layer collec-
tive influence with synergism (CI_TLS), that incorporates CI formulation and spreading
dynamics with synergism. For node i, [(i,v) denotes the shortest distance from i to v. The
spreading influence of node i is confined to a node set that consists of the nodes at a distance
from i, L(3,]) = {v|I(i,v) = Lve V. We assign to node i the CI_TLS following Eq (6):

CLTLS()) = Y o(i,v) 1=1,2,3 (6)

veL(i,l)

o(i,v)=1-— H (1 —o(i,u)o(u,v)) (7)

uel(il-1)
A,=1

where a(u,v) is the activation probability defined in Eq (1). o(i,v) is the final activation proba-
bility of node v by node i, which is obtained by recursively calculating the influence propaga-
tion. The CI_TLS of a node contains rich topological information and propagation dynamics,
which can tell us more about the roles of the nodes in the network than a measure that consid-
ers only one aspect. In Eq (6), the sum contains the contributions of nodes whose distance to i
is less than 3. Therefore, a node located at the center of a cluster with many links would have a
large CI_TLS, even if it has a low degree. Thus, these low-degree nodes with the bridging prop-
erty outrank those with a large degree but mediocre peripheral location. Fig 2 provides an illus-
trative example. We set node 1 as the initial seed, = 0.5. The number next to node v is the
value of 0(1,v). The arrows denote the direction of information spread. The calculation is as
follows.

6(1,6) = 1 — [1 — a(1,3)a(3,6)][1 — o(1, 4)a(4, 6)]

1
— 11— 05%(1—(1—p) ﬁ)*%][[l 051 (1-p) 2 1)*%]
_q, 13,13

16 716
— 0.3398
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0.5

Fig 2. The final activation probabilities of the nodes.
https://doi.org/10.1371/journal.pone.0221271.g002

Node 6 has a larger activation probability than node 5 because node 6 is influenced by two
nodes while node 5 is influenced by one node. Similarly, the activation probability of node 9 is
larger than those of nodes 7 and 8 because node 6, which precedes node 9, has two activated
neighbors, while the preceding node of nodes 7 and 8 has one activated neighbor. Therefore,
the synergistic influence on node 9 is greater than that on nodes 7 and 8. CI_TLS(1) is the sum
of 6(1,i),i = 2,3,4,5,6,7,8,9, and it is used to measure the spreading influence of node 1 in
CL_TSL.

We propose an adaptive CI_TLS algorithm based on the greedy approach to obtain a scal-
able algorithm. Define N(i,4) as the set of node i plus those nodes with a short distance to i of
less than 4. The details are shown in Algorithm 2.

Algorithm 2 CI TLS(G, k)
Input: G: network; k: size of seed set
Output: seed set S
1: initialize S =0
2: Calculate CI TLS(1i) for each node i
2: while |S|<k do
3: select i = arg max;cyCI TLM(1);
4: S= SU1i;
5: Remove N(i,4) and decrease the degree of N(i,4)’s neighbors by 1.
6: Update CI TLS(i) for all nodes
7: end while
8: return S;

Note that we remove N(i,4) once i is added to the seed set S (line 5 in algorithm 2) because
seed i activates N(i,4); thus, the nodes in N(i,4) do not have to be selected in the later calcula-
tion. Ideally, N(i,4) can be identified during the computation of CI_TSL(i) without additional
time. The above operation overcomes the defect of the traditional algorithm, where the influ-
ence areas of the selected seeds overlap.
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Computational complexity analysis of our algorithm

Next, we demonstrate the efficiency of our algorithm by investigating its computational com-
plexity. In a network with N nodes, to compute the CI_TLS of a node, we must iteratively tra-
verse its neighbors within a finite search radius, which costs O((k)), where (k) is the average
degree of the network. Because k<N, the result is O(1). CI_TLS must be calculated for every
node in the first step. However, during later steps, we have to recalculate the values of only the
nodes within /+1 layers of the removed nodes. As verified in reference [31], the computational
complexity of the above problem is O(1), compared to N—oo. Sorting CI_TSL(i) requires O
(NlogN), and we select nodes until the seed set includes k nodes; therefore, the total computa-
tional complexity of our algorithm is O(kNlogN), which ensures that our algorithm is scalable
to large networks.

Experiments

First, we analyze the retweet data from Sina Weibo and verify that the proposed synergism-
based TSSCM can effectively simulate real propagation trends. Then, we compare the spread-
ing influence of the seed sets obtained by the five IM algorithms under TSSCM and the inde-
pendent cascade model (ICM) to test the effectiveness of the CI_TLS algorithm. Finally, we list
the CPU times of the five algorithms.

Analysis of the real diffusion depth

We obtained the post and retweet data from May 3-11, 2014, based on the Sina Weibo API
(http://open.weibo.com). In accordance with the breath-first strategy, we crawled 50 messages
posted by a user, and for each message, crawled the retweet users and added them to the crawl-
ing queue. After processing a user, we removed the user from the queue to reperform the same
operational process and loop back and forth. Finally, we randomly selected 2000 retweet trees.

We counted the fraction of retweet trees at each depth. The results are shown in Fig 3. We
can observe that the retweet trees are all small and shallow, and the number of retweet trees
decreases as the cascade depth increases. Fig 3 shows that most of the cascades are within three
steps and that less than 1% of retweet trees have a depth beyond 3. The fraction of retweet trees
deeper than 8 is only 0.01% of all trees. Other researchers obtained similar conclusions, such
as in references [34,35,44,45].

Datasets used in the experiments

Table 1 lists the empirical networks used to evaluate the effectiveness and efficiency of our pro-
posed algorithm, namely, Blog, DBLP, Email, Epinions, Twitter and Livejournal, all of which
can be downloaded from http://networkrepository.com[47].

In Table 1, n and m are the total numbers of nodes and edges, respectively; k.., and (k) rep-
resent the maximum and average degrees, respectively; C is the clustering coefficient; and S,

is the epidemic threshold. In homogenous networks, 8, = % while in heterogeneous net-

k)’
works, ff,, = % [26].
Baseline algorithm

We choose four algorithms, namely, CI, degree discount, MaxCoreCover and random, as the
baselines for evaluating the performance of our algorithm.
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Retweet tree depth
Fig 3. The fractions of retweet trees.

https://doi.org/10.1371/journal.pone.0221271.9003

CIL: CI, which is defined as Eq (5), was proposed by Flaviano and Hernan A [30]. CI;is adap-
tive and achieves the best performance for [ = 3,4. In this paper, we choose CI, as a baseline
algorithm.

Degree Discount: The degree discount algorithm is a heuristic based on degree centrality
[23]. The node with the largest degree is selected as a seed, and the degrees of its neighbors are
discounted by 1.

MaxCoreCover: This algorithm, which selects the node with the largest k-shell as a seed,
was proposed by Kitsak [21]. When a node is selected, its neighbors can no longer be seeds.

Random: This algorithm randomly selects seed nodes.

Evaluation methodologies

The evaluation indicators we adopt for the IM algorithms are as follows: (a) the spreading
influence of the seed set for TSSCM, (b) the spreading influence of the seed set for ICM, and
(c) the computational time required by the IM algorithm to find the seed set.

The spreading influence of a seed set, which is used to evaluate the performance of an IM
algorithm, is defined as the number of active nodes after the propagation process is complete.

Table 1. The statistical properties of the six empirical networks®.

Network n m Kmax (k) C B
Blog 10K 326K 3992 64.78 0.0914 0.0018
DBLP 317K 1M 343 6.62 0.6350 0.0834
Email 1K 5K 71 9.62 0.2202 0.0535
Epinions 27K 100K 443 7 0.1351 0.0758
LiveJournal 4M 28M 3k 13 0.2600 0.0534
Twitter 405K 713K 626 3 0.014 0.1874
a. http://networkrepository.com
https://doi.org/10.1371/journal.pone.0221271.t001
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The larger the spreading influence is, the more accurate the algorithm. In this paper, we first
selected the seed set of each network according to the five algorithms. Then, we compared the
spreading influence of different seed sets using five algorithms for each network under
TSSCM and ICM. We have shown that the IM problem under TSSCM is NP hard; therefore,
we run 10000 Monte Carlo simulations to obtain the results. The five measures are compared
in Fig 4, which shows the spreading influence of the seed sets selected by these measures in six
real networks. The x-axis represents the number of seeds obtained in the first step, and the y-
axis represents the spreading influence of the five algorithms for a network, i.e., the number of
active nodes after propagation is complete. The basic spreading probability 8 = B, and the val-
ues of B, are listed in Table 1.

As expected, the seed sets obtained by CI_TLS result in the widest information spread,
which means the performance of CI_TLS is the best. The trend lines of degree discount and CI
are similar to those of CI_TLS because these three algorithms account for the number of
neighbors when selecting seed nodes. The performance of CI ranks second among the five
measures because CI_TLS considers the effect of synergies between nodes on the propagation
probability while CI does not, which validates the rationality and importance of synergy.
Degree discount does not consider dynamic attributes, such as the propagation path and the
spreading probability between nodes, but considers static attributes, such as node degree,
which results in performance that is inferior to those of CI_TLS and CI. However, degree dis-
count performs much better than MaxCoreCover, which indicates that the degree of a node is
an important indicator of the node’s influence. In addition, the pruning strategy adopted in
this measure ensures that the selected seed nodes do not gather in a local area of the network;
this strategy is also used in CI_TLS. The random algorithm always has the worst results, indi-
cating that careful seed selection is indeed important for effectively identifying influential
nodes in many applications, such as marketing campaigns, epidemic prevention and maximi-
zation of information spread.

The spreading probability 3 is a parameter of TSSCM, and different values of 3 will result in
different diffusion processes. Next, we compare the performance of different algorithms for
the DBLP based on TSSCM with different 3, where 8€{0.04,0.05,0.06,0.07}.

Fig 5 shows that the performance of CI_TLS is better than that of the other four algorithms
over the entire range of B. At the same spreading probability, when the number of seeds is less
than 5, the diffusion ranges of these algorithms are similar, except that of Random. Notably,
the spreading influence of a few seeds is very limited. As the number of seeds increases, the
performance gap of the five algorithms becomes obvious. Next, we analyse the results with dif-
ferent spreading probabilities. As f increases, the superiority of the three degree-based algo-
rithms, CI_TLS, CI, and DegreeDiscount, becomes increasingly obvious, and CI_TLS always
performs best. These results indicate that the degree is a key attribute of a node. CI_TLS con-
siders and improves the degree measure by adding spreading distance constraints and a collab-
orative promotion mechanism; thus, it can mine influential nodes more effectively than can
other other methods.

To further verify the performance of the proposed algorithm, we compare the spreading
influence of seed sets based on ICM which is widely used in Influence maximization problem,
and show the simulate results of the five algorithms in Fig 6. The CI_TLS shows its advantages
over the whole range of 8, #€{0.04,0.05,0.06,0.07}. Formula (6) shows that a node with many
activated neighbors can easily spread information to its inactive neighbors, that is, a node with
many k-step connected neighbors would have a wide propagation range. The synergy mecha-
nism in the CI_TLS makes it possible to effectively find such nodes, which is why the algo-
rithm displays excellent performance.
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Finally, we compare the computational times of the five algorithms. The experiments are
run on a server with a 4-core processor and 32 GB RAM using Python. Table 2 shows the com-
putation times required by the five algorithms to find 50 seeds on six networks, i.e., Blog,
DBLP, Email, Epinions, LiveJournal and Twitter. The computation time of our algorithm is
longer than those of random, MaxCoreCover and DegreeDiscount, but it is almost equal to
that of CI on all six real networks. Compared with CI, our method has a computation time
increase of less than 2%. The CPU times of these algorithms are compared in Fig 7, where the
x axis represents the algorithms and the y axis represents the computation times required to
obtain 50 seeds. We can see that our algorithm is suitable for large-scale networks and can
effectively mine influential nodes.

Opverall, from the results shown in Figs 4, 5, 6 and 7, the proposed algorithm is more effi-
cient in solving IM problems than the other four algorithms.

PLOS ONE | https://doi.org/10.1371/journal.pone.0221271  September 3, 2019 12/17


https://doi.org/10.1371/journal.pone.0221271.g005
https://doi.org/10.1371/journal.pone.0221271

@ PLOS|ONE

A synergism-based three-step cascade model for influence maximization on large-scale social networks

5x10°

4x10°

3x10°

2x10°

influence spread

1x10°

6x10°

5x10°

4x10°

influence spread
w
x
o
o
w

2x10°

1x10°

DBLP(5=0.04)

T

~e— Random
—4— MaxCoreCover
—&— DegreeDiscount

50

L | L |
10 20 30 40
number of seeds
DBLP(/3=0.06)
T T T T
~e— Random
—4— MaxCoreCover
t- | —— DegreeDiscount
—%—Cl
—A—CI_TSL

5x10°

4x10°

~s— Random
—4— MaxCoreCover
—&— DegreeDiscount

3x10°

2x10°

influence spread

1x10°

DBLP(3=0.05)

0 . | | |
0 10 20 30 40 50
number of seeds
DBLP(53=0.07
7x10° T R ) T
~e— Random
3 —4— MaxCoreCover
6x10” [ | —m— DegreeDiscount
—%—Cl
,| [TA—CLTSL

5x10
el
@
L 3
a 4x10
2]
3
c
2 3x10°
=
=

2x10°

1x10°

0 , . \ . 0 ‘
0 10 20 30 40 50 0 10 20 30 40 50
number of seeds number of seeds
Fig 6. The spreading influence of different algorithms on the DBLP based on ICM with different f values.
https://doi.org/10.1371/journal.pone.0221271.9g006
Table 2. The CPU times (in seconds) of five measures for six networks.
Network Random MaxCoreCover DegreeDiscount CI CL_TLS
Blog 0.0201 72.5811 3.9826 52.6322 52.7215
DBLP 0.0231 180.9127 20.7354 2803.154 2820.4001
Email 0.0214 4.1752 0.4882 4.8861 4.9652
Epinions 0.0204 34.5144 9.6482 150.4257 152.8561
LiveJournal 0.0258 1975.6480 186.3461 43406.4718 43510.5842
Twitter 0.0226 120.1831 32.0974 3000.1289 3013.0084
https:/doi.org/10.1371/journal.pone.0221271.t002
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Conclusion

Solving the IM problem is important for network analysis, information spreading, and other
applications. A new diffusion model based on three degrees of influence theory and the cata-
lytic role of synergism on spreading dynamics, namely, TSSCM, is proposed in this paper. In
our model, the probability that a seed node activates its neighbors is proportional to the
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number of activated nodes connected to the seed node, which is called synergism. Moreover,
our model accurately simulates the cascade process of information transmission with finite
steps. Inspired by the CI algorithm, we devised an algorithm for solving the IM problem under
TSSCM, namely, CI_TLS. Compared with the CI algorithm, CI_TLS adds only the calculation
of the activated neighbors of a node; therefore, the computation time increases only slightly,
thereby balancing computational complexity and precision. The experimental results on six
networks show that the CI_TLS measure is better than the other four algorithms tested, i.e.,
random, MaxCoreCover, degree discount and CI, and it achieves the best results for mining
influential nodes. The seed sets obtained by CI_TLS result in the widest information spread.
With the scale of social networks growing continuously, we can use parallel computing to
accelerate the algorithm to effectively and efficiently solve the IM problem in large-scale net-
works. In many social networks, user behavior is affected by psychological factors, and a diffu-
sion model with user decision making based on game theory would be appropriate [48-50].
Further work could track the IM problem under a diffusion model with psychological game
theory. In reality, each individual in a network is always a user in the other networks. Resource
diffusion impacts epidemics and information spread [51], and thus, a synergism-based diffu-
sion model in multiple networks would be interesting and important to evaluate in future
research.
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