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Abstract

Motivation: LINCS L1000 dataset contains numerous cellular expression data induced by large sets of perturbagens.
Although it provides invaluable resources for drug discovery as well as understanding of disease mechanisms, the
existing peak deconvolution algorithms cannot recover the accurate expression level of genes in many cases, induc-
ing severe noise in the dataset and limiting its applications in biomedical studies.

Results: Here, we present a novel Bayesian-based peak deconvolution algorithm that gives unbiased likelihood
estimations for peak locations and characterize the peaks with probability based z-scores. Based on the above algo-
rithm, we build a pipeline to process raw data from L1000 assay into signatures that represent the features of
perturbagen. The performance of the proposed pipeline is evaluated using similarity between the signatures of bio-
replicates and the drugs with shared targets, and the results show that signatures derived from our pipeline gives a
substantially more reliable and informative representation for perturbagens than existing methods. Thus, the new
pipeline may significantly boost the performance of L1000 data in the downstream applications such as drug repur-
posing, disease modeling and gene function prediction.

Availability and implementation: The code and the precomputed data for LINCS L1000 Phase II (GSE 70138) are
available at https://github.com/njpipeorgan/L1000-bayesian.

Contact: lei.xie@hunter.cuny.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The library of integrated network-based cellular signatures (LINCS)
created a resource of cellular state changes under treatment of per-
turbagens, including chemical compounds, RNAis and CRISPRs
(Keenan et al., 2018). L1000 assay is used in LINCS as a low-cost,
high-throughput gene expression profiling on cells treated by pertur-
bagens (Subramanian et al., 2017). The application of L1000 assay
allows the profiling on more than 1 million samples treated with
more than 50 000 different perturbagens across 98 cell lines. These
profiles are processed into molecular signatures to represent cellular
effects of certain perturbagen treatment (Duan et al., 2014). This
comprehensive profiling provided by L1000 is widely used in drug
discovery and repurposing, greatly facilitating large-scale pharma-
cology analysis (Duan et al., 2016; Wang et al., 2016).

L1000 assay measures the expression of 978 landmark genes
with The Luminex FlexMap 3D platform, which can identify 500

different bead colors as tags for different genes. To measure all land-
mark genes within one scan, L1000 separately coupled two different
gene barcodes to aliquots of the same bead color and mixed them
with a ratio of 2:1. In consequence, two peaks in the distribution of
fluorescent intensity (FI) are expected, and a deconvolution step
must be involved to access the expression level of a certain gene.
LINCS adopted the k-means clustering algorithm to separate all
reads of the same beads color into two distinct components, and the
median FI values are assigned to each gene. Although the k-means
clustering gives a good estimation on most of the data, cases with
unexpected ratio between two peaks, classified into more than two
categories, or large overlap between peaks cannot be well solved (Jin
and Malthouse, 2015). This problem limits the quality of z-score
profiles, and adds to the difficulty of utilizing the massive data pro-
vided by L1000 assay.

After L1000 data was released, efforts have been made to im-
prove the peak deconvolution process. Liu et al. (2015) developed a
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method based on Gaussian mixture model (GMM) to improve the
accuracy of peak deconvolution. They assume that each gene’s fluor-
escent intensities follow a Gaussian distribution and thus each sam-
ple with two genes will subject to a bimodal Gaussian distribution.
GMM can avoid overclustering problem in k-means but raises a
new problem that the z-scores are highly sensitive to frequent iso-
lated reads and become unreliable. To solve this problem, Li et al.
(2017) developed an aggregate Gaussian mixture model (AGMM)
and associated software (l1kdeconv). They added an outlier identifi-
cation step before deconvoluting peaks with GMM to make the al-
gorithm more robust. However, there are still cases where the peaks
cannot be well identified. Thus, it is necessary to develop a new al-
gorithm that improves the data process of L1000 assay.

In this study, we describe a novel peak deconvolution algorithm
based on Bayes’ theorem and a probability based z-score inference
method. We model each measurement as a random sample from the
population with two different components mixed by 2:1 ratio. The
likelihoods for all different FI values are calculated by Bayes’ the-
orem. Then z-scores are inferred by the probabilities for the genes to
have differential expression. The gene expression profiles deconvo-
luted by our Bayesian method achieve higher similarity between bio-
replicates and drugs with shared targets than those generated from
the existing methods. This suggests that the molecular signatures
from our method are of better consistency and less noisy, which will
be helpful for further pharmacology analysis.

We develop a pipeline to process raw data from L1000 assay
into z-scores. The code and the precomputed data for LINCS L1000
Phase II (GSE 70138) are available at https://github.com/njpipeor
gan/L1000-bayesian.

2 Materials and methods

2.1 Datasets
In this study, we use L1000 small molecule compound data from
Broad Institute LINCS L1000 Phase II datasets (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc¼GSE70138), which are catego-
rized into five levels as follows.

Level 1 data contain raw FI values and 3D color codes for each
bead measured by the Luminex FlexMap 3D platform. An FI value
is proportional to the transcript abundance of the gene associated
with a type of beads. The types of the beads are inferred from their
color codes and marked by numbers between 1 and 500 or marked
by 0 meaning that they cannot be attributed to any one of the 500
types.

Level 2 data contain gene expression values for the 978 land-
mark genes, 976 of which are grouped into pairs and associated
with 488 types of beads and the rest two of which are associated
with two separate types of beads. A peak deconvolution process is
employed to measure one or two expression values from the FI val-
ues for each type of beads in each well (Subramanian et al., 2017). A
profile consisting 978 expression values is therefore obtained.

Level 3 data contain normalized gene expression values. The
normalization process is divided into two parts: L1000 invariant set
scaling (LISS) and quantile normalization. In LISS, all gene expres-
sion values in a well, i.e. a sample, are scaled to a set of predefined

control genes. Then, the expression values are quantile normalized
across all wells on each plate.

Level 4 data contain the z-scores for each gene with all expres-
sion values of that gene on a plate as the background. z-Scores indi-
cate the levels at which genes are differentially expressed. They are
then combined across biological replicates to obtain level 5 data.

2.2 Work flow
Based on a novel Bayesian analysis-based peak deconvolution and a
new z-score inference method, we develop a pipeline to generate sig-
nature from raw data measured from L1000 assay. The pipeline
takes raw FI data from LINCS L1000 datasets as input and gives a
combined z-score profile for each experiment as its signature. As
shown in Figure 1, our pipeline is composed of five steps as follows:

1. LISS and quality control. In this step, we perform a two-step lin-

ear scaling to calibrate the fluorescent intensities. Also, we iden-

tify the low-quality samples with goodness of fit v2 > 4:0 or the

slope a > 3.0.

2. Peak deconvolution. For beads coupled with two different tran-

script barcodes, a deconvolution step is involved to infer the

peak position for each gene. Two probability distributions will

be given to the transcripts as the estimations of their expression

levels.

3. Quantile normalization. The shape of expression profile is stand-

ardized across all samples on the same plate so that different

samples on the same plate are comparable to each other.

4. Probabilistic z-score inference. z-Scores are inferred by compar-

ing the probability distribution for each gene with its back-

ground distribution. They represent relative gene expressions.

5. Combining replicates. z-Scores profiles from bio-replicates are

combined into one signature by weighted average.

2.3 LISS and quality control
Since the amplification factor of each sample is different, L1000
added 80 control transcripts to each well, whose expression levels
are empirically found to be invariant as calibration set. These genes
are grouped into 10 levels with 8 each so that the median expression
of each level should follow a similar increasing trend. The median
expression levels in terms their fluorescent intensities are then com-
pared with reference values and a relationship between them can be
inferred by fitting various template functions on a logarithmic scale
(Enache et al., 2018).

L1000 used a power law relation y ¼ axb þ c in their pipeline,
where x is the unscaled data and y the scaled data (Subramanian
et al., 2017). In this study, we employ a two-step linear scaling as fol-
lows. First, we rescale the median expressions of 10 invariant sets by
fitting them against the reference values linearly, and we obtain the
averages and SDs of those scaled expressions within each perturbagen
group, indicated by the first field of the distil_id of the sample. For ex-
ample, the group of the sample with the distil_id (ID of an individual
replicate profile) ‘LJP009_A549_24H_X1_DUO52HI53LO_A04’ is
LJP009. The samples in the same perturbagen group are tested in the
same batch. The resulting calibrated reference expressions shown in

Fig. 1. Illustration of pipeline for robust L1000 perturbagen signature detection
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Figure 2a. Second, we fit the median expressions of the invariant sets
against the calibrated expressions linearly and use this relation to re-
scale the expressions of the landmark genes.

The two-step linear scaling have two advantages. First, since the
median expressions of the invariant sets vary across plates (see
Fig. 2a), calibrated reference expressions depending on the perturba-
gen groups are needed to capture this variability. Second, the linear
scaling in the second step depends on only two fitted parameters,
one less than the power law scaling.

We identify low-quality samples according to two parameters:
the goodness of fit in terms of v2 and the slope a of the relation,
where an exceptionally large slope suggests a failed amplification.
Figure 2b shows the distribution of these two parameters. L1000
level 1 data have 4.0% of the samples missing due to its quality con-
trol and we remove additional 3.0% of the samples with a>3.0 or
v2 > 4:0 as our quality control.

2.4 Peak deconvolution
The Luminex FlexMap 3D platform can detect 500 different bead col-
ors. To measure 978 transcripts in a sample within a single batch,

almost all of them are grouped into pairs. For each pair, barcodes of
two transcripts are coupled to beads with the same color and they are
mixed in a ratio of 2:1. Therefore, the distributions of reads from
these bead colors will form two peaks, whose expression levels should
be measured by the peak deconvolution algorithm. In the design of
L1000 system, the pairing of genes is optimized to minimize the con-
fusion in peak deconvolution, but we note that it is inevitable that the
peaks in some of the distributions are hard to be differentiated.

In this study, we develop a new peak deconvolution algorithm
based on Bayesian probability model. L1000 samples typically have
dozens of reads per bead color in each sample. In our model, each of
these reads will either come from one of the genes that are coupled to
that bead color or come from an arbitrary bead in the same sample
due to color misidentification with a small rate ac � 1%. Suppose that
N measurements are made for a specific color; we can derive the prob-
ability of the number of measurements that are associated with both
genes Nhi; Nlo and the number of color misidentifications, or the
background Nbg, where N ¼ Nhi þNlo þNbg. Given that ac � 1, we
assume that Nbg follows the Poisson distribution with k ¼ acN and
Nhi follows the binomial distribution BðN �Nbg; 2=3Þ.

The shapes of the peaks reflect the spread of FI measurements,
and they should depend on their expression levels only. We build the
reference shapes of the peaks from L1000 level 2 data. First, we pick
the profiles of reads that have well-separated peaks, i.e. the distance
between the centers of two peaks is at least 3 in terms of log2 ex-
pression, so that individual peaks can be extracted with correct loca-
tions. Second, we fit the extracted peaks by Student’s t-distributions
and check their best fitted degrees of freedom (DOF), shown in
Figure 3. We find that a DOF of three is appropriate across all ex-
pression levels. Third, to measure the scale parameters of the distri-
butions, we pick 11 discrete log2 expression levels between 4 and
12; for each expression level, we find all peaks with locations in its
neighborhood (60.01), gather all reads in the peaks into one profile,
and measure its scale parameter and mean value by fitting a
Student’s t-distribution with a fixed DOF of three. An empirical re-
lation is measured between the scale parameter r and the log2 ex-
pression value x, shown in Figure 4, which can be fitted by an
analytical expression as

rx ¼ 0:15þ 5:3e�0:52x (1)

with a mean absolute error of 0.009. The shape of a single peak cen-
tered at log2 expression level x is therefore given by

fxðuÞ ¼ tðx; rx; � ¼ 3Þ; (2)

where u is the log2 FI. As for bead color misidentification, we as-
sume that the distribution of these reads follows the distribution of
all reads fbgðuÞ from the same well.

(a)

(b)

Fig. 2. (a) The calibrated reference expression values of the invariant set compared

with the original ones. The error bars show the ranges corresponding to 61 SD. The

data points are horizontally offset for better visibility. (b) The distribution of the

slope and v2 of the fitted relationship between unscaled expression values and cali-

brated reference values

Fig. 3. The median and 68% confidence interval of the best fit DOF of Student’s

t-distribution. Each data point corresponds to the DOFs of all peaks within its

neighborhood (60.01 in terms of log2 peak location). Our choice of three DOF is

shown by a gray line
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With the shape of peaks and background known, we can deter-
mine the probability of a read to be found with FI ui described as a
summation of probability for it to come from either of the two genes
or background:

pðuijxhi; xloÞ ¼
Nhi

N
fxhi
ðuiÞ þ

Nlo

N
fxlo
ðuiÞ þ

Nbg

N
fbgðuiÞ; (3)

where xhi and xlo are the center of the two peaks. The posterior dis-
tribution of xhi and xlo is given by

pðxhi;xlojuÞ ¼
pðujxhi; xloÞpðxhi;xloÞ

pðuÞ ; (4)

where u denotes all of the measurements ui (i ¼ 1; 2; . . . ;N). We
adopt a uniform prior on xhi and xlo, and the posterior distribution
becomes

pðxhi;xlojuÞ ¼ Apðujxhi;xloÞ

¼ A
P

Nbg ;Nhi

�
pðNbg;NhiÞ

Q
i pðuijxhi; xloÞ

�
;

(5)

where A denotes a normalizing constant. We note that the calcula-
tion of the likelihood function is not trivial, and we show the simpli-
fications of the function in Supplementary Materials.

To simplify further analysis, we marginalize xhi and xlo in all
samples to get pðxgjuÞ, or simply pðxgÞ, where g ¼ 1; 2; . . . ;978 are
the indices of the genes. Compared to L1000 level 2 data, in which
xg have precise values, our algorithm of peak deconvolution gives
two probability distributions, revealing the uncertainty of these
estimations.

2.5 Quantile normalization
Quantile normalization standardize the shape of expression profile
distributions among the wells on each plate. In L1000 level 3 data,
quantile noramlization is done by first sorting the expression levels
within samples, then setting the ith highest values in each sample by
their median value.

In this study, we use a similar way to do quantile normalization.
First, we add together all the marginal distributions of all genes in
each sample to get the overall distribution of expression levels

ptotalðxÞ ¼
1

978

X978

g¼1

pðxgÞ: (6)

Then, we define the relative FI r as

rðxÞ ¼
ðx

�1
ptotalðx0Þdx0; (7)

which has a value in the interval of ½0; 1�. Finally, we standardize
ptotalðxÞ as a uniform distribution U(0, 1) to get the quantile normal-
ized distribution of individual expression levels as

pðrgÞ ¼ pðxgÞ
drg

dxg

 !�1

: (8)

2.6 z-Score inference
With quantile normalization done, the profiles of different samples
are now comparable to each other. L1000 uses z-score to represent
relative gene expression. In a normal distributed population, z-score
is defined by zg ¼ ðxg � lgÞ=rg, where lg denotes the average value
of the population and rg the SD. Due to the fact that the distribu-
tions of gene expression typically have heavier tails, i.e. having more
extreme values than the normal distribution, L1000 uses the median
and median absolute difference (MAD) instead and defines the z-
scores by

zg ¼
ffiffiffi
2
p

erf�1 1

2

� �
� xg �medianðXgÞ

MADðXgÞ
; (9)

which is equivalent to the original one in the case of normal distribu-
tion. A common choice of the population Xg is the expression levels
xg of all samples on a plate.

In our case, since we depict the expression level by a probability
distribution instead of a single value, both definitions of the z-score
cannot be used directly. However, we note that the z-score, assum-
ing a normal distribution, is related to the quantile of the expression
level in the population by

zg ¼
ffiffiffi
2
p

erf�1ð2qg � 1Þ; (10)

where the expected value of the quantile qg is the probability that
the expression level

qg ¼ Pðrg > RgÞ; (11)

in which the probability distribution of Rg equals to the summation
of those of all samples on a plate

pðRgÞ ¼
1

Nsample

XNsample

s¼1

pðsÞðrgÞ: (12)

2.7 Combining replicates
We follow the L1000 pipeline and use a weighted average in com-
bining replicates based on the correlations among the bio-replicates.
Denote the combined z-scores of all genes as zc and the z-scores of
the ith bio-replicate as zðiÞ, we have

zc ¼
PNrep

i¼1 wðiÞzðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNrep

i¼1 ðwðiÞÞ
2

q ; (13)

where Nrep is the number of replicates and the weights wðiÞ are
defined as

wðiÞ ¼
X
j6¼i

Spearman Rho
�

zðiÞ; zðjÞ
�
: (14)

3 Results

3.1 Peak deconvolution
3.1.1 Comparing Bayesian method with other methods on

simulated data

We first construct a simulated dataset to test the performance of dif-
ferent peak deconvolution methods. We generate 10 000 samples

Fig. 4. The relationship between the scale parameter of the Student’s t-distribution

and the log2 expression level, i.e. the center of an isolated peak
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with the characteristics of L1000 dataset as follows. For each simu-
lated sample, reference peak positions are sampled from LINCS
L1000 level 2 data. The probability distribution for each read in the
sample is a mixture of two Student’s t-distributions centered on two
peak positions with r we fitted in Equation (1) and three DOF.
Since the average number of reads in real data is around 50 and the
ratio of noise reads is of order 1%, the number of reads we draw fol-
lows a Poisson distribution with mean of 49:5 ð50� 99%Þ, then we
add noise reads that are randomly picked from other samples, the
number of which follows a Poisson distribution with mean of 0.5.

With this simulated dataset, we compare our Bayesian approach,
k-means and AGMM for their performance in peak deconvolution.
For our method, since the peak deconvolution process gives prob-
ability distributions instead of precise values for peak locations, we
determine their locations by the maximum likelihood estimation
(MLE) from marginal probability distributions, and the pipeline
with this treatment is referred to as Bayesian MLE hereafter.
Figure 5 shows the hexplot between the true and predicted peak
positions from each method. We find that our Bayesian method
shows a smaller mean squared error (MSE) and a higher correlation
than two other methods.

We also tested on other simulated datasets with Gaussian distri-
bution and other parameters if Student’s t-distribution, and the
results are shown in Supplementary Figure S1. All results show that
Bayesian method performs the best.

3.1.2 Comparing Bayesian method with other methods on real data

Unlike simulated data, we do not have true locations of the peaks
for the real data. Hence, we test the performance of the three meth-
ods by comparing the peak locations they predicted with each other
and find differences between them. We run three methods in a sam-
ple well REP.A028_MCF7_24H_X2_B25_D11, and the comparison
between the methods are shown in Table 1.

When comparing the locations of a peak by two methods, we
consider them to be different when the discrepancy in log2 expres-
sion value is larger than 0.2, which is based on the fact that the
peaks have a typical scale parameter r of � 0:2. Also, all the meth-
ods are considered giving the same location for a peak when all three
values are within 60.2 range relative to the middle one.

In most instances, all three methods agree with each other. It
shows an overall consistency among all methods. Although all three
methods may give a prediction that different from the other two, it
happens less frequently to Bayesian MLE (18 verses 86 and 79 in
Table 1). To further investigate the origin of those disagreements in
Table 1, we show one typical example for each case in Figure 6. A
full list of all peak locations by the three methods can be found in
Supplementary Materials. Here, we give a brief analysis for each
case:

• Figure 6a is an example for Case 3 in Table 1. k-Means cluster-

ing sometimes fail to give two clusters of reads. In those scen-

arios, L1000 sets the expression level of both genes to be the

median of all reads, which yields a different result from Bayesian

MLE and AGMM.
• Figure 6b is an example for Case 4 in Table 1. AGMM some-

times fails to identify the peaks that are not well separated. In the

case of Figure 6b, AGMM gives a scale parameter r of 0.55,

which overestimates the actual peak widths, and it makes

AGMM to separate the peaks at a wrong location.
• Figure 6c is an example for Case 5 in Table 1. When the two

peaks are mostly overlapped, Bayesian MLE tends to predict the

peaks at roughly the same location, while both L1000 and

AGMM tends to give two different peak locations. In this case,

L1000 and AGMM agree with each other and Bayesian MLE

gives a different result.
• Figure 6d is an example for Case 2 in Table 1. All three methods

gives different predictions for the high abundance peak in this

case. For L1000, reads with log2 FI smaller than 4 are discarded

so the peak location is biased to have a higher expression. For

AGMM, the separation of the two peaks is not correct, and the

locations of the two peaks are flipped.

From these cases, we find that except when the information is
not enough to decide the peak locations well, the Bayesian method
always gives reasonable predictions but L1000 level 2 and AGMM
sometimes make mistakes. It explains why the Bayesian MLE data
have a lower chance of being different from two other methods sim-
ultaneously. We also find that the rate of disagreement between our
method and L1000 is around 10%, which should be considered cru-
cial. Given that the genes regulated under each treatment is very

Fig. 5. Hexplots between the true peak and recovered peak positions from Bayesian MLE, k-means and AGMM. The darkness of the hexagon indicates the number of points

in it. The Pearson correlation coefficient and MSE for each method are shown in each figure

Table 1. The consistency in peak deconvolution between our

Bayesian method, L1000 and AGMM

Case Description Number of genes

1 All are the same 773

2 All are different 22

3 Only L1000 is differenta 86

4 Only AGMM is differenta 79

5 Only Bayesian MLE is different a 18

aThe last three cases show those where two of the methods give the same

peak location while the third one gives a different locations.
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limited, the 10% noise signal will largely affect the quality of the
dataset.

3.2 Similarity between replicates
After locating peaks from raw FI values, we quantile normalize the
data and infer their z-scores. The z-scores can be interpreted as rela-

tive gene expression levels, where significantly up/downregulated
genes will get a large positive/negative z-scores. The z-scores also
serves as the final feature of expression for each sample.

L1000 dataset typically include three bio-replicates for each ex-
periment. Since they are expected to be similar to each other in gene

expression, a validation of this statistical property indicates good
quality of the data and the processing pipeline. Here, we adopt gene
set enrichment analysis (GSEA; Subramanian et al., 2005) to com-

pare gene expression profiles, which is a non-parametric statistical
method widely used in analyzing gene expression data. GSEA yields

a score for the enrichment of a gene set (called a query hereafter) in
an expression profile. Here, we directly take the z-scores as the ex-
pression profiles and build the queries by taking an equal number of

genes that are most up/downregulated in terms of their z-scores. The
higher enrichment score a query get, the more similar the query and

expression profile are.
L1000 performs multiple experiments with each perturbagen on

multiple cell lines with different doses. To maximize the difference

between the perturbagens, we take experiments with the maximum
dose in this performance test. We include three methods in the per-
formance evaluation.

1. L1000 standard pipeline: We directly take z-scores from L1000

level 4 data.

2. Bayesian pipeline: We calculate the probabilistic distributions of

the peak locations and employ specialized quantile normaliza-

toin and z-score inference as described in Sections 2.5 and 2.6.

3. Bayesian MLE pipeline: We obtain peak locations by the MLE

from marginal probability distributions as in Section 3.1.1 and

adopt L1000 quantile normalization and z-score inference

methods.

We note that the most significant difference between Bayesian
pipeline and Bayesian MLE pipeline is the modeling of peak loca-
tions. Because Bayesian MLE uses precise values to characterize
peak locations like k-means and AGMM and performs the best in
peak deconvolution tests (see Section 3.1), we use it as the control to
study the impact of our probabilistic modeling together with special-
ized quantile normalization and z-score inference methods.

We test the performance of the three methods as follows. For
each sample, we obtain its background distribution of GSEA scores
by querying the sample against all other samples in the same cell

(a) (b)

(c) (d)

Fig. 6. Typical examples where discrepancies happens between Bayesian MLE, L1000 level 2 data and AGMM. For panel (a–d), the results from L1000 peak deconvolution

and AGMM are shown in red and green arrows, where the thick and thin arrows indicate the peaks with high (2/3) and low (1/3) abundances, respectively. The results from

our Bayesian method are shown as probability distributions in thick and thin blue curves, respectively. The peak locations used in Bayesian MLE are the fluorescent intensities

where the probability distributions reach their maxima. The examples are from well REP.A028_MCF7_24H_X2_B25_D11
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line. Then we query the sample against one of its bio-replicates. For
each false positive rate (FPR), i.e. a certain ratio of the highest back-
ground scores being picked, a true positive rate (TPR) can be calcu-
lated as the probability that its bio-replicate has a GSEA score
higher than the threshold. Figure 7a shows the performance of all
three methods with different query sizes. Among all query size we
tested, our Bayesian method has higher TPR at the same FPR and
the performance difference is the most significant when the query
size is small.

To better illustrate the performance of three methods under dif-
ferent query sizes, we follow Filzen et al. (2017) to show the median
quantile of GSEA scores between bio-replicates, which is equivalent
to the FPR at TPR ¼ 0:5. As shown in Figure 7b, the median quan-
tile of bio-replicates by all methods become lower as the query size
increases up to 200. We notice that the performance of Bayesian
MLE is more similar to that of L1000 than the Bayesian method. As
the only difference between Bayesian and Bayesian MLE is whether
peak positions are determined for z-score calculation, we conclude
that the probabilistic z-score inference have a great impact on the
performance.

We find that the median quantile by our Bayesian method varies
slowly with the query size, while L1000 method have a big improve-
ment when the query size reaches above 50, after which its perform-
ance gets close to Bayesian. It indicates that the genes in the query
set from our method is more informative when the query size is

limited, and the most up/downregulated genes are more stable
across bio-replicates by our method. Note that the robustness to
small number of query genes is important in real applications. Novel

discoveries in pharmacology often involve chemicals and/or cell lines
that have not been tested in the L1000 assay, and in such cases, there

is no guarantee that a large number of genes can be matched.

3.3 Similarity between perturbagens with shared

targets
L1000 dataset is widely used in drug repurposing and discovery.

Signatures in L1000 dataset are compared to each other or target
gene sets to estimate the similarity between drugs. To demonstrate
the performance in practical problems, we test if our method give

similar z-score features for similar perturbagens.
Drug target information is obtained from ChEMBL23, and the

drugs with the same target annotation are considered similar. In
L1000 Phase II dataset, we find 77 groups of similar drugs with an

average group size of 2.6 and take them as positive identifications.
The list of these groups of similar drug can be found in
Supplementary Table S1. We use a similar method in measuring the

performance as Section 3.2 for the combined z-scores from our
Bayesian pipeline, Bayesian MLE and L1000 level 5 data. But since

the perturbagens are not the same for each cell line in the

(a)

(b)

Fig. 7. (a) Receiver operating characteristic (ROC) curves for replicates identification. Expression profiles from our Bayesian pipeline, Bayesian MLE and L1000 standard pipe-

line are tested with GSEA under different query sizes. The three methods are labeled as Bayesian, Bayesian MLE and L1000 level 4 in the figure. (b) The comparison of the me-

dian quantile (FPR at TPR ¼ 0:5)
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experiments, we use all the samples as the background instead of
separating cell lines.

As shown in Figure 8a, the Bayesian method performs the best
among three methods especially when the query size is small and in
the high specificity (low FPR) region. At a query size of 100, TPR of
our Bayesian method at FPR ¼ 5% is 16.9%, 41% higher than the
TPR from L1000 level 5 data. When the query size is reduced to 10,
the TPR of our Bayesian method is only reduced by 21%, while that
of L1000 data is reduced by 63%. We also show the median quan-
tile of similar drugs with different query sizes in Figure 8b. We find
that the median quantile from our Bayesian method is lower than
the other methods across all query sizes, and the best performance is
about 34% when the query set contains about 100 genes.

4 Discussion

The existence of outliers in FI values are considered a major problem
that affects peak detection for the algorithms based on Gaussian

models, such as GMM and AGMM. Instead of adding an empirical
outlier removal step (Li et al., 2017), we address this problem by
modeling outliers as bead color misidentification. The color of each
bead is measured by the Luminex FlexMap 3D platform as three
numbers, and there is a small chance that the error in measuring the
numbers is large enough for the bead to be identified as a wrong
color. We set the rate of misidentification ac to be 1% for our pre-
computed datasets. We notice that the z-scores are not sensitive to
this rate, where changing ac to 3% or 0.3% will affect <1 z-score in
each profile (�1000 z-scores) on average. In addition, we model the
shape of the peaks as Student’s t-distributions, which have a heavier
tail than the Gaussian distribution, and the peak locations are less
sensitive to outliers compared to Gaussian models.

Peak flip is another problem that is widely discussed (Li et al.,
2017; Young et al., 2017). We address this problem by considering
the number of reads in two peaks following a binomial distribution,
which is built into our mathematical model. When the number of
reads is very close for the two peaks, the likelihood function will
show a similar probability for both ways of peak assignment, and

(a)

(b)

Fig. 8. (a) ROC curves for similar perturbagen recognition based on combined z-scores from Bayesian, Bayesian MLE and L1000 level 5 data. The area under the curve is also

shown for each method. (b) The comparison of the median quantile (FPR at TPR¼0.5)
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the z-score from our pipeline is often close to zero which correctly
describe the situation. We also note that peak flip is very rare in real
data. For instance, a sample with 60 reads and a 2:1 mix ratio, the
probability of peak flip is �0:5%.

As we find the performance of Bayesian MLE in Figures 7b and
8b is more similar to that of L1000 rather than Bayesian method,
we speculate a possible explanation for this phenomenon as follows.
Any deterministic method, regardless of its accuracy in modeling,
picks a precise number for each peak according to some likelihood
function. But in the real data, there are many cases where the peak
positions are hard to decide. For example, the smaller peak contains
too few reads thus hard to be distinguished from noise, or two peaks
are not well separated and their locations have a large uncertainty.
In those cases, a deterministic method has a small chance to give
large z-scores to genes that are not regulated. Given that only a little
fraction of the genes are actually regulated, the quality of highest
and lowest z-scores are compromised.

In this paper, we used GSEA as a robust signature comparison
method and top up/downregulated genes as the feature for a sample,
which is a widely accepted non-parametric way to compare expres-
sion profiles. But with changes we made in the signature generation
process, different comparison algorithm can be developed to better
capture information in signatures.

5 Conclusion

We developed the Bayesian signature detection pipeline to generate
robust z-score profiles from L1000 assay data. The new Bayesian
approach has demonstrate high accuracy and robustness in signature
detection, which will give better representation for perturbagens.
Perturbagen signatures produced by this pipeline will largely facili-
tate in silico drug screening and repurposing, finding possible drug
targets for different diseases and help understanding gene functions.
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