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Abstract

Non-convulsive epileptiform activity is a common and under-studied comorbidity of Alzheimer’s 

disease that may significantly contribute to onset of clinical symptoms independently of other 

neuropathological features such as β-amyloid deposition. We used repeated treatment with low 

dose kainic acid (KA) to trigger subthreshold epileptiform activity in young (less than 6 months) 

wild-type (WT) and APP/PSEN1 mice to test the role of disruption to the glutamatergic system 

in epileptiform activity changes and the development of memory deficits. Short-term repeated low­

dose KA (five daily treatments with 5 mg/kg, IP) impaired long-term potentiation in hippocampus 

of APP/PSEN1 but not WT mice. Long-term repeated low-dose KA (fourteen weeks of bi-weekly 

treatment with 7.5–10 mg/kg) led to high mortality in APP/PSEN1 mice. KA treatment also 

impaired memory retention in the APP/PSEN1 mice in a Morris water maze task under cognitively 

challenging reversal learning conditions where the platform was moved to a new location. Four 

weeks of bi-weekly treatment with 5 mg/kg KA also increased abnormal spike activity in APP/

PSEN1 and not WT mice but did not impact sleep/wake behavioral states. These findings suggest 

that hyperexcitability in Alzheimer’s disease may indeed be an early contributor to cognitive 

decline that is independent of heavy β-amyloid-plaque load, which is absent in APP/PSEN1 mice 

under 6 months of age.
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1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia and a significant public 

health problem for which there is currently no effective long-term treatment. Recent 

evidence suggests that non-convulsive epileptiform activity is a common and under-studied 

comorbidity of AD, (Horvath et al., 2016; Horvath et al., 2018; Vossel et al., 2013; Vossel 

et al., 2016; Vossel et al., 2017) a phenomenon that has been recognized for several 

decades (Volicer et al., 1995). Subclinical changes in hyperexcitability may begin years 

or even decades prior to the earliest signs of cognitive decline. New data suggest that 

subclinical epileptiform changes are more common than previously believed (Cretin et al., 

2017b; Vossel et al., 2016). Importantly, unprovoked seizures and subclinical epileptiform 

activity were reported at prodromal stages of AD, starting in some cases long before both 

clinical symptoms and alterations in brain imaging, suggesting a role for this process in 

the early pathogenesis of AD. A diagnosis of childhood onset epilepsy was associated with 

greater Aβ burden five decades later compared to a control population (Joutsa et al., 2017). 

These data suggest that abnormal neuronal activity may contribute directly to development 

of AD neuropathology including Aβ accumulation. The extent to which these abnormal 

brain electrical discharges may drive cognitive decline directly (Chin and Scharfman, 2013; 

Lam et al., 2017) or indirectly through interactions with AD neuropathology is currently 

unknown.

Findings of abnormal hyperexcitability and seizures have been replicated in several mouse 

models of AD (Gureviciene et al., 2019; Gurevicius et al., 2013; Minkeviciene et al., 

2009; Palop et al., 2007; Roberson et al., 2011; Ziyatdinova et al., 2016) including data 

from our own group showing that even a single, mild pharmacologically-induced seizure 

following a low dose of kainic acid can lead to memory deficits in young APP/PSEN1 

mice (Mi et al., 2018). Increased extracellular glutamate in epileptogenic compared to 

non-epileptogenic tissue was reported in both hippocampus and cortex in epilepsy patients 

as measured by in vivo microdialysis (Cavus et al., 2005). Age-dependent changes in 

glutamate release were reported in APP/PSEN1 mice (Minkeviciene et al., 2008). The data 

support a role for increased glutamate release or impaired clearance, including slowing 

of the glutamate-glutamine recycling system playing a key role in epileptogenesis in this 

model. The excitatory amino acid transporters GLT-1 and GLAST (EAAT2 and EAAT1) are 

membrane bound trimeric proteins responsible for the majority of glutamate clearance in 

cortical and hippocampal areas. Estimates vary regarding relative expression and functional 

role in synaptic glutamate clearance but it is estimated that up to 90% of GLT-1 protein 

is localized to astrocytes, with just 10% localized to neuronal membranes (Petr et al., 

2015). Together it is estimated that up to 95% of synaptic glutamate is cleared by GLT-1 

(Danbolt et al., 1992; Tanaka et al., 1997). Altered expression or function of either of these 

transporters are associated with a wide array of degenerative and neuropsychiatric disorders 

(Pajarillo et al., 2019; Petr et al., 2015; Tanaka et al., 1997). A de novo genetic mutation 

(single nucleotide polymorphisms, SNPs) in GLAST that decreased glutamate uptake was 

associated with seizures and other neurological deficits (Jen et al., 2005). Heterozygous 

deletion of GLT-1 accelerated cognitive decline in a water maze task in middle-aged (6–9 

months) APP/PSEN1 transgenic mice (Mookherjee et al., 2011). Interestingly, deletion of 
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astrocytic versus neuronal GLT-1 in mice led to a different cognitive profile of deficits and 

was also associated with differences in synaptic and neuroinflammatory regulation (Sharma 

et al., 2019). Neuronal GLT-1 may be more directly involved in mitochondrial energetics 

(McNair et al., 2019). In contrast, overexpression of GLT-1 in an alternate mouse model of 

AD (APPSwe,Ind) was protective against spontaneous mortality in mice less than 4 months 

old, and in three tests of cognitive function in 12–14 month old animals (Takahashi et al., 

2015). These data suggest that modulation of glutamate clearance at the synapse plays a 

vital role in protection against AD-like cognitive deficits, and that this may be at least 

partially mediated by epileptic activity. It is possible that early prevention or suppression of 

chronic subclinical epileptiform activity could be a realistic strategy to minimize cognition 

decline trajectories in AD patients, whether or not this also impacts underlying AD-specific 

pathology (Cretin et al., 2017a).

Seizures trigger a cascade of damage to hippocampal circuitry to ultimately impact learning 

and memory. Similar synaptic damage can manifest through chronic exposure to Aβ and 

aggregation of hyperphosphorylated tau. Such disruption of normal brain circuit function 

may be impacted by increased excitability or decreased suppression via inhibitory circuits. 

In the present study we used a repeated-dose treatment strategy to increase hyperexcitability 

via low concentrations of the glutamatergic kainite receptor agonist kainic acid (KA). We 

used young APP/PSEN1 mice from 12 to 14 weeks of age, prior to deposition of Aβ 
plaques, to investigate the hypothesis that hyperexcitability caused by repeated dosing of low 

KA would disrupt long term potentiation (LTP), impair complex learning and memory tasks, 

and that this would be detectable as an increase in abnormal EEG activity even during early 

stages of AD pathology and in the absence of overt seizures.

2. Methods

2.1. Animals and drug treatments

Female C57Bl/6 J wild-type mice (Jackson laboratories strain No. 000664) and male bigenic 

APPSWE/PSEN1ΔE9 mice (Jackson laboratories strain No. 005864; MMRRC Stock No: 

34832) were obtained from Jackson Laboratories and used to found the colonies used in this 

study. All mice were aged to 12 to 24 weeks as noted for each study, and approximately 

equal numbers of male and female mice were used. APP/PSEN1 mice develop a small 

number of Aβ deposits in hippocampus and overlying cortex by 6 months of age, and 

pathology is typically abundant by 12 months of age. Behavioral deficits are robust at 12 

months of age, but deficits may be detectable from 6 months in mice with compounding 

pathologies (e.g. induced seizures, dietary manipulations (Dixit et al., 2015, Mi et al., 

2018)). All animals were housed in a temperature- and humidity-controlled vivarium and 

were kept on a 12:12 h light cycle. All procedures were approved by the Vanderbilt 

Institutional Animal Care and Use Committee.

Kainic acid (KA; SigmaAldrich Cat. #K0250) was made up in 0.9% physiological saline 

and administered at 5–10 mg/kg with an administration volume of 10 ml/kg. Treatment 

schedules are depicted in Figs. 1A, 2A and 3A.
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2.1.1. Study 1 – long term potentiation (LTP)—Short-term repeated dosing 

schedule. Twelve-week-old WT and APP/PSEN1 mice of either sex were treated with 5 

mg/kg KA (injected IP) or the saline vehicle for 5 consecutive days. LTP studies were 

conducted on the 5th day and mice were euthanized a minimum of one hour following the 

final KA injection.

2.1.2. Study 2 – behavior—Long-term repeated dosing schedule. Twelve-week-old 

WT and APP/PSEN1 mice of either sex were treated with 7.5–10 mg/kg KA (IP) or the 

saline vehicle twice per week for up to 8 weeks (maximum of 16 injections). The first 3 

cohorts of mice that were tested received 10 mg/kg of KA which led to extremely high 

death rate in APP/PSEN1 mice (11/14 KA-treated APP/PSEN1 mice died over the course of 

the experiment, compared to 1/9 saline-treated APP/PSEN1; 0 WT animals of either group 

died). Therefore, for the final cohort of animals the dose was decreased to 7.5 mg/kg which 

led to a death rate of 1/4 KA-treated APP/PSEN1 mice. All surviving mice were euthanized 

following behavioral testing at approximately 20 weeks of age.

2.1.3. Study 3 – EEG, behavior, glutamatergic protein expression and 
histology—Long-term repeated dosing schedule. Fourteen-week-old WT and APP/PSEN1 

mice of either sex underwent surgical implantation of telemetry devices followed by a 

recovery period of up to 2 weeks. Following surgery mice were single housed to limit 

cage-mate interference with the surgical site. KA (5 mg/kg, IP) or the vehicle saline 

were administered twice per week for 5 weeks (10 injections total). Mice were briefly 

anesthetized with isoflurane to permit delivery of the drug without risk of dislodging EEG 

recording wires during immobilization.

For all three studies, mouse groups are designated by abbreviations for genotype (WT 

or APP/PSEN1) and treatment (saline, SAL or kainic acid, KA) to generate four groups 

for each of the experiments (WT-SAL, APP/PSEN1-SAL, WT-KA, APP/PSEN1-KA) 

regardless of which treatment schedule was used.

2.2. Long term potentiation (Study 1)

Acute hippocampal slices were prepared from 12-week-old WT and APP/PSEN1 of either 

sex injected with saline or KA for 5 days with the final dose given within 2 h of euthanasia. 

Mice under isoflurane anesthesia were transcardially perfused with ice-cold sucrose-rich 

slicing artificial cerebrospinal fluid (aCSF) containing 85 mM NaCl, 2.5 mM KCl, 1.25 

mM NaH2PO4, 25 mM NaHCO3, 75 mM sucrose, 25 mM glucose, 10 uM DL-APV 

(NMDA antagonist), 100 uM kynurenate, 0.5 mM Na L-ascorbate, 0.5 mM CaCl2, and 4 

mM MgCl2, and oxygenated and equilibrated with 95%O2/5% CO2. Following perfusion, 

mice were quickly decapitated and horizontal brain slices (300 mm) were prepared using a 

Leica VT-1200S vibratome (Leica Biosystems) in sucrose-ACSF. Slices were transferred to 

a holding chamber containing sucrose-ACSF warmed to 30 °C and slowly returned to room 

temperature over the course of 15–30 min. Slices were then transferred to oxygenated ACSF 

at room temperature containing 125 mM NaCl, 2.4 mM KCl, 1.2 mM NaH2PO4, 25 mM 

NaHCO3, 25 mM glucose, 2 mM CaCl2, and 1 mM MgCl2 and maintained under these 
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incubation conditions until recording in a submerged chamber (Scientifica SliceScope Pro 

2000, Scientific UK).

Field excitatory postsynaptic potentials (fEPSPs) from the Cornu ammonis 1 (CA1) region 

of the hippocampus were recorded by stimulating the Schaffer collaterals in the stratum 

radiatum and recording the response with an electrode in the stratum radiatum with 

responses recorded at a rate of 0.05 Hz. An input-output relationship was determined for 

each slice, plotting the peak amplitude of the fiber volley against the slope of the fEPSP. 

For LTP experiments, the baseline recordings used a stimulus intensity that produced ~40% 

of the maximum response and were recorded for at least 20 min before tetanizing the slice. 

LTP was induced using a high intensity theta-burst stimulation (four bursts each at 100 Hz, 

with these bursts repeated at 5 Hz over 5 s, with each tetanus including ten of these burst 

trains separated by 15 s). Experiments in which the fiber volley amplitude changed by >20% 

post-tetanus were discarded. Recordings were continued for at least 60 mins post-tetanus. 

The magnitude of LTP was measured at time a point between 50 and 60 min post tetanus, 

whereas post-tetanic period was measured at 1–5 min after the tetanus. There were 7–8 

slices from each group from 3 to 4 mice.

2.3. Behavioral testing (Studies 2 and 3)

All behavioral testing was undertaken using facilities of the Vanderbilt Murine 

Neurobehavioral Laboratory Core facility. If testing occurred on a day on which treatment 

was administered, then the injection was given after behavioral testing was completed to 

avoid confounding of data by the acute effects of the drug.

2.3.1. Elevated zero maze (Studies 2 and 3)—Anxiety was measured using a 

standard white Elevated Zero Maze (San Diego Instruments, CA). The maze consists of 

a circular platform (~6-cm width with a ~ 40-cm inner diameter) that is equally divided 

into four quadrants. Two quadrants on opposite sides of the platform are enclosed by walls 

(~20 cm high); the other two quadrants are open and bordered by a lip (~0.6 cm high). The 

maze is elevated 75 cm above the floor. Open zone lighting ranged 461–470 LUX and closed 

arms 206–256 LUX). A single 5-min trial was recorded using a camera suspended from the 

ceiling above the maze, and exploration paths in open and closed zones were analyzed for 

distance traveled and time spent in each zone of the maze using AnyMaze (Stoelting Co. IL). 

An experimenter monitored the trial remotely from an adjacent room.

2.3.2. Locomotor activity (Studies 2 and 3)—Activity was measured using standard 

locomotor activity chambers (approx. 30 × 30 cm, ENV-510; MED Associates, Georgia, VT, 

USA). The walls of the chamber are transparent except for the infrared beam detector which 

is approximately 2 cm high from the floor. Each chamber is housed within a closed sound 

attenuating chamber to restrict view of the room or other mice during testing. Activity was 

recorded automatically for 30 min (Study 2) or 60 min (Study 3) via the breaking of infrared 

beams.

2.3.3. 2-trial Y maze (Study 2)—Short term memory and spatial discrimination in the 

Y-maze was assessed as preference for exploring a previously blocked arm of the maze 
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compared to the two familiar arms. The Y-maze had square arms with straight walls (length 

35 cm, height 10 cm) which were open at the top. Specific visual clues were placed next 

to each arm to help differentiate them (a plastic ball, an empty water bottle, a metal pencil 

cup) in addition to distal room cues. During the first trial one arm was blocked and mice 

were allowed to explore the two open arms for 5 min. Following an inter trial interval of 

approximately 2 min during which time the maze was cleaned with a 10% ethanol solution 

to mask odor cues the mouse was returned to the maze and permitted to explore for a further 

5 min. Trials were recorded using a camera suspended from the ceiling above the maze, and 

exploration in each arm was analyzed using AnyMaze (Stoelting Co. IL). During testing an 

experimenter monitored the trial remotely from an adjacent room.

2.3.4. Water maze (Study 2)—Water maze testing was conducted in a 107-cm diameter 

white pool. The escape platform was a white circular acrylic platform (10 cm diameter) 

that could be raised or sunk and positioned in different places in the pool using a custom 

designed insert. Water was maintained at room temperature between 22 and 25 °C. For all 

training days there were four trials given with approximately 15 mins. Inter trial interval 

and mice were released from a different location at the pool edge each day. For the first 

2 days of testing the platform surface was visible above the water and a marker that was 

visible to the mice while swimming (a white pole with a black ball at the top covered by a 

white disk), was inserted into the platform. Additional room cues included a table, sink, door 

and white screens marked with black tape. The platform was located in a different quadrant 

in the maze during each of the four daily trials. During hidden platform testing the water 

was rendered opaque through the addition of non-toxic white paint and the platform was 

submerged 1 cm below the water surface and remained in the same location throughout all 5 

days of testing. Water level was approximately 10 cm below the top of the pool. On the first 

day of reversal learning the platform was moved to a different quadrant, but then remained in 

that location for all 3 days of testing. Twenty-four hours following the final hidden platform 

and reversal learning training trials a 60-s probe trial was conducted during which time the 

platform was sunk and mice were forced to remain in the pool for the entire trial. For all 

phases of testing trials lasted a maximum of 60 s. Following each trial mice were permitted 

to recover in clean cages lined with absorbent paper with half of the floor surface located on 

a warming pad. Sessions were captured by an overhead camera and swim paths and escape 

latencies were analyzed using AnyMaze (Stoelting Co. IL). Swim speed and peripheral 

swimming (time within 10 cm of the pool wall) were also assessed to determine whether 

differences in performance could be attributed to non-cognitive factors.

2.3.5. Force plate actimeters (Study 2)—Force-plate actimetry (FPA) data were 

collected and analyzed using FPA analysis software provided by the manufacturer (Basi, 

USA) (McCarson et al., 2018). Mice administered their final treatment of KA or saline 

and were immediately placed into the arena. They were permitted to freely explore the 

arena (42 × 42 cm chamber) for 20 min. During this time, the actimeter recorded several 

parameters that were used for further analysis including total distance traveled and bouts of 

low mobility (BLM). BLM were calculated for immobility across 5 s periods in areas with a 

radius of 15 mm, in 20 s time bins across the 20 min session.
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2.3.6. Conditioned fear (Study 3)—Fear conditioning was conducted using two 

specialized chambers and computer software (Med Associates Inc. USA). Mice were placed 

in conditioning chambers that had a plexiglass door, metal walls and a metal grid floor 

through which a shock could be delivered. These were housed within sound attenuating 

chambers. During the initial training trial mice learned to associate a 30 s tone with a 2 

s electric shock (0.7 mA). There were three tone-shock pairings during the 8-min trial. 

Twenty-four hours later mice received a context-retrieval trial in which they were placed 

in the same testing chamber that was used the day before and left undisturbed for 4 min 

before being returned to the home cage. One hour later the context was altered by placing 

a white plastic, curved wall and floor into the chambers, along with a dish containing 1 ml 

of vanilla extract flavoring (McCormick, USA) just outside the enclosed chamber but within 

the outer containment box. Following 2 min exploration in the novel context the tone was 

played for 2 min and freezing response measured. Testing rooms had two ante chambers and 

so testing context was further altered by varying the entrance room and lighting conditions 

between the two retrieval trials. For each trial cameras mounted to the inside of the door of 

the outer containment box and computer software scored the mice for the amount of time 

spent immobile, reported as time freezing.

2.3.7. Test order—For Study 2 testing was conducted in the following order: Week 
1. Elevated zero maze, locomotor activity, Y-maze; Weeks 2–3. Water maze. Week 4. 

Force plate actimeters and euthanasia. The final KA or saline injection was administered 

immediately prior to testing with the force plate actimeters, approximately 1–3 h prior to 

euthanasia.

For Study 3, after four weeks of EEG recording, behavioral testing was conducted in the 

following order and completed in one week: Elevated zero maze, locomotor activity, fear 

conditioning, and final KA or saline injection approximately 1–3 h prior to euthanasia.

2.4. In vivo electrophysiology (Study 3)

2.4.1. Telemetry device implantation—Under sterile technique, a wireless telemetry 

device (PhysioTel HD-X02; Data Sciences International, DSI, St. Paul, MN) was implanted 

subcutaneously following DSI-approved protocol in mice between 14 and 16 weeks of age. 

Isoflurane was used to induce (2–5%) and maintain appropriate anesthesia throughout the 

procedure. Mice were secured in a stereotaxic instrument via ear bars and a scalpel was 

used to expose the skull and neck muscles. From here, rounded surgical scissors were used 

to create a subcutaneous pocket on the left side of the body. The device was placed in this 

pocket so that it was positioned between the left shoulder and left hip, with minimal to no 

impediment to movement. Recording and reference electromyograph (EMG) wires (0.3 mm 

diameter helix of stainless-steel coils protected with silastic coating 0.63 mm in diameter), 

were placed in the neck muscle. For placement of the electroencephalograph (EEG) wires, 

two 1-mm burr holes (from bregma +1.5 mm anterior-posterior and − 1.5 mm medial-lateral 

for reference; − 1.5 mm anterior-posterior and +1.5 mm medial-lateral for recording) were 

created using a hand drill. One of two DSI-approved methods was used for placement of 

the EEG leads, either 1) the indirect method, in which a lead was wrapped twice around a 

1.1-mm stainless steel screw that was inserted into each burr hole, or 2) the direct method, 

Wilcox et al. Page 7

Neurobiol Dis. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which omitted the use of skull screws and the lead was inserted directly into the burr hole 

such that the coils of the lead secured its position against the perimeter of the burr hole. 

Regardless of EEG lead placement method, the skull was covered with dental cement and 

the incision site sutured. The indirect method was used for the first two cohorts (n = 14), but 

the direct method was used on the remaining animals (n = 15) to improve animal welfare 

and promote healing at the suture site as a result of reduced bulk under the dental cement. 

Lead placement method does not impact data acquisition. Analgesic (ketoprofen, 10 mg/kg, 

IP) was administered immediately following surgery and every 24 h for 48 h. After surgery 

and for the remainder of the study, mice were singly housed to avoid disruption of the 

implanted device and surgical site.

2.4.2. Electroencephalogram (EEG) data acquisition—Electrophysiological data 

were collected using Ponemah Physiology Platform version 5.20 software (DSI, St. Paul, 

MN). Each singly housed mouse remained in its home cage placed on a PhysioTel receiver 

plate (model RPC-1) that transmitted data in real time from the wireless implant to a 

computer using the MX2 data exchange matrix Dataquest ART software (DSI, St. Paul, 

MN). Single channel EEG and EMG were continuously sampled at a rate of 500 Hz. 

Core-body temperature and activity measures were sampled at 50 Hz. High definition (20–

30 frames/s) video of each mouse, synchronized to its physiologic measurements, was 

recorded using Axis cameras (M1145-L) and MediaRecorder 2.6 (Noldus). EEG recording 

began within 2 weeks of surgery. Approximately 72 h of continuous data were collected 

each week for four consecutive weeks. KA injections (5 mg/kg) were administered IP twice 

weekly throughout the recording period (Tuesday/Friday between 11:00 and 16:00). Mice 

were briefly anesthetized with isoflurane prior to injections to avoid displacing the EMG and 

EEG leads during handling. One of the two weekly injections occurred during physiologic 

data collection and mice were removed from the receiver plate for less than 5 min.

2.4.3. EEG data analysis—NeuroScore version 3.3.0 (DSI, St. Paul, MN) was used to 

perform data analysis. EEG was recorded 24 h prior to the first injection and a two-hour 

section of data immediately prior to the first injection was analyzed to determine spiking 

activity at baseline. Baseline data were lost for n = 10 of 30 animals due to an unfortunate 

computer shutdown and auto-update which was subsequently disabled. The two hours 

immediately following KA or saline injection during weeks 1 and 4 were analyzed to 

examine how the acute effects of KA changed over repeated activation of the glutamatergic 

system. First, spikes and spike trains were detected using the NeuroScore automated seizure 

detection software with the following parameters: spikes were at least 200 uV in amplitude 

(no greater than 5000 uV) and at least 1 ms long (no greater than 70 ms). Spike trains 

had a minimum spike interval of 0.05 s and maximum spike interval of 1 s; minimum 

train duration 0.5 s, train join interval of 1 s and minimum number of spikes per train 

was 3 (Losing et al., 2017)). All EEG data were processed with a 1 Hz high pass filter. 

Automated scoring was validated by a blinded investigator to remove signal artifacts or 

dropouts (Supplemental Fig. 1) and to confirm characteristic EEG spikes associated with 

a head bob (visualized via synchronized video). Spikes and spike trains are reported for 

the two hours immediately following injection and vigilance states were not differentiated. 

Periodograms were generated based on vigilance states of slow-wave sleep (non-rapid eye 
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movement; NREM), paradoxical sleep (REM), and wake which were determined by delta 

power, theta power, muscle tone, and movement. The value of each parameter for each 

vigilance state are as follows: NREM: mid-high delta power, low-mid theta power, low-mid 

muscle tone, low movement; REM: low delta power, high theta power, low muscle tone, low 

movement; wake: low-mid delta power, low-high theta power, high muscle tone, low-high 

movement. Periodograms were generated in 10 s epochs to obtain relative percent power 

for each of the following frequency bands within each vigilance state: delta 0.5–4 Hz, theta 

4–8 Hz, alpha 8–12 Hz, sigma 12–16 Hz, beta 16–24 Hz, and gamma 25–40 Hz. The total 

average (of 720 10-s epochs) percent power is reported. Data reflect EEG spikes and spectral 

density patterns during a consecutive two-hour period immediately following injection.

2.5. Tissue collection (Study 3)

Mice were euthanized 1–3 h following the final injection. Mice were anesthetized using 

isoflurane prior to cervical dislocation. The chest cavity was opened using sharp scissors 

and a 27-gauge needle was inserted into the left ventricle. The inferior vena cava was 

severed, and mice were saline perfused by hand using a syringe filled with ~15 ml PBS. 

Mice were decapitated using sharp scissors, the brain removed and bisected into right and 

left hemispheres using a razor blade. The left hemisphere was micro-dissected to collect 

hippocampus, cortex and cerebellum tissue. These tissues were flash-frozen on dry ice and 

stored at − 80 °C until prepared for western blotting. The right hemisphere was post-fixed in 

10% formalin for 24 h, immersed in 30% sucrose until sunk, rinsed and stored in PBS at 4 

°C until sectioning and histological staining.

2.6. Western blotting (Study 3)

Cortical and hippocampal tissue lysates were prepared by using a plastic pestle to hand 

homogenize frozen tissue in 100 μL Pierce RIPA lysis buffer (Thermo Scientific, Cat 

# 89901) with cOmplete EDTA-free protease inhibitor cocktail (Roche, 04693132001). 

Lysates were spun down at 10,000 g for 5 min and supernatant transferred to a new 

tube. Protein concentration was measured by a standard bicinchoninic acid (BCA) assay 

protocol (Pierce BCA Protein Assay Kit, Thermo Scientific). Samples were denatured 

with NuPage LDS sample buffer (Thermo Scientific, cat # NP0007) and reducing agent 

(Thermo Scientific, cat # NP0009) and 10 μg protein was loaded on Bolt™ 4–12% Bis-Tris 

Plus gels (Thermo Scientific, cat # NW04120BOX). Gels were run at 200 V for 30 min 

and gel transfer performed using the iBlot2™ system on to nitrocellulose membranes 

(Thermo Scientific, cat # IB23001). Following transfer, gels were rehydrated in DI water 

overnight and Coomassie stained (Bio-Rad, cat # 161–0786) for 60 min for use as a 

loading control. Membranes were blocked in 5% nonfat milk in TBST for 60 min prior 

to incubation with primary antibodies overnight. Each blot was probed a total of three 

times; blots were stripped (Restore™ Western Blot Stripping Buffer, Thermo Scientific, 

cat # VA293256) and re-blocked between probes. Proteins were probed in the following 

order: Glutamate Transporter 1 (GLT1) at 1:4000 (Millipore Sigma, AB1783), Excitatory 

Amino Acid Transporter 1 (EAAT1/GLAST) at 1:1000 (Novus Biologicals, NB100–1869) 

and glial fibrillary acidic protein (GFAP) at 1:5000 (Millipore Sigma, MAB360). Secondary 

antibodies were HRP conjugated anti-guinea, anti-rabbit, or anti-mouse IgG (Promega, 

W402B) diluted at 1:10,000 in 5% nonfat milk in TBST. A subset of hippocampal 
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lysates were first boiled (95° water bath for 3 min) and 30 μg protein was loaded per 

well. These nitrocellulose membranes were probed for pro- and cleaved-caspase 3 (Novus 

Biologicals, 31A1067) at 1:2000 in 5% milk in PBST. Protein bands were detected using 

chemiluminescence (Perkin Elmer, Western Lightning Plus-ECL, cat # NEL104001EA) and 

analyzed with ImageJ (imagej.nih.gov). Values reported represent each individual protein 

normalized to total protein as a loading control (Coomassie stained gel) and to the average 

WT saline expression for each blot. Cortical and hippocampal tissue were run on separate 

gels and thus expression levels between tissue type cannot be directly compared.

Histology (Study 3) – Frozen sections (35 μm thick) were cut from the formalin-fixed 

hemibrain using a benchtop sliding microtome (Leica). Sections were floated in 24-well 

plates containing 1xPBS and then mounted on gelatin-coated, charged glass microscope 

slides. Three to five sections spaced approximately 100 μm apart were used per mouse 

for quantification of Aβ plaques between (sagittal sections, 1–2.5 mm lateral (Paxinos 

and Franklin, 2001)). Aβ was stained with Thioflavin-S (1%, Sigma Aldrich, USA) for 

5 min following dehydration in 70% ethanol. Digital images of the hippocampus and 

overlying cortex were taken using a fluorescent imaging microscope (EVOSfl, AMGmicro) 

at a magnification of 4×. Area occupied by Aβ plaques was determined using the 

freely-available Image J software (National Institute of Health, Bethesda, MD, USA). 

Quantification was performed by an experienced researcher who was blind to the treatment 

of the mice. Some WT sections were also stained as negative controls, but only sections 

from APP/PSEN1 mice were quantified. Plaques were counted and coverage was calculated 

as percent of total region measured, in pixels.

2.7. Statistics

Data are reported in figures and text as Mean +/− S.E.M. unless otherwise 
stated.—Data were analyzed using SPSS 26.0 or GraphPad Prism version 6 or higher. 

Data were first checked for normality, skew and outliers that may reflect experimental or 

software error and removed if outside of 95% confidence interval. Data reflecting expected 

variability in behavioral data were not removed. Where necessary, data were analyzed using 

non-parametric analyses as described in results. All analyses were first run with sex as a 

fixed variable. There were no significant meaningful differences according to sex, thus all 

data were collapsed and analyzed together. Univariate ANOVA (2 genotype × 2 treatment) 

was conducted for tests with single dependent variables. Behavioral tests with multiple trials 

were analyzed with Repeated Measures (RM)- ANOVAs with the same between-groups 

factors as above. For study 3, EEG spike and spike train data were not normally distributed 

between treatments and therefore were analyzed separately by treatment based on a priori 

predictions that KA would increase number of EEG spikes and spike trains (i.e., main effect 

of treatment) whereas few, if any, spikes and spike trains were anticipated in saline-treated 

WT mice.

Wilcox et al. Page 10

Neurobiol Dis. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://imagej.nih.gov


3. Results

3.1. Study 1

In study 1 we investigated the differential effects of KA on hippocampal LTP in WT 

and young APP/PSEN1 mice, with the hypothesis that APP/PSEN1 mice would be more 

affected by this treatment even if differences were not present at baseline in these young 

animals. Input-output curves for each group were performed for both the relationship 

between stimulation intensity and both presynaptic fiber volley and slope of the field EPSP 

(Fig. 1B). The fiber volley/EPSP slope ratio was also similar between groups (Fs < 2.326, 

Ps > 0.142, Fig.1 Biii). No differences were noted between experimental groups suggesting 

no treatment or genotypic difference in axonal excitability or synaptic strength. In response 

to 5 days of treatment with 5 mg/kg KA (Fig. 1A) WT mice showed a decrease in the 

post-tetanic potentiation period (PTP, 27.2 ± 6.6%) but normal appearing late-phase LTP 

(99.8 ± 1.1.% vs 87.4 ± 2.8% in saline treated)(Fig. 1C), as might be expected due to the 

high intensity TBS protocol used (Kang-Park et al., 2003). A similar pattern of blunted PTP 

was observed in APP/PSEN1 mice receiving saline (17.4 ± 4.3% n = 8), suggesting that 

these changes may be related to alterations in presynaptic release of glutamate or potentially 

post-synaptic clearance due to the acute KA injection. The saline-treated APP/PSEN1 mice 

had normal LTP at this age (99.1 ± 1.1% n = 7), which is consistent with the literature 

(Trinchese et al., 2004). However, in the APP/PSEN1 mice receiving KA hippocampal LTP 

was significantly impaired (38.7 ± 0.6%, p <0.0001 tukey post-hoc), suggesting potential 

impairments in post-synaptic glutamate clearance and highlighting the increased sensitivity 

to the drug in those mice (Fig. 1C–E).

3.2. Study 2

In Study 2 we tested the hypothesis that repeated induced hyperexcitability from low-dose 

KA would impact learning and memory in APP/PSEN1 mice to a greater extent than in WT 

littermates. We used young mice in which Aβ accumulation and deposition are low in order 

to test these effects independent of heavy Aβ plaque load. WT and APP/PSEN1 mice were 

treated with 7.5–10 mg/kg KA or the vehicle saline twice per week beginning at 12 weeks of 

age (Fig. 2A).

3.2.1. Survival—Four separate cohorts of mice were utilized for behavioral testing. This 

permitted behavioral testing to be completed within 4-h time blocks to limit potential effects 

of circadian rhythms on data, particularly because greater seizure activity was noted during 

the dark cycle. The first three cohorts of mice were treated with 10 mg/kg KA which 

led to significantly greater mortality in the APP/PSEN1-KA mice than in any of the other 

groups (Gehan-Breslow-Wilcoxon test c2 = 33.75, P < 0.0001, Fig. 2B). Notably these mice 

typically died in the time period (3–4 days) between the two KA injections and not as an 

immediate result of the injection itself. Mice were found dead following the active period 

at night and it is presumed that they died from seizures, although this was not actively 

observed. Therefore, for the fourth cohort of mice KA concentration was decreased to 7.5 

mg/kg to facilitate survival of enough APP/PSEN1 mice to complete behavioral testing. Of 

the 2 WT-SAL, 4 WT-KA, 2 APP/PSEN1-SAL and 4 APP/PSEN1-KA in cohort 4, only 
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one mouse died during the modified (7.5 mg/kg) treatment schedule, an APP/PSEN1 mouse 

following the second KA treatment.

3.2.2. Behavior—Data are presented for all surviving mice for each task. Approximately 

equal numbers of male and female mice were randomized into treatment and control groups 

and all surviving mice were utilized in behavioral testing. Data are combined for all groups 

of mice including both concentrations of KA and final group numbers are presented in 

below. Data are combined for all groups of mice including both concentrations of KA 

and final group numbers were WT-SAL 7 male, 8 female, WT-KA 6 male, 8 female, APP/

PSEN1-SAL 7 male, 2 Female, APP/PSEN1-KA 3 male, 7 female. Some mice died prior 

to completion of all tasks therefore N for the APP/PSEN1-KA group is lower for tasks that 

were conducted at the end of the behavioral battery.

3.2.3. Elevated zero maze—There were no differences in exploration of closed versus 

open zones of the maze indicating that neither genotype nor treatment impact anxiety in a 

novel behavioral task in these mice (Genotype F1, 44 = 0.878, P = 0.354, Treatment F1, 44 

= 0.410, P = 0.525, Interaction F1, 44 = 0.078, P = 0.781, Fig. 2C). Although APP/PSEN1 

mice showed a slight tendency to explore further during the 5-min EZM session there was 

no effect of KA treatment (Genotype F1, 44 = 7.007, P = 0.011, Treatment F1, 44 = 0.20, P = 

0.657, Interaction F1, 44 = 0.264, P = 0.610, Fig. 2D).

3.2.4. Locomotor activity—Baseline locomotor activity across 30 min in activity 

chambers was similar across all groups regardless of genotype or treatment (Genotype F1, 42 

= 0.020, P = 0.889, Treatment F1, 42 = 0.260, P = 0.613, Interaction F1, 42 = 0.759, P = 

0.388, Fig. 2E).

3.2.5. Two trial Y-maze—Memory for the two previous explored arms was indicated 

by a preference for the novel arm compared to the familiar arms. All groups showed a 

preference for the novel arm (WT-SAL t(11) = 5.640, P < 0.001; APP/PSEN1-SAL t(10) 

= 3.308, P = 0.008; WT-KA t(13) = 2.761, P = 0.016, APP/PSEN1-KA t(9) = 2.613, P = 

0.028, Fig. 2F). Percent of time spent in the novel arm did not vary among groups (Fs1, 47 < 

0.882, Ps > 0.353).

3.2.6. Morris water maze—Mice were first trained on the visible platform version of 

the task to ensure that rule learning (find the platform to escape maze) was intact, and 

mice were physically able to perform the task, Fig. 2G,H. All mice learned to locate the 

platform in the different quadrants across the 2 days of training (Day F1, 43)=142.583, P < 

0.001). Overall the fastest escape latencies were observed in the APP/PSEN1-KA-treated 

animals although this difference was not significant (F1, 43 = 4.034, P = 0.051) with no 

other differences according to genotype or treatment (Fs < 1.035, Ps > 0.315). Mice were 

then trained for 5 days to locate a hidden platform that remained in the same location. 

All groups showed decreasing escape latencies over time (F4, 172 = 27.590, P < 0.001) 

with no differences among groups (Fs < 1.324, Ps > 0.263, Fig. 2I). During the probe trial 

learning was assessed via preferential swimming in the target quadrant versus the non-target 

quadrants. All groups showed evidence of a preferential search pattern (WT-SAL F3, 36 = 

41.545, P < 0.001; APP/PSEN1 SAL F3, 36 = 13.385, P < 0.001; WT-KA F3, 27 = 18.206, P 
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< 0.001, APP/PSEN1-KA F3, 27 = 25.586, P < 0.001, Fig. 2J). No differences were observed 

in total swim path length (Fs < 0.535, Ps > 0.468) or time spent in the perimeter (Fs < 1.283, 

Ps > 0.264).

We have previously shown that young APP/PSEN1 mice are still able to perform this task 

well, even following a single KA injection (10 mg/kg), but are impaired when task demands 

are increased through moving the platform location (reversal learning (Mi et al., 2018)). All 

mice were able to acquire the new platform location (F2, 84 = 38.912, P < 0.001) with no 

differences observed among groups (Fs < 0.769, Ps > 0.386, Fig. 2K). However, recall of 

the platform location during the probe trial was impaired in the APP/PSEN1-KA-treated 

animals only (preference for platform quadrant (WT-SAL F3, 36 = 10.162, P < 0.001; APP/

PSEN1-SAL F3, 27 = 4.846, P = 0.008; WT-KA F3, 39 = 8.151, P < 0.001, APP/PSEN1-KA 

F3, 24 = 25.551, P < 0.079, Fig. 2L). There were no group differences in perimeter swim time 

(Fs < 0.169, Ps > 0.683), distance traveled (Fs < 1.317, Ps > 0.258) or swim speed (Fs < 

1.363, Ps > 0.250).

3.2.7. Force plate actimeters—Force plate actimeters were used to provide an 

automated measurement of activity and immobility time during the first 20 min following 

administration of KA. Data are not included for cohort 1 (WT-saline N = 4, APP/PSEN 

saline N = 3, WT-KA N = 4, APP/PSEN1 KA N = 2) due to a technical error during 

data acquisition meaning that raw data files were not saved. Greater bouts of immobility 

(time spent immobile during a 5-s time bin) were observed in KA-treated mice than in 

saline-treated animals (treatment F1, 28 = 18.445, P < 0.001), with the greatest immobility 

observed in KA-treated APP/PSEN1 mice (genotype F1, 28 = 2.985, P = 0.095; interaction 

F1, 28 = 5.472, P = 0.027, Fig. 2M,N). Data were collapsed into 5-min time bins and 

compared between genotypes in KA-treated mice only. Both WT and APP/PSEN1 mice 

appeared to have recovered from acute effects of injection with return to normal activity 

levels by 20 min post treatment, and the largest differences between the two groups were 

noted between 5- and 15-min post injection (Time F3, 48 = 20.640, P < 0.001; Genotype 

F1, 16 = 6.089, P = 0.025; Interaction F3, 48 = 3.679, P = 0.018).

3.3. Study 3

The dramatic mortality observed in young APP/PSEN1 mice treated with 10 mg/kg KA 

suggested that even this low concentration was having long-term effects on neuronal 

signaling in the mice. Deaths were not an immediate effect of treatments, and occurred 

up to 3 days following injection, suggesting a kindling effect so we also sought to identify 

the potentially long-term nature of changes that arose from KA treatment. Therefore, we 

fitted 14-week-old mice of both sexes and genotypes with implantable telemetry devices 

to measure changes in EEG signaling in freely moving mice in response to repeated 

low-dose KA treatment (Fig. 3A). Since our aim was to assess consequences from 

subclinical abnormal epileptiform activity following repeated subthreshold activation of the 

glutamatergic system, two mice (one female APP/PSEN1 and one female WT) were omitted 

from all analyses due to frank tonic-clonic seizures following KA injection. Two additional 

male APP/PSEN1-KA treated mice died midway through the study, one was confirmed as 
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a result of a KA-induced seizure, and EEG data collected during week 1 of the study was 

removed from EEG analyses.

3.3.1. Spikes and spike train activity—Example traces for normal activity, spike 

trains and spikes are shown in Fig. 3Bi–iii. Among saline-treated mice, we observed 

increased spiking activity in APP/PSEN1 compared to WT which remained consistently 

higher over the four-week duration of the study (Genotype F1, 12 = 5.479, P = 0.037, 

Test Week F1, 12 = 0.100, P = 0.921; Fig. 3C). There was an average of 43.75 ± 27.07 

and 41.75 ± 27.07 spikes detected in the two-hour period following injection in WT-SAL 

treated mice during weeks 1 and 4 of the study, respectively, a frequency of electrographic 

spikes considered normal in WT-SAL mice on C57Bl/6 J background (Purtell et al., 2018). 

A greater number of spikes were observed in APP/PSEN1-SAL treated mice during the 

same two-hour period in weeks 1 and 4 with an average of 86.00 ± 54.30 and 89.17 ± 

40.65 spikes, respectively (mean ± SD). Spike trains were not detected in WT-SAL treated 

mice whereas APP/PSEN1-SAL mice exhibited a low number of spontaneous spike trains 

throughout the recording period (week 1, 5.17 ± 4.708; week 4, 3.83 ± 3.48)(Genotype F1, 12 

= 9.99, P = 0.009, Test Week F1, 12 = 1.132, P = 0.273)(Fig. 3D).

KA increased overall spike activity comparably in both genotypes (Treatment F1, 26 = 

5.834, P = 0.023), with no significant cumulative changes between weeks 1 (after the first 

treatment) and 4 (after the seventh treatment) (Genotype F1, 26 = 0.447, P = 0.510, Test 

Week F1, 26 = 3.740, P = 0.064, all interaction Ps > 0.05). WT-KA treated mice had an 

average of 257.36 ± 475.14 spikes in week 1 and 416.45 ± 709.83 spikes in week 4 and 

APP/PSEN1-KA treated mice had an average of 200.00 ± 173.68 and 765.60 ± 860.96 

spikes in weeks 1 and 4, respectively (Fig. 3C). However, KA treatment affected spike 

train activity in WT and APP/PSEN1 groups differently throughout the four-week recording 

period (Genotype F1, 26 = 4.590, P = 0.042, Treatment F1, 26 = 7.100, P = 0.013, Test Week 

F1, 26 = 3.442, P = 0.075, 3-way Interaction F1, 26 = 4.788, P = 0.046). WT-KA treated mice 

had 7.36 ± 18.19 spike trains in week 1 with 6.55 ± 15.48 in week 4 whereas KA increased 

spike trains by roughly 3-fold in APP/PSEN1 mice from week 1 (10.2 ± 12.518) to week 4 

of recording (35 ± 34.32) (Fig. 3D). Baseline spikes and spike train activity were analyzed 

for all animals with available data (n = 20 of 30 animals) and we confirmed that within a 

genotype there were no significant differences between assigned treatment groups prior to 

first injection (both Ps > 0.05) (Supplemental Fig. 2).

3.3.2. Power band analyses—Rather than only focus on the individual spikes recorded 

we also analyzed the data by parsing it into functionally distinct power bands of differing 

frequency ranges. Average percent power across 6 EEG frequency bands (delta, theta, alpha, 

sigma, beta and gamma) was computed for the two hours immediately following injections 

during weeks 1 and 4. Data were first categorized according to behavioral state including 

sleep (REM and non-REM, NREM; Fig. 3E). There were no significant differences in 

spectral power over time (all Ps > 0.05) suggesting that any effects of KA on spike 

activity or cognitive changes is unlikely to be simply a reflection of altered behavioral 

states (Fig. 3Fi–iii; week 4 data only shown for brevity). During wake periods, percent 

sigma (Genotype F1, 26 = 15.54, P = 0.0005), beta (Genotype F1, 26 = 24.09, P < 0.0001), 
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and gamma (Genotype F1, 26 = 11.04, P = 0.0027) power were significantly increased 

in APP/PSEN1 compared to WT mice with no main effects of KA (all Treatment Ps > 

0.05). During NREM sleep, percent alpha (Genotype F1, 26 = 4.526, P = 0.0430,), sigma 

(Genotype F1, 26 = 5.757, P = 0.0239), and beta (Genotype F1, 26 = 11.02, P = 0.0027) 

power were significantly increased in APP/PSEN1 compared to WT mice. During REM 

sleep, percent theta (Genotype F1, 26 = 8.543) power was significantly decreased and percent 

beta (Genotype F1, 26 = 18.03, P = 0.0003) power was significantly increased in APP/PSEN1 

compared to WT mice with no main effects of KA (all Treatment Ps > 0.05). During REM 

periods, gamma power was affected by KA differentially in each genotype (Genotype F1, 26 

= 4.907, P = 0.0365, Treatment F1, 26 = 0.8049, P = 0.3786, Interaction F1, 26 = 5.898, P = 

0.0230). KA increased gamma power in WT mice, but not in APP/PSEN1 mice, in which 

higher percent gamma power was already observed.

3.3.3. Locomotor activity—Similar to the assessment in Study 2, locomotor activity 

was comparable across all groups regardless of genotype or treatment in Study 3 (Genotype 

F1, 26 = 0.775 P = 0.387, Treatment F1, 26 = 2.337, P = 0.135, Interaction F1, 26 = 0.787, P = 

0.383) (Fig. 4A).

3.3.4. Elevated zero maze—APP/PSEN1 mice in Study 3 showed the same modest 

tendency to explore further based on total distance traveled during the 5-min EZM session 

as those in Study 2, but there was no effect of KA treatment (Genotype F1, 26 = 4.941, P = 

0.035, Treatment F1, 26 = 0.385, P = 0.541, Interaction F1, 26 = 0.132, P = 0.712) (Fig. 4B). 

Neither genotype nor treatment impacted anxiety in a novel behavioral task in these mice 

measured by time spent in the closed zones of the apparatus (Genotype F1, 26 = 0.110, P = 

0.743, Treatment F1, 26 = 0.012, P = 0.914, Interaction F1, 26 = 0.102, P = 0.752) (Fig. 4C).

3.3.5. Contextual fear conditioning—During training, prior to administration of the 

tone-shock pairing, APP/PSEN1 mice displayed an increase in baseline freezing behavior 

compared to WT with no impact of treatment (Genotype F1, 26 = 7.88, P = 0.009, Treatment 

F1, 26 = 0.451, P = 0.508, Interaction F1, 26 = 0.037, P = 0.850, data not shown). Appropriate 

contextual memory retrieval was observed in all genotype-treatment groups approximately 

24 h later when placed in the same context without the tone-shock pairing, supported by 

a significant increase in freezing time from baseline to testing trial with no differences 

between genotypes or treatment (Trial F1, 26 = 275.962, P < 0.0001, Genotype F1, 26 = 3.408, 

P = 0.076, Treatment F1, 26 = 0.530, P = 0.473, all Interaction Ps > 0.05). Post-hoc paired 

t-tests confirm that each individual genotype-treatment group spent a significantly greater 

length of time freezing during the testing trial compared to baseline (Ps < 0.01, Fig. 4D).

3.3.6. Cued fear conditioning—Memory retrieval of the shock-associated cue was 

assessed one hour following contextual memory retrieval. All groups spent significantly 

greater time freezing following onset of the shock-associated cue compared to time spent 

freezing when first introduced to the novel context (Trial F1, 26 = 109.017, P <0.0001). 

However, the same increase in freezing behavior in response to the cue was not observed 

uniformly in all groups (Genotype F1, 26 = 6.404, P = 0.018, Treatment F1, 26 = 5.190, 

P = 0.031; Genotype*Trial Interaction F1, 26 = 7.55, P = 0.011). APP/PSEN1-KA mice 
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spent more time freezing overall compared to WT in both the novel context and during the 

presentation of the shock-associated cue and did not exhibit differential freezing between the 

two parts of the trial (P = 0.149). Memory of the tone-shock pairing was evident in all other 

mice through increased freezing during the tone (Post-hoc paired t-tests Ps < 0.01) (Fig. 4E).

3.3.7. Glutamate transport proteins

3.3.7.1. Cortex.: APP/PSEN1-SAL mice exhibit decreased GLT-1 protein expression in 

cortical tissue compared to WT controls, and KA lowered expression in both genotypes 

(Genotype F1, 26 = 10.49, P = 0.003, Treatment F1, 26 = 19.07, P < 0.001, Interaction F1, 26 

= 0.017, P = 0.897; Fig. 4F,I). There were no main effects of genotype nor treatment on 

cortical GLAST expression (Genotype F1, 26 = 0.269, P = 0.610, Treatment F1, 26 = 0.693, 

P = 0.413). A significant interaction among the factors (Interaction F1, 26 = 6.436, P = 

0.018) was not supported by significant follow-up analyses (Fig. 4G,I). GFAP expression 

was similar among all groups suggesting a lack of gliosis in APP/PSEN1 mice at this age or 

in response to repeated KA (Genotype F1, 26 = 1.714, P = 0.202, Treatment F1, 26 = 1.604, P 
= 0.217, Interaction F1, 26 = 0.022, P = 0.883, Fig. 4H,I).

3.3.7.2. Hippocampus.: Hippocampal GLT-1 expression was not significantly different 

between APP/PSEN1- and WT-SAL treated mice. KA decreased hippocampal GLT-1 

expression only in APP/PSEN1 mice (Genotype F1, 26 = 0.051, P = 0.823, Treatment F1, 26 

= 6.66, P = 0.016, Interaction F1, 26 = 7.231, P = 0.005, Fig. 4J). Overall lower GLAST 

expression was observed in APP/PSEN1 mice at baseline and there was no significant effect 

of KA on GLAST expression in the hippocampus of either genotype (Genotype F1, 26 = 

4.476, P = 0.044, Treatment F1, 26 = 3.162, P = 0.087, Interaction F1, 26 = 0.058, P = 

0.811, Fig. 4K). Similar to results in cortical tissue, there was no evidence of gliosis in 

the hippocampus regardless of genotype or treatment (GFAP: Genotype F1, 26 = 0.742, P 
= 0.397, Treatment F1, 26 = 0.821, P = 0.373, Interaction F1, 26 = 0. 626, P = 0.423, Fig. 

4L). A marker of apoptosis was measured by western blot in the hippocampus of a subset of 

animals and under these conditions KA did not alter pro-caspase-3 (Genotype F1,19 = 0.038, 

P = 0.847, Treatment F1, 19 = 0.171, P = 0.684, Interaction F1, 19 = 0.026, P = 0.874) nor 

cleaved-caspase-3 (Genotype F1,19 = 0.857, P = 0.366, Treatment F1, 19 = 0.0006, P = 0.980, 

Interaction F1, 19 ≤0.0001, P = 0.999) expression in either genotype (data not shown).

3.3.7.3. Histology.: Aβ-coverage, as observed through staining with Thioflavin-S was 

sparse in hippocampus of all APP/PSEN1 mice. The maximum number of Aβ-deposits 

observed in a single section was five, and many animals had no observable plaques in 

hippocampus (data not shown).

4. Discussion

We demonstrated that short-term (daily for 5 days) and long-term repeated (twice per 

week for up to 16 weeks) treatment with a low dose of the kainite receptor agonist kainic 

acid (KA) was sufficient to disrupt LTP, to cause mild memory deficits in high-cognitive 

demand behavioral tasks, exacerbate the modest abnormal epileptiform activity present in 

APP/PSEN1 mice and uniquely affect expression of glutamatergic clearance proteins. It is 

Wilcox et al. Page 16

Neurobiol Dis. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



particularly notable that these modifications occurred in young APP/PSEN1 mice, less than 

6 months old. Furthermore, the study had higher-than-expected mortality rates indicating 

that the data available for analysis was from the least impacted animals. Aβ-plaques are 

not observed or are extremely sparse in APP/PSEN1 mice at this age, thus these findings 

suggest that potential contributions to cognitive decline from hyperexcitability in AD occur 

independent of heavy Aβ-plaque load. Nevertheless, even young APP/PSEN1 mice generate 

and accumulate Aβ monomers and larger oligomers from 2 months or even earlier (Dixit 

et al., 2017), and the same sensitivity to KA was not observed in WT mice. Therefore, 

although this process may be a very early facet of AD pathobiology and not dependent on 

presence of heavy plaque load, it is not necessarily independent from oligomeric Aβ nor 

APP overexpression.

A growing body of research suggests that hyperexcitability and subclinical or manifest 

epilepsy may be a critical part of AD pathology and strongly linked to cognitive decline. 

Seizures occur much more frequently in AD patients compared to other dementia patients 

(Vossel et al., 2017). Subclinical epileptiform activity also occurs in a substantial number of 

AD patients, with recent studies using long-term EEG monitoring showing between 42 and 

52% of AD patients with non-convulsive seizures or epileptiform discharges (Horvath et al., 

2018; Vossel et al., 2016). AD patients with epilepsy may have an earlier diagnosis and more 

severe cognitive status (Cumbo and Ligori, 2010; Rauramaa et al., 2018) and treating with 

anti-seizure medications may improve cognition, even in cases of mild cognitive impairment 

(Bakker et al., 2015; Cumbo and Ligori, 2010). Multiple transgenic mouse lines for Aβ­

expression and AD also exhibit spontaneous seizures and increased sensitivity to evoked 

seizures (Minkeviciene et al., 2009; Vogt et al., 2011) but it is not known how this sensitivity 

may impact the cognitive impairments observed. Not only can Aβ affect neuronal activity 

but increased synaptic activity by hippocampal perforant pathway stimulation in young (3–5 

month) Tg2576 mice has been shown to increase interstitial Aβ levels (Cirrito et al., 2005). 

Similarly, experimentally-induced hyperactivity has also been shown to increase Aβ load 

in 9–14-month old 3 × Tg mice treated with pilocarpine to induce epilepsy (Yan et al., 

2012). We did not observe increase in mature compact Aβ plaques stained by Thioflavin-S 

staining in our KA-treated APP/PSEN1 mice in the current study. Nevertheless, it is likely 

that, particularly as mice age and Aβ pathology accelerates, there is a positive-feedback 

relationship between hyperexcitability and Aβ load.

A heterogeneous group of cortical spike discharge types was recorded in young (4.5–6 

month) APP/PSEN1 mice – some present in both genotypes and some cortical spikes 

unique to APP/PSEN1 mice (including ‘giant spikes’), but were not observed in all 

individual animals (Gureviciene et al., 2019). The giant spikes which implicate synchronous 

hippocampal and cortical epileptic signals were associated with increased likelihood of 

convulsive seizures. The association of hippocampal dysfunction with greatest seizure 

activity is a likely explanation for the marginal cognitive deficits observed in our study 

since APP/PSEN1 mice that suffered active seizures (observed through EEG or presumed as 

cause of death) were not included in analyses due to attrition (Studies 2 and 3) or removal 

(Study 3). The different patterns of spike activity, including giant spikes, may thus be an 

important feature for inclusion in future studies.
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Epilepsy itself is often accompanied by cognitive deficits (Elger et al., 2004). These deficits 

are present in both acquired and genetic mouse models of epilepsy (Cheah et al., 2012; 

Kim et al., 2020), with corresponding deficits in hippocampal plasticity (Kullmann et al., 

2000). Chemoconvulsants including KA are typically used in preclinical epilepsy models 

to induce overt seizures or status epilepticus, with accompanying cell death and significant 

pathology (Levesque and Avoli, 2013). Immediately after such acute seizure events, before 

there is significant pathology, hippocampal LTP may be immediately preserved or enhanced, 

while with time it becomes severely attenuated (Zhang et al., 2010). Thus, in the absence 

of potential damaging cytotoxic effects of seizures, short-term low dose systemic KA 

would be expected to have little detrimental effect on plasticity, similar to our results in 

KA-treated WT mice. Mice that are resistant to KA-induced status epilepticus may have 

enhanced, rather than impaired hippocampal plasticity (Suarez et al., 2012). Hippocampal 

neuronal apoptosis has indeed been prevented by a pre-conditioning exposure to controlled 

electroconvulsive shocks prior to KA-induced status epilepticus (Kondratyev et al., 2001), 

suggesting the possibility that repeated exposure to low-dose KA may induce similar 

protective changes. We did not detect apoptosis under the conditions in Study 3 using 

western blot to measure activated caspase-3 (data not shown), however, we do not discount 

the possibility entirely because apoptosis could have been specific to a subregion of the 

hippocampus. Over a longer period of time repeated epileptiform discharges and seizures 

in the hippocampus contribute to functional and structural disruption, excitotoxic cell death, 

and ultimately impaired LTP and memory functions that are observed in those animals that 

go on to have spontaneous seizures (Groticke et al., 2008). This latter case better represents 

the impaired LTP observed in the APP/PSEN1 mice treated with KA in the current study.

Several genetic mouse models of AD evaluated report normal SC-CA1 LTP at early ages (<3 

months)(Marchetti and Marie, 2011) including in APP/PSEN1 mice (Calella et al., 2010; 

Trinchese et al., 2004) with impaired LTP not witnessed until much later time points when 

Aβ pathology is more established (Calella et al., 2010; Gengler et al., 2010; Trinchese et al., 

2004). In contrast in 3xTg mice, basal transmission, paired-pulse facilitation, and LTP were 

all normal compared to wild-types up to 14 months of age suggesting that accumulating Aβ 
is not sufficient for impaired LTP (Fitzjohn et al., 2010). Modest differences in the baseline 

slopes (Fig. 1) suggest some mild disruption of LTP in APP/PSEN1 mice even at 12 weeks, 

but we only observed significantly impaired LTP in KA-treated APP/PSEN1.

Our study differs from previous work in this area in that we were able to make extended 

behavioral and EEG measurements in the APP/PSEN1 mice across a long-term treatment 

schedule. The EEG measurements in freely moving (non-tethered) mice within their home 

cages also increases the validity of findings since it does not increase stress or anxiety 

in the mice through needing to be tethered to recording equipment in unfamiliar cage set 

ups during data acquisition. We showed modest changes in number of spikes observed in 

KA-treated APP/PSEN1 mice and a greater increase in the numbers of spike trains (at 

least 3 spikes recorded together). There were genotype differences in the relative ratio of 

five of the six power bands analyzed (theta, alpha, sigma, beta, and gamma) dependent 

on vigilance state and only gamma waves were also further affected by KA in WT mice. 

Elevations in alpha, beta and gamma waves may be indicative of a combination of attention 

and anxiety, and the increases observed in the young APP/PSEN1 may reflect increased 
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effort required for higher order cognitive processing. During the brief two-hour period 

analyzed, we do not report altered sleep patterns in APP/PSEN1 mice or by KA treatment, 

indicated by comparable time spent in each vigilance state among genotype-treatment 

groups. Nevertheless, during REM sleep we report decreased theta power in APP/PSEN1 

mice in the current study. These findings are consistent with other studies reporting lower 

theta and delta power observed in 8–10 month old APP/PSEN1 mice although frank sleep 

patterns were unaltered (Kent et al., 2018), whereas other studies report sleep-wake cycle 

disruption and diurnal variations in APP/PSEN1 mice with onset of plaque deposition from 

6 to 9 months of age (Roh et al., 2012). In the present study, APP/PSEN1 mice show 

increased alpha, sigma, and beta power during NREM sleep. Increased sigma power during 

NREM sleep has previously been positively correlated with interictal spike rate in patients 

with drug-resistant focal epilepsy (Zubler et al., 2017) and increased sigma and beta during 

NREM are reported in individuals suffering from insomnia (Spiegelhalder et al., 2012). In 

sum, the changes shown here are in mice younger than are typically studied and reflect the 

potential for increased sensitivity to further disruption, such as may be caused by KA or 

other forms of excitotoxic signaling.

Altered glutamatergic signaling is the major related neuropathological difference tying 

together AD and epilepsy. Addition of Aβ to WT mouse astrocytes in culture significantly 

decreased GLT-1 surface expression (Scimemi et al., 2013). GLT-1 is the most abundant 

glutamate transporter in the brain represents approximately 80% of glutamate transporters 

in the hippocampus (Lehre and Danbolt, 1998). Thus, its dysfunction may be linked to 

hippocampal-dependent memory deficits. Poorer recall was observed in the Morris water 

maze in APP/PSEN1 mice lacking one allele for GLT-1 (Mookherjee et al., 2011; Tanaka 

et al., 1997). Changes in glutamatergic genes or gene levels have been reported in clinical 

post mortem tissue (Kirvell et al., 2006; Masliah et al., 1996) as well as in mouse models 

of AD (Minkeviciene et al., 2008; Schallier et al., 2011), although transporters, methods 

and even brain areas often vary between studies precluding direct comparison. We observed 

clear decreases in GLT-1 expression in cortical tissue from APP/PSEN1-saline control mice 

even at less than 6 months with little Aβ accumulation. Repeated low-dose KA treatment 

further decreased GLT-1 expression in cortex of both WT and APP/PSEN1 animals. This 

finding suggests that the same pathways impacted by KA administration may already be 

disrupted in the transgenic mice. The cortical GLT-1 protein expression findings coincide 

with our EEG spike findings; KA-treatment makes the WT behave similarly to saline-treated 

APP/PSEN1 mice and KA induces abnormal activity in both genotypes. In slight contrast 

to this result we found no baseline differences in hippocampal GLT-1 between WT and 

APP/PSEN1, but a significant decrease in expression following KA treatments in APP/

PSEN1 mice only. These protein expression findings align with our data showing intact 

LTP in saline-treated APP/PSEN1 mice but significant impairments only in APP/PSEN1 

mice treated acutely with KA. GLAST expression was modestly decreased in APP/PSEN1 

mice in hippocampus only and GFAP expression was unchanged in either tissue suggesting 

a relatively discrete effect on GLT-1. Overall, these findings fit well with the behavioral 

data that showed normal cognition under baseline conditions in these young APP/PSEN1 

animals, but early memory deficits in KA-treated mice under cognitively demanding tasks 

that are reliant on hippocampal function. That we see differences in electrophysiological 
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and behavioral measures in response to KA in APP/PSEN1, as well as protein expression 

changes, suggests that these underlie the functional changes observed although we do 

not discount the potential role other neurotransmitter systems may play in AD pathology. 

Microglial and inflammatory processes also contribute to AD-related neuronal dysfunction 

and altered glutamatergic signaling. Rats with the p.R47H variant in the microglial gene 

Trem2 exhibited increased glutamate transmission associated with increased TNF-α and not 

Aβ (Ren et al., 2020).

At the age studied here (<6 months), APP/PSEN1 mice do not show robust cognitive deficits 

(Dixit et al., 2015; Mi et al., 2018; Reiserer et al., 2007). Indeed, even APP/PSEN1-KA­

treated animals were able to perform most of the tasks presented appropriately. It was only 

in the most challenging of behavioral tasks used, namely platform placement during reversal 

learning in the Morris water maze, and the cued-trial during conditioned fear testing, that 

this group exhibited a deficit. Mice that were most sensitive to KA died during testing and 

thus to detect differences in the least affected remaining mice suggests that this could be a 

greater issue in cases with less cognitive reserve. We propose that to induce any deficit in 

young APP/PSEN1 mice that typically perform at a WT-equivalent level is quite important. 

We hypothesize that this is likely due to KA treatment exacerbating at least one facet of 

the neuropathology associated with the APP/PSEN1 genotype, which may be a combination 

of APP dysregulation or oligomeric Aβ generation but not heavy Aβ plaque load. It is 

particularly important for Alzheimer’s disease research that such modest changes in EEG 

signaling may be associated with any memory deficit at all, suggesting that hyperexcitability 

may need to be a very early target in order to protect against memory loss.

5. Conclusions

If these data can be directly translated to human cases then it is possible that some of the 

cognitive decline observed in AD and perhaps MCI patients are due to hyperexcitability 

and undetected, subclinical or subthreshold seizure activity rather than directly linked to 

other AD pathologies. Since neurotransmitter changes are more tractable to pharmacological 

manipulation, this may provide increased opportunity to modify or slow decline regardless 

of accumulating neuropathology. EEG is a method that is directly translatable to human 

populations which may also provide an additional early diagnostic marker to identify 

patients that might most benefit from interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

KA kainic acid

SAL saline

IP intraperitoneal

LTP long term potentiation

PTP post tetanic potentiation

Aβ beta-amyloid

WT wild-type

APP/PSEN1 amyloid precursor protein / presenilin 1

EEG electroencephalogram

FPA force plate actimeters

BLM bouts of low mobility

REM rapid eye movement

NREM non rapid eye movement
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Fig. 1. 
APP/PSEN1 mice are more sensitive to the effects of kainic acid on long term potentiation 

(LTP). (A) Timeline for experimental treatments and illustration of Field potential (fEPSP) 

recorded in acute horizontal hippocampal slices. (B) Input-output curves for each group 

were performed for the relationship between stimulation intensity and both (Bi) presynaptic 

fiber volley and (Bii) slope of the field EPSP and (Biii) fiber volley//EPSP ratio at 

experimental stimulus intensity. (C) Theta-burst stimulation (TBS) at SC-CA1 induced 

enhanced LTP in WT (Ci) and APP/PSEN1 (Cii) animals treated with saline or KA over 

5 days, recorded at 0.05 Hz. Representative traces at baseline (point a) and 55 mins 

post induction (point b) for WT control and KA-treated APP/PSEN1 animals (Ciii). (D) 

Cumulative probability of post-TBS normalized slopes from individual experiments in 

APP/PSEN1 animals. (E) Pooled potentiation at 55–60 min. Post-TBS. Late LTP analyses 

indicate a dramatic decrease in APP/PSEN1-KA (P < 0.001 compared to all other groups). 

Data show mean +/− S.E.M. *, *** P < 0.05, 0.001 as marked.
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Fig. 2. 
APP/PSEN1 mice are more sensitive to the effects of repeated low-dose kainic acid on 

learning and memory. (A) Timeline of experiments. (B) Survival curve for all genotypes 

treated with kainic acid (KA) (7.5–10 mg/kg) twice per week. Young APP/PSEN1 mice 

treated with KA showed (C) normal anxiety in the elevated zero maze. (D) Exploration in 

the zero maze was slightly greater in APP/PSEN1 mice but all groups were within expected 

ranges. No genotype or treatment effects were observed in (E) locomotor activity in a 

novel environment, or (F) working memory in the two-trial Y-maze task. (G) All mice were 

trained on the visible platform version of the water maze, followed by 5 days of hidden 

platform training, a probe trial to test 24-h recall, and re-training to a new platform location 

(reversal learning). All mice were able to acquire (H) the visible platform task and (I) learn 

the location of the hidden platform as shown by decreasing escape latencies across test 

sessions. (J) 24-h recall was not affected by genotype or treatment and all mice showed a 

preference for the quadrant that had contained the platform. (K) Mice were also able to learn 

a new location of the platform, however, (L) KA-treated APP/PSEN1 showed no preference 

for the target quadrant during the 24 h recall probe test. (M,N) KA increased time spent 

immobile in both genotypes following final KA treatment although this was observed to a 

greater extent in APP/PSEN1 mice than WT. *, **, *** P < 0.05, 0.01, 0.001 as marked 

(D, F, M, N) or compared to the target quadrant (J, L). Pairwise comparisons following 

significant omnibus ANOVA or interactions. (J, L) a, b, P < 0.001, 0.05 compared to chance 

performance (by one sample t-test compared to 15 s, indicated by dotted line. WT SAL 
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t(12) = 2.553, P = 0.025, WT-KA t(13) = 2.692, P = 0.018, APP-SAL t(9) = 4.70, P = 

0.021, APP-KA = t(8) = 0.211, P = 0.838). Surviving animals included in study 2 analyses 

were 8 male and 8 female WT-SAL, 6 male and 8 female WT-KA, 7 male and 2 female 

APP/PSEN1-SAL, 3 male and 7 female APP/PSEN1-KA.
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Fig. 3. 
Abnormal EEG patterns are detected in young APP/PSEN1 mice and are exacerbated by 

repeated low-dose kainic acid. (A) Timeline of treatment and experiments. (B) Example 

traces shown for EEG (black, upper traces) and EMG (gray, lower traces). (Bi) Normal EEG 

signal in a resting but awake mouse. (Bii) Example of a spike train (green bar above EEG) 

associated with a behavioral pause (EMG), followed by a 750 uv amplitude single spike 

(arrow). (Biii) Spikes (arrows) characteristic during visually confirmed (by synchronized 

video) head bobbing show increased EMG (neck muscle) activity. (C) Total number of 

spikes detected two hours post injection during weeks 1 and 4 of EEG recordings. (D) Total 

number of spike trains detected two hours post injection during weeks 1 and 4 of EEG 

recordings. (E) Data for 2-h post-KA parsed according to wake state (Awake, REM, and 

NREM sleep). (F) Average percent power contributed by each of 6 frequency domains in 

each of the four genotype and treatment groups during week 4 recording only during awake, 

REM sleep and non-REM sleep. Average power of all frequencies except delta differed 

according to genotype in at least one behavioral state. Delta 0.5–4 Hz, theta 4–8 Hz, alpha 

8–12 Hz, sigma 12–16 Hz, beta 16–24 Hz, and gamma 25–40 Hz frequencies. *, **, *** P < 

0.05, 0.01, 0.001 main effect of genotype (F). # P < 0.05 significant effect of KA treatment, 

post hoc pairwise comparison as marked.
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Fig. 4. 
Altered memory and expression of glutamate transporters in APP/PSEN1 and kainic acid 

treated mice. (A) Total locomotor activity (distance traveled over 60 min) did not differ 

between genotypes and was not affected by treatment. (B) APP/PSEN1 mice show a subtle 

tendency to explore more (travel a greater distance) in a 5 min elevated zero maze task but 

(C) time spent in the closed zone of the elevated zero maze, and thus anxiety levels during a 

novel behavioral task, were comparable among all groups. (D) All four experimental groups 

display appropriate context memory retrieval and (E) all groups except for APP/PSEN1-KA 

mice exhibit cue-associated memory retrieval. (F) Cortical GLT-1, (G) GLAST, and (H) 

GFAP protein expression. (I) Representative blot images are the same samples (cortex) on 

the same blot but stripped between probes, with total protein loaded (Coomassie Blue stain). 

Hippocampal (J) GLT-1, (K) GLAST, and (L) GFAP protein expression. Surviving animals 

included in study 3 analyses were 4 male and 4 female WT-SAL, 5 male and 6 female 

WT-KA, 3 male and 3 female APP/PSEN1-SAL, 2 male and 3 female APP/PSEN1-KA. *, 

** P < 0.05, 0.01 main effect of genotype (B,F,K). a, b, P < 0.001, 0.01 compared to baseline 

or novel context performance (by one sample t-test, D,E). +, ++, +++ P < 0.05, 0.01, main 

effect or post hoc pairwise comparison effect of KA treatment (F,J).
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