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Two modes of lytic granule fusion during
degranulation by natural killer cells

Dongfang Liul, Jose A Martina2, Xufeng S Wu?2, John A Hammer III? and Eric O Long1

Lytic granules in cytotoxic lymphocytes, which include T cells and natural killer (NK) cells, are secretory lysosomes that release
their content upon fusion with the plasma membrane (PM), a process known as degranulation. Although vesicle exocytosis has
been extensively studied in endocrine and neuronal cells, much less is known about the fusion of lytic granules in cytotoxic
lymphocytes. Here, we used total internal reflection fluorescence microscopy to examine lytic granules labeled with fluorescently
tagged Fas ligand (FasL) in the NK cell line NKL stimulated with phorbol ester and ionomycin and in primary NK cells activated
by physiological receptor-ligand interactions. Two fusion modes were observed: complete fusion, characterized by loss of granule

content and rapid diffusion of FasL at the PM; and incomplete fusion, characterized by transient fusion pore opening and
retention of FasL at the fusion site. The pH-sensitive green fluorescence protein (pHluorin) fused to the lumenal domain of
FasL was used to visualize fusion pore opening with a time resolution of 30 ms. Upon incomplete fusion, pHluorin emission
lasted several seconds in the absence of noticeable diffusion. Thus, we conclude that lytic granules in NK cells undergo

both complete and incomplete fusion with the PM, and propose that incomplete fusion may promote efficient recycling of lytic
granule membrane after the release of cytotoxic effector molecules.
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Target cell killing by cytotoxic T lymphocytes (CTLs) and natural killer
(NK) cells requires exocytosis of the content of Iytic granules (LGs),!=
which store effector molecules, such as granzymes, perforin and Fas
ligand (FasL, also known as CD95-L and CD178). LG fuse with the
plasma membrane (PM), following CTL and NK cell activation, and
release cytolytic effector molecules that kill susceptible target cells.*
Several molecules that play an important role in the fusion of LG with
the PM of cytotoxic lymphocytes have been identified.>~!” Munc13-4
is essential in the priming of LG docked at the PM,!8 and Rab27a is
required for the delivery of LG to and/or their retention at the PM.!%2°
Defects in Munc18-2, myosin ITA or syntaxin-11 in NK cells result in
LG that polarize toward the immunological synapse, but are unable to
release their content.”?!~2> Imaging studies have shown that polarized
LG are released by CTL and NK cells at a defined secretory domain
within the immunological synapse;26’27 however, how LG fuse with the
PM in cytotoxic lymphocytes is unclear.

Although molecules that regulate exocytosis of granules could vary in
different cell types, increasing evidence shows that LG may share a similar
mechanism with granules in endocrine cells and synaptic vesicles in
neuronal cells for their fusion with the PM.!>1228 Incomplete fusion of
synaptic vesicles at the frog neuromuscular junction has been described
more than four decades ago by electron microscopy.? Extensive evidence
from imaging and electrophysiological techniques suggests that both

complete and incomplete fusion occur in endocrine cells and several
different neural synapses, including the calyx of held synapse,® neuro-
muscular junction®*? and cultured hippocampal synapse.*>

To test whether complete fusion or incomplete fusion of LG with
the PM occurs in cytotoxic lymphocytes, we used the human NK cell
line NKL, as well as primary NK cells from human peripheral blood,
as a model to study the fusion modes of LG during degranulation.
Here, we labeled LG with DsRed-FasL-pH-sensitive green fluorescence
protein (GFP) (pHluorin). FasL, a type II transmembrane protein that
belongs to the tumor necrosis factor family,>* contributes to cytotoxi-
city mediated by CTL and NK cells.>>>7 FasL is present in the LG
membrane of CTL and NK cells.* pHluorin is a pH-sensitive variant of
the GFP and has been used to monitor vesicle fusion in endocrine and
neuronal cells as a fusion protein with the integral vesicular protein-
associated membrane protein 2 (refs 38-40). We attached pHluorin to
the C-terminal, lumenal portion of FasL and DsRed to the N-terminal,
cytosolic tail of FasL. By specifically labeling LG with different
fluorescent proteins, and by using total internal reflection fluorescence
(TIRF) microscopy (also called evanescent wave microscopy), we
show that NK cells use two distinct modes for exocytosis of LG:
complete fusion, where granule content is lost and FasL diffuses
rapidly at the PM; and incomplete fusion, whereby formation of a
transient fusion pore at the PM is accompanied by retention of FasL.
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Figure 1 Complete fusion of a GFP-FasL-positive LG with the PM. (a) Selected frames from a time-lapsed live imaging are shown. The scale bar is 0.75 um.
(b) Diagram showing a possible pathway of LG fusion with the PM. The evanescent field is illustrated by the light blue bar. The membrane of LG labeled by
GFP-FasL is illustrated by green circle. (c) The relative total intensity and FWHM of single vesicle were plotted over time. The vertical dashed lines indicate
the possible distinct phase of the fusion process. Images representative of at least four fusion events observed from 20 cells in three independent

experiments.

RESULTS

Complete fusion of LG visualized with GFP-FasL

Complete fusion is generally accepted as the major pathway of
exocytotic release of neuropeptides and hormones in neuronal and
endocrine cells.*>** To determine if complete fusion occurs during
exocytosis of LG, NKL cells were transiently transfected with GFP-
FasL (GFP fused to the N terminus of FasL). GFP-FasL-positive
compartments overlapped with perforin-containing granules, as
shown by labeling of fixed cells with anti-perforin antibodies (data
not shown). Transfected NKL cells were plated on poly-L-lysine-
coated glass coverslips and imaged by TIRE As shown with
the membrane dye DiIC16, NKL cells formed stable contacts with
poly-L-lysine-coated coverslips, as seen by TIRF microscopy (data
not shown). To test whether phorbol 12-myristate 13-acetate
(PMA) and ionomycin induced degranulation, the appearance of
lysosome-associated membrane protein 1 (LAMP-1, also known
as CD107a) at the cell surface was monitored with a directly labeled
Fab of CD107a monoclonal antibody and imaged by TIRF micro-
scopy, as described.?4! Approximately 15min after stimulation,
NKL cells acquired surface LAMP-1 staining, which appeared
in dynamic and dispersed clusters, and accumulated over time
(Supplementary Figure S1 and Supplementary Movie S1). Very little

LAMP-1 staining, as shown in Supplementary Figure S1A, was
observed without PMA and ionomycin stimulation. Treatment of
NKL cells with PMA and ionomycin increased the maximum fluores-
cence intensity (arbitrary units, AU) within the evanescent field from
28.4%3.2 in the absence of stimulation (control, n=9 cells) to
363.8+88.7 (PMA and ionomycin treatment, n=9 cells) (Supple-
mentary Figure S1B).

When NKL cells expressing GFP-FasL were stimulated with
PMA and ionomycin, as shown in Supplementary Movie S2, LG
approached the PM, appeared to dock and rapidly fused with the
PM, releasing a bright fluorescence cloud that diffused at the PM,
consistent with complete fusion. When an LG entered the TIRF
evanescent field (TIRF imaging plane), an increase of the total
fluorescence intensity of GFP-FasL was observed before fusion with
the PM (Figure 1a). The width of the single fluorescence intensity, as
indicated by the full-width at half-maximum (FWHM) of the
fitted Gaussian function, increased exponentially, whereas the total
intensity increased in a roughly linear manner, remained at a
plateau and then rapidly decreased as GFP-FasL diffused at the PM
(Figures 1b and ¢, and Supplementary Movie S2). The fusion event
resulted in the dispersion of the fluorescent signal radiating outwardly
from the point of LG contact (Supplementary Movie S2). Therefore,
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complete fusion of LG was observed after PMA and ionomycin
stimulation.

NKL cells were transfected with the LG cargo protein granzyme B
fused to DsRed and examined after PMA and ionomycin stimulation.
TIRF microscopy images revealed the appearance of DsRed-labeled
LG: the DsRed signal remained steady for a short time (usually
~500ms) and disappeared within ~100ms (Supplementary Figure
S2). This sudden drop of DsRed signal was faster than what could be
expected from the retrieval of a partially fused LG into the cytoplasm
(5-30's, our own observations) or the movement of an LG out of the
evanescent field without fusion (3-165s, our own observations). Taken
together, our data with GFP-FasL and granzyme B-DsRed indicate that
complete fusion of LG occurs in NKL cells.

Visualization of incomplete fusion by double labeling
of LG membrane and cargo protein
It would be difficult to identify incomplete fusion events using
GFP-FasL-labeled LG alone, as it would not be distinguishable from
docking followed by release from the PM without fusion. Therefore, to
test whether incomplete fusion occurs, NKL cells were co-transfected
with GFP-FasL (LG membrane protein) and granzyme B-DsRed (LG
cargo protein). As expected, granzyme B-DsRed and GFP-FasL fluor-
escence overlapped, indicating that these tagged molecules were
targeted to the same compartments (Supplementary Figure S3).
Moreover, stably transfected GFP-FasL also colocalized with per-
forin-containing lytic granules (Supplementary Figure S4), which
suggested that FasL, perforin and granzyme B represented a single
pool of lytic granules in NKL cells. Two groups of LG were observed
after stimulation with PMA and ionomycin. Thirty out of 55 LG (from
five cells) stopped moving during the 1-min observation period. This
group of LG was docked at the PM without fusion. The second group
of LG (25 out of 55) showed active movement and fluctuations in
fluorescence intensity of both DsRed and GFP during the 1-min
observation period. A typical sample of LG fusing to the PM (six
separate fusion events from 20 cells) is shown in Supplementary
Movie S3. Approach toward the PM was followed by a short period of
attachment (docking and priming), fusion and perpendicular move-
ment away from the PM (Supplementary Movie S3). We first classified
and analyzed this group. Figure 2a (granzyme B-DsRed) and Figure 2b
(GFP-FasL) show an example of an exocytic event. Figure 2¢ depicts a
diagram showing a possible pathway of incomplete LG fusion with the
PM. As an LG appeared in the TIRF evanescent field, we observed a
concurrent increase in fluorescence intensity in both the green and red
channel (Figures 2a, b and d). Figures 2d, e and f show the occurrence
over time of both the green and red images in the upper traces, which
are the total fluorescence profiles, FWHM and relative Z-position
(see Methods) of one single LG at different time points, respectively.
We dissected the exocytosis into six different periods. In period 1,
the LG enters the evanescent field, which is indicated by a synchronous
increase of total DsRed and GFP intensity (Figure 2d), FWHM
(Figure 2e) and a synchronous decrease of relative Z-position (relative
axial position of LG) to the PM (Figure 2f). Decreased Z-position
(perpendicular to the PM) indicated that the LG was approaching the
coverslips. In period 2, the LG was tethered to the PM for 400 ms
(docking and priming), which is indicated by a relatively constant
total intensity, FWHM and relative Z-position. In period 3, the LG
fused with the PM, which is indicated by a maximum in total intensity
and FWHM (Figures 2d and e) and closest proximity to the PM
(Figure 2f). In period 4, the subsequent decrease of total intensity in
this phase was probably due to release of the contents of LG or to
gradual movement of the LG out of the evanescent field. In period 5,
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which lasts about 1s, the Z-position, FWHM and total intensity are
relatively stable. In period 6, the LG escaped from the evanescent field
as indicated by a simultaneous decrease of total intensity and relative
Z-position. The peak intensity (see Methods) can serve as an effective
marker to monitor the diffusion of granule membrane protein.*?
To further characterize period 4, we measured the diffusion rate
(7) difference between the GFP-FasL and granzyme B-DsRed fluores-
cence by fitting the peak fluorescence intensity to a mono-exponential
function (see Methods) (Figure 2g). We observed that the decay of
membrane protein-FasL-GFP was considerably slower (1=472.77 ms)
than the released soluble granzyme B (t=133.23 ms) upon LG fusion
with the PM. These data indicate that incomplete fusion of LG occurs
in NKL cells.

Use of DsRed-FasL-pHluorin to analyze incomplete fusion of LG
We developed a more sensitive tool to validate the existence of
incomplete fusion events. A tripartite DsRed-FasL-pHluorin fusion
protein was generated and transfected into NKL cells. To test whether
DsRed-FasL-pHluorin was targeted properly to LG, fixed and permea-
bilized cells were stained with perforin antibody. DsRed-FasL-pHluorin
colocalized with perforin (Figure 3a). As expected, owing to the acidic
lumen of LG,*** pHluorin emission was very low in live cells. The
addition of ammonium chloride to raise the pH in LG resulted in a
strong pHluorin signal (Figure 3b and Supplementary Movie S4).

Figure 4a depicts how the fluorescence intensity of pHluorin
increases upon fusion of LG with the PM. In NKL cells expressing
DsRed-FasL-pHluorin and stimulated with PMA and ionomycin,
DsRed fluorescent spots appeared in the TIRF evanescent field and
preceded the appearance of pHluorin signal by a time interval that
varied from ~30ms to several seconds (~6-8s). After a first period
of DsRed fluorescence signal, pHluorin fluorescent spots appeared
without any apparent diffusion of either DsRed or pHluorin fluores-
cence, by dual-color TIRF imaging (Figure 4b and Supplementary
Movie S5). After the appearance of pHluorin, indicative of fusion pore
opening, a decrease in total intensity of DsRed and pHluorin was
observed (Figure 4c). The duration of DsRed and pHluorin signals
persisted for about 30s and was observed in four separate fusion
events (31.5 £ 5.95s), as shown in Figure 4c. In a separate group of four
fusion events, the dwelling time at the PM of DsRed and pHluorin was
much shorter (4.9 +0.46s) (Figures 4d and e). In one particular cell,
we were able to observe both a short and a longer dwelling time of the
incompletely fused granule (data not shown), which indicates that this
variability is determined by granule-intrinsic rather than cell-intrinsic
properties.

In agreement with our data using GFP-FasL, diffusion of FasL at the
PM, indicative of complete fusion, was also observed for some of the
LG in DsRed-FasL-pHluorin-expressing NKL cells (Supplementary
Figure S5 and Supplementary Movie S6).

The experiments described so far were carried out after stimulation of
the cell line NKL with phorbol ester and ionomycin, a combination that
induces strong calcium mobilization.*> This experimental system raised
two concerns. First, stimulation of NK cells through activation receptors
may result in a different usage of complete and partial fusion during
degranulation. Second, the cell line NKL may not have the same
properties as primary NK cells. To address both of these concerns,
primary NK cells, freshly isolated from human peripheral blood, were
nucleofected with DsRed-FasL-pHluorin. Despite very low transfection
efficiency, we were able to image resting NK cells expressing DsRed-
FasL-pHluorin. DsRed-FasL-pHluorin-positive compartments over-
lapped with perforin-containing granules, as shown by labeling of
fixed cells with anti-perforin antibodies (data not shown).
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Figure 2 Incomplete fusion of an LG labeled with GFP-FasL and granzyme B-DsRed. (a, b) Individual fusion event of an LG double labeled by granzyme
B-DsRed (a) and GFP-FasL (b), and imaged simultaneously with dual view on 605/50 and 525/50 channels, respectively. The scale bar is 0.75pum.
(c) Diagram showing a possible pathway of LG fusion with the PM. The evanescent field is illustrated by green bar. The membrane and content of LG are
illustrated by green and red colors, respectively. (d) Time course of total intensity of GFP-FasL- (right, green) and granzyme B-DsRed- (left, red) positive
single LG. (e) Corresponding with panel d, the FWHM of single vesicle was shown in GFP (right, green) and DsRed (left, red). (f) The plots of relative vertical
z-position of LG in GFP (right, green) and DsRed (left, red) was shown as a function time, respectively. The number ‘0" in the relative z-position indicates the
closest proximity to the PM. (g) Comparison of diffusion rate of GFP-FasL (green) and granzyme B-DsRed (red). A single exponential fit (dashed line) to the
fluorescence decay after fusion reveals time constants (z) of 472.77 ms for GFP-FasL and 133.23 ms for granzyme B-DsRed. The vertical dashed lines
indicate six distinct phase of LG fusion, according to changes in fluorescence intensity and relative Z-position. Images are representative of at least six fusion
events observed from 20 cells in three independent experiments.

Transfected primary NK cells were deposited on coverslips to which ~ been attached. (Stimulation of primary human NK cells through
the Fc fragment of human IgG1 (a ligand for activation receptor CD16)  CD16 and LFA-1 results in polarized degranulation.*®) As a control,
and intercellular adhesion molecule-1 (ICAM-1, a ligand for LFA-1) had  transfected primary NK cells were attached to poly-1-lysine-coated
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Figure 3 Colocalization of DsRed-FasL-pHluorin with perforin in NKL cells. (a) Confocal image of a paraformaldehyde-fixed NKL cell showing the distribution
of DsRed, pHluorin and perforin. Human NKL cells were attached on the poly-L-coated slides for 10 min at 37 °C, fixed, permeabilized and stained with
mouse monoclonal antibody IgG2b against human perforin and followed by goat anti-mouse 1gG2b secondary antibody conjugated with Alexa Fluor 647 dye.
The scale bar is 5.0 um. (b) Confocal image of DsRed-FasL-pHluorin in a live cell after the addition of 500 mm ammonium chloride (pH 7.4). The images are
representative of at least 50 cells in two independent experiments. The scale bar is 5.0 um.

coverslips. Images were acquired at 33 frames per second. There was
no detectable pHluorin fluorescent signal at the position correspond-
ing to DsRed fluorescence, under simultaneous dual-color TIRF
imaging, in unstimulated control cells, indicating that no fusion
pore opening took place (Supplementary Figure S6). The number
of individual fusion events observed with and without stimulation

Immunology and Cell Biology

with physiological ligands of activation receptors was determined.
No fusion event was observed in 13 unstimulated NK cells, and 12
fusion events were observed in eight NK cells after stimulation by
physiological ligands Fc and ICAM-1. Each cell was imaged for 1 min
at 2000 frames per min. Despite the lack of degranulation in
unstimulated cells, a total of 65 granules have been detected at the
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Figure 4 Incomplete fusion of an LG labeled with DsRed-FasL-pHluorin. (a) This diagram shows that the fluorescence intensity of pHluorin increases upon
LG fusion with the PM. (b) Selected frames are shown from time-lapsed live imaging for a single LG. Times indicated are relative to the onset of fusion
(appearance of pHluorin fluorescence, shown by an arrow on both pHIluorin and DsRed channels). Dual-color images were acquired simultaneously by TIRF
microscopy equipped with GFP/DsRed dual-view microimager. The scale bar is 1.5 um. (c) Time course of relative pHluorin and DsRed fluorescence intensity
were plotted from approaching/docking (appearance of DsRed) to vesicle escaping from evanescent field (disappearance of DsRed). The vertical dashed lines
indicate the distinct phases of LG according to the change of DsRed and pHIluorin fluorescence intensity. Images are representative of at least three fusion
events observed from 11 cells in two independent experiments. (d) Selected frames are shown from a time-lapsed imaging of a single LG during fusion. The
pHluorin fluorescent spots indicating single LG (top panel) and the corresponding position of DsRed signals (bottom panel) are shown as a function of time.
Dual-color images were acquired simultaneously by TIRF microscopy equipped with GFP/DsRed dual-view microimager. The scale bar is 1.0 um. (e) Time
course of mean fluorescence intensity of pHluorin (left, green) and DsRed fluorescence (right, red) intensity were plotted, respectively. Images representative
of at least four fusion events observed from 11 cells in two independent experiments.
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PM. (Some lytic granules are at the PM of resting NK cells.?’) Not a
single one underwent fusion, as shown by a steady signal of DsRed in
the absence of a pHluorin signal (Supplementary Figure S6). The
unfused granule eventually left the TIRF field, as shown by the gradual
loss of DsRed signal at the end of the recording (Supplementary Figure
$6). We conclude that the granule fusion events observed are the result
of ligand-induced stimulation.

After addition to lipid bilayers carrying ICAM-1 and IgGl Fc
and image acquisition at 33 frames per second, different types of
fusion events were observed (Figure 5). Upon complete fusion,
the pHluorin signal appeared, remained steady for ~60ms and
disappeared within ~100ms (Figure 5a). The width of the single
fluorescence intensity, as indicated by the FWHM of the fitted
Gaussian function, increased rapidly before the loss of signal,
which indicated that FasL diffused at the PM (Figure 5b). Upon
incomplete fusion, similar to NKL cells, two different kinetics of
DsRed and pHluorin fluorescence signal over time in primary NK cells
upon LG fusion were observed. In a group of six fusion events from
eight cells, the dwelling time at the PM of DsRed and pHluorin was
about 5s (4.5511.19s). A representative sample is shown in
Figure 5c. In a separate group of three incomplete fusion events
from eight cells, both DsRed and pHluorin signals remained steady for
about 235 (23.66 £4.07s). In the example shown in Figure 5d, there
was no apparent diffusion of DsRed and pHluorin. Therefore, LG
displayed incomplete fusion in primary NK cells activated by physio-
logical receptor-ligand interactions.

DISCUSSION

CTLs and NK cells kill target cells by polarized release of the content of
LG at immunological synapses.>®> To date, the precise steps of LG
fusion in cytotoxic lymphocytes such as CTL and NK cells have not
been imaged in live cells. In this study, we describe the development of
tools to examine LG fusion events at the PM. By specifically labeling
LG with fluorescently tagged proteins, we observed that LG use two
distinct modes—complete and incomplete fusion—to fuse with the
PM. We have generated a triple fusion protein, consisting of DsRed-
FasL-pHluorin, as a novel approach to image LG fusion events.
pHluorin does not emit fluorescence at acidic pH.>® Upon fusion
with the PM, the pHluorin signal increases owing to exposure to the
neutral extracellular pH, thereby providing a specific and very rapid
readout for exocytosis. At the same time, DsRed in the cytosolic tail
provides a marker to monitor lateral or perpendicular movement of
LG at the PM.

Multiple steps are required for the fusion of LG with the PM,’
including transport of LG to the PM, tethering to the PM, and
priming and fusion with the PM. By labeling the lumen of LG with
granzyme B-DsRed and the LG membrane with GFP-FasL, we could
dissect distinct steps in LG fusion with the PM. During transport, as
shown in Figure 2, the fact that the relative Z-position decreased,
whereas the peak intensity and total intensity increased, suggested that
the LG approached the PM. During a brief tethering phase, there was
no detectable movement of LG perpendicular to the PM (that is, no
change in Z-position). This period is similar to the docking phase for
vesicles in neurons and endocrine cells.*>*” We also observed a small
and short plateau of peak intensity and total intensity in both GFP-
FasL and granzyme B-DsRed signals. Furthermore, the FWHM
remained constant, which indicated that GFP-FasL and granzyme B-
DsRed were not diffusing into the PM during the tethering phase. In
addition, the relative Z-position of the LG gradually approached the
position where the evanescent field was greatest. At that point, the LG
is probably docked at the PM. In the fusion phase, the total intensity,
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peak intensity and FWHM reached their maximal value. In the
following phase, the exponential decay of the DsRed peak fluorescence
signal and the exponential, but partial, decay of GFP peak fluorescence
intensity could result from gradual movement out of the evanescent
field or by release of LG cargo protein into extracellular space and
diffusion of some of LG membrane protein FasL on the PM. The rate
of decay of granzyme B-DsRed signal was greater than that of GFP-
FasL, implying that granzyme B-DsRed was indeed released. The
remaining GFP and DsRed fluorescence signals were stable for about
a second, before their synchronous decline and disappearance, sug-
gesting movement out of the evanescent field. The partial fusion mode
of LG in NKL cells described here is reminiscent of ‘kiss and run’
exocytosis in synaptic vesicle release.3>48-30

To obtain stronger evidence for an incomplete fusion mode, a
DsRed-FasL-pHluorin fusion protein was expressed in NKL cells. In
this case, appearance of pHluorin fluorescence corresponded to fusion
pore opening and neutralization of the pH. We observed that
pHluorin and DsRed signals could persist on the same LG for up to
305 after fusion (in four out of eight incomplete fusion events), which
is reminiscent of the ‘kiss and stay’ pathway in neurotransmitter
release.>! We also observed shorter concurrent appearance of pHluorin
and DsRed fluorescence signals (~5s) upon incomplete fusion.
In some cases, vesicles did not appear to pause for docking and
priming before fusion, which is reminiscent of ‘Crash fusion’ in
embryonic chromaffin cells.>? Overall, our results suggest that small
fusion pores may form, which hinder diffusion of vesicle membrane
protein on the PM, as observed recently during exocytosis of post-
Golgi vesicles.>®

The complete and incomplete modes of fusion occur also in
primary NK cells receiving physiological activation signals, as we
were able to observe them in resting NK cells transfected with
DsRed-FasL-pHluorin, and stimulated by ligands of CD16 and
LFA-1. Incomplete fusion events in NK cells are most likely not
due to weak activation signals, as they were observed in NKL cells
stimulated with PMA and ionomycin, a stimulus known to induce
maximum calcium mobilization.4> Furthermore, they occurred also
in resting, primary NK cells stimulated through CD16, which
is known to induce strong degranulation in primary NK cells.%®
Incomplete fusion events, with limited LG membrane protein diffu-
sion on the PM, may explain the stable clusters of exocytosed LAMP-1
molecules observed on live degranulating NK cells in the absence of
granule polarization.?’

The existence of incomplete fusion of synaptic vesicles at neurolo-
gical synapses is generally accepted.>® Cytotoxic lymphocytes, includ-
ing CTL and NK cells, may share similar molecular mechanism for
vesicle fusion with neuronal cells.?®343> Incomplete fusion could be a
useful mechanism for rapid and efficient recycling of LG membrane in
cytotoxic lymphocytes.?” Ultimately, it will be interesting to discover
how fusion modes vary in NK cells under different physiological
stimulation conditions.

METHODS

NK cells

The human NK cell line NKL was cultured in RPMI medium 1640 (Gibco,
Grand Island, NY, USA) containing 10% fetal calf serum, 1% Lr-glutamine, 1%
sodium pyruvate and 200 Uml~! recombinant interleukin (IL)-2 (National
Cancer Institute-FCRDCM, Frederick, MD, USA). Primary NK cells were
isolated from human peripheral blood by negative selection with an NK
isolation kit (Stemcell Technologies Inc., Vancouver, BC, Canada) and were
>99% CD3~ CD56". Freshly isolated NK cells were resuspended in Iscove’s
modified Dulbecco’s medium (Invitrogen, Carlsbad, CA, USA) supplemented
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Figure 5 Fusion of LG labeled with DsRed-FasL-pHluorin in primary NK cells. (a) Selected frames are shown from a time-lapsed imaging of a single
LG during fusion. Times indicated are relative to the onset of fusion (appearance of pHluorin fluorescence). Images are representative of three fusion events
observed from eight cells in two independent experiments. The scale bar is 2.0 um. (b) Three-dimensional plot images of four different time points (O, 30,
60 and 90ms) from (a) are shown to illustrate the change of FWHM as a function of time. The pixel-based intensity values are plotted from a range of
900-980 counts. The intensity of images is shown as a color-coded scale. Each plot is scaled by its respective minimum and maximum intensity values.
Note the maximum of FWHM at time point of 90ms, which indicates the diffusion of FasL on the PM. (c) and (d) Two representative fusion events
displaying either a short (c) or a long (d) dwelling time of pHluorin and DsRed signals are shown. Selected frames are shown from a time-lapsed live imaging
of single LG during fusion with the PM. The pHluorin fluorescent spots indicating fusion pore opening (top panel) and the corresponding position of DsRed
signals (bottom panel) are shown as a function of time. Dual-color images were acquired simultaneously by TIRF microscopy equipped with GFP/DsRed
dual-view microimager. Images representative of nine fusion events observed from eight cells in two independent experiments. The scale bars are 2.0 um.
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with 10% human serum (Valley Biomedical, Winchester, VA, USA) without
IL-2, and were used within 2 days.

Reagents

Degranulation by NKL cells was triggered with 100 nm PKC activator PMA
(Sigma-Aldrich, St Louis, MO, USA) and 3 mm calcium ionophore ionomycin
(Sigma-Aldrich). Human IgG1 Fc was fused to a 6-histidine amino-acid tag
and purified from the supernatant of transfected 293T cells over ProBond
Nickel-chelating Resin (Invitrogen), as described.?” Human ICAM-1 protein
(R&D Systems, Minneapolis, MN, USA) and IgG1 Fc were coated on coverslips
in 100 mm sodium bicarbonate (pH 9.2) at 10 pgml~! at 4 °C overnight. Fetal
bovine serum (5%) in culture medium was used to block nonspecific binding,
as described.”® The following monoclonal antibodies were used: anti-CD107a
(clone H4A3; BD Bioscience, San Diego, CA, USA) and anti-perforin (clone
3GY; Pierce Chemical Co., Rockford, IL, USA).

DNA construct of pHluorin-FasL-DsRed and DsRed-granzyme B
The plasmid for human GFP-FasL fusion protein (a gift from G Griffiths,
Cambridge, UK) has been described.* To generate a granzyme B-DsRed
fusion protein, total RNA was extracted from NK92 cells with RNeasy Mini
Kit (Qiagen, GmbH, Hilden, Germany), and a human granzyme B cDNA
was generated by reverse transcription-polymerase chain reaction (PCR) with
the forward primer 5-AAGGCCTCTGTCGACATGCAACCAATCCTGC
TTCTG-3" and reverse primer 5-AGAATTCGCAAGCTTGTAGCGTTTCA
TGGTTTTCTT-3". The PCR product was digested with Sall and HindIIl
and inserted into pDsRed-Monomer-N in-Fusion Ready vector (Clontech
Laboratories, Mountain View, CA, USA).

The pHluorin-FasL-DsRed fusion protein was constructed as follows:
human FasL was amplified by PCR from the GFP-FasL ¢DNA using the
forward primer 5-TGCAGTCGACGGTACCATGCAGCAG-3’, which includes
a Sall site, and the reverse primer 5-ATATGGATCCTGCTGCGGCCGC
GAGCTTATATAAGCCGAAAAACGTCTG-3’, which includes NotI and BamHI
sites. The PCR product was cloned into TOPO TA Cloning vector (Invitrogen)
and verified by sequencing. The Sall-BamHI insert was cloned into Sall-
BamHI-digested DsRed-monomer-Cl vector (Clontech Laboratories). This
resulted in the insertion of a 17-amino-acid long linker between DsRed and
FasL, identical to the one in GFP-FasL. The pHluorin coding sequence was
amplified from a vesicle-associated membrane protein 2-pHluorin plasmid
(gift from G Miesenbock, Yale University, New Haven, CT, USA)38 using the
forward primer 5-ATATGCGGCCGCCAGCGGCGGAAGCGGCGGGACCGG-3,
which included a Nof site, and the reverse primer 5-ATATGGATCCTCTAG
ATTAACCGGTTTTGTATAGTTCATC-3’, which included a BamHI site.
The pHluorin PCR product was cloned into the TOPO TA Cloning vector
and verified by sequencing. The NotI-BamHI fragment was inserted into
Notl-BamHI-digested DsRed-FasL vector. The boundary between FasL and
pHluorin includes three alanines encoded by the Nofl site and the original
9-amino-acid-long, serine-glycine-rich linker from the vesicle-associated mem-
brane protein 2-pHluorin fusion construct.

Transfection of NK cells

NKL cells were transfected with Amaxa nucleofection technology (Amaxa,
Cologne, Germany). Briefly, 2x 10% NKL cells and 4.0 pg DNA construct were
resuspended in solution nucleofector kit V and transfected using O-17
program. After transfection, cells were transferred into six-well plates at
37 °C. Images were acquired 12-24h after transfection. Human primary NK
cells were transfected with Amaxa nucleofection technology. Briefly, 3.0x10°
NK cells and 6.0 pg DNA were resuspended in human NK cells nucleofector
solution and transfected using U-001 program. After transfection, cells were
transferred into pre-warmed opTimizer CTS T-cell expansion SEM (Invitro-
gen) containing 1Uml™! rIL-2 (Roche, Basel, Switzerland) and 10ngml~!
recombinant IL-15 (PeproTech Inc., Rocky Hill, NJ, USA). NK cells were
cultured <12h with low-dose IL-15 as a survival factor.>’

Fixation and permeabilization of NKL cells
NKL cells were fixed with 4% freshly prepared paraformaldehyde for 15-30 min
at room temperature (RT), washed with phosphate-buffered saline (PBS) for
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three times. Cells were permeabilized in 0.5% Triton X-100 and 10% normal
donkey serum in PBS for 30 min at RT. Cells were stained with anti-perforin
monoclonal antibody mouse IgG2b (clone 8GY; Pierce Chemical Co.) for
60 min at RT. The primary antibody was diluted with 0.05% Triton X-100 and
3% normal donkey serum in PBS (1:333 dilution). After three washes in PBS,
cells were incubated for 1h at RT with appropriate secondary antibodies in
0.05% Triton X-100 and 3% normal donkey serum in PBS. Secondary antibody
used was Alexa Fluor 647-conjugated goat anti-mouse IgG2b (1:1000 dilution)
(Molecular Probes, Eugene, OR, USA).

Confocal microscopy

Confocal images were collected on a Zeiss LSM510 Meta Confocal microscope
using a plan apochromat x63/1.4 oil-immersion objective. GFP-FasL and
pHluorin were excited by 488 nm excitation wavelength (argon/krypton) and
collected at the emission wavelength of 530 nm. DsRed was excited at 543 or
488 nm excitation wavelength (helium/neon) and collected at 620 nm emission
wavelength. Differential interference contrast images were collected simulta-
neously with the fluorescent images. Multi-track acquisition mode was used to
avoid crosstalk between the different fluorophores.

TIRF microscopy

TIRF images were acquired using an Olympus inverted IX-81 microscope
equipped with a Xenon-arc lamp as light source, shutter and filter wheels
equipped with appropriate excitation and emission filters, ASI MS-2000
controller (Applied Scientific Instrumentation Inc., Eugene, OR, USA) motor-
ized stage for xyz movements, electron-multiplier charge-coupled devices
(Photometrics Casade 11:512, Roper Scientific Inc., Tucson, AZ, USA),
Olympus TIRF module and lasers launched in a single mode fiber via an
acoustic-optical tunable filter (NEOS Technologies, Melbourne, FL, USA). The
100x 1.45 NA TIRF objective from Zeiss (Zeiss, O plan-Fluar x100/1.45 oil) was
used for TIRF experiments. TIRF illumination was provided by the 488 nm line
of an argon laser (Laser Physics, Salt Lake City, UT, USA). The hardware on the
microscope was controlled by the Metamorph software (Molecular Devices,
Downingtown, PA, USA).

Image acquisition and analysis

Images were acquired using the electron-multiplier charge-coupled devices and
analyzed with Image Pro Plus 6.1 software (Media Cybernetics, Sliver Spring,
MD, USA). The 488 nm laser line was selected using acoustic-optical tunable
filter for simultaneous illumination of pHluorin and DsRed using a GFP/
DsRed dual-view microimager (Optical Insights, Tucson, AZ, USA). The total
intensity of a single vesicle was computed by integrating the background-
subtracted intensity over a circle (approximately 1.0 pm diameter) that centered
on the selected vesicle. To obtain the peak intensity, we fitted the radial intensity
distribution I(r) of LG with a nonlinear Levenberg—Marquardt routine to the
Gaussian:*?

I(r) =BG+ exp( — 1*/w?),

where r is the distance of each pixel to the center of mass. The fitting
parameters are I, w and BG, where I, is the peak intensity, BG is the
background intensity and w is the measure of the width (the Gauss width).
The relative movement in the Z-position (AZ,) from time point (n—1) to (n)
can be calculated from the following formula:*® AZ,=—dIn (F,—F,_;), where
F, and F,_; are background corrected fluorescence at time point (1) and (n—1)
and d is the penetration depth. The penetration depth of the evanescent field
was calculated as ~87nm, assuming a cell refractive index of 1.37. The
penetration depth was calculated according to the equation: d=A/4n
[(NA;A2—n,A2)]Y2, in which A is the wavelength of light and NA;=n, sina
is the numerical aperture of incidence; n, is the refractive index of the cell
(typically n,=1.37). The single of LG was characterized by its total intensity,
FWHM, relative Z-position and peak intensity. In some experiments, to
illustrate the three-dimensional appearance of single fluorescent spot, we fitted
the single fluorescent spot with a two-dimensional Gaussian function, as
described.?””® The results of this fit yielded the integrated intensity,
background and FWHM.
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