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A B S T R A C T   

Stakeholders need data on health and drivers of health parsed to the boundaries of essential policy-relevant 
geographies. US Congressional Districts are an example of a policy-relevant geography which generally lack 
health data. One strategy to generate Congressional District heath data metric estimates is to aggregate estimates 
from other geographies, for example, from counties or census tracts to Congressional Districts. Doing so requires 
several methodological decisions. We refine a method to aggregate health metric estimates from one geography 
to another, using a population weighted approach. The method’s accuracy is evaluated by comparing three 
aggregated metric estimates to metric estimates from the US Census American Community Survey for the same 
years: Broadband Access, High School Completion, and Unemployment. We then conducted four sensitivity 
analyses testing: the effect of aggregating counts vs. percentages; impacts of component geography size and data 
missingness; and extent of population overlap between component and target geographies. Aggregated estimates 
were very similar to estimates for identical metrics drawn directly from the data source. Sensitivity analyses 
suggest the following best practices for Congressional district-based metrics: utilizing smaller, more plentiful 
geographies like census tracts as opposed to larger, less plentiful geographies like counties, despite potential for 
less stable estimates in smaller geographies; favoring geographies with higher percentage population overlap.   

1. Introduction 

Most public health practice conceptual models begin with using data 
to describe a public health challenge, often with the premise that data 
should be parsed as close to the area of focus as possible (McNabb et al., 
2002) to increase the timeliness and appropriateness of the proposed 
response. However, though health-related data are currently widely 
available for states, (America’s Health Rankings, 2022) counties 
(County Health Rankings and Roadmaps, 2023) and—more recen
tly—cities,(Gourevitch et al., 2019), US Congressional Districts (CDs) 
are a salient example of a policy-relevant geography that lacks data 
(Eberth et al., 2019; Mansfield et al., 2007; Siegel et al., 2015). Although 
sociodemographic and some social determinants of health data are 
available from the US Census for CD populations (U.S. Census Bureau, 
2023), these data often lag the redistricting of new CD boundaries by a 

year or more, causing spatial and temporal misalignment in available CD 
data. Furthermore, recent ongoing shocks to the job market and 
educational systems related to the SARS COV-2 pandemic have caused 
more volatility in these metrics than is normal. Looking beyond the US 
Census, data on specific measures of health are not usually collected at 
the CD level. For example, vital statistics measures like cardiovascular 
disease death rate, cancer mortality, and firearm deaths, and measures 
of the prevalence of chronic diseases like diabetes or hypertension, are 
rarely available for CDs. 

To fill this gap, researchers need generalizable methods to generate 
estimates at the CD level, as well as for other US administrative geog
raphies. Generating these estimates requires geospatial methods that 
aggregate metric estimates originally calculated for other geographic 
areas into CD estimates using rigorous processes to maintain accuracy. 
These methods, which sum population-weighted estimates from 
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component geographies, have their roots in demography research 
(Wright, 1936; Wu et al., 2005), and have been used to generate CD 
estimates for life expectancy and opioid overdose metrics, among others 
(Islami et al., 2023; Rolheiser et al., 2018; Takai et al., 2022; Zhang 
et al., 2014). Similar methods have also been used to aggregate index 
values from census tracts to ZIP codes (Noelke et al.). Still, they remain 
outside of mainstream methods for estimating and validating a wide 
range of policy-relevant health metrics for CDs and other administrative 
geographies. This may be in part because aggregating metric estimates 
from one geography to another requires numerous methodological de
cisions, including identifying the most appropriate component geogra
phies, applying systematic approaches to accommodate missingness in 
component geographies, and addressing imperfect population overlap 
between component and target geographies. 

To address this need for CD-level health-related data, and to support 
the release of an online Congressional District Health Dashboard 
(CDHD)(Dashboard Team, 2023b), we refined a method to aggregate 
census tract and county-level metric estimates into CD metric estimates 
using the most recent available years of county and census tract data. We 
have presented these metric estimates on the CDHD (www.congression 
aldistricthealthdashboard.org). The goal of the present article is to 
summarize our methods and perform sensitivity analyses to evaluate the 
validity of aggregated estimates. We do so by comparing a subset of 
metric estimates, aggregated using ACS county and census tract data 
from the 116th congress, to ‘gold standard’ CD-level estimates drawn 
directly from ACS for the same timeframe. 

2. Material and methods 

2.1. Deriving CD estimates 

Our method for aggregating CD-level estimates from imperfectly 
nested component geographies (census tracts and counties) accounts for 
heterogeneous population distributions better than methods based 
exclusively on geographic overlap (Holt et al., 2004; Liu & Martinez, 
2019; Rolheiser et al., 2018; Schroeder, 2017; Wilson & Mansfield, 
2012). Population counts from census blocks, the smallest available 
census geography, are used to population-weight estimates before then 
being re-aggregated to fit the boundaries of the target geography. Our 
sample includes all 435 congressional districts plus the District of 
Columbia (using boundaries from the 116th US Congress), as aggregated 
from county (n=3,143) and census tract (n=73,050) geographies 
defined by the 2010 Census. 

To aggregate metric estimates, we first create two population 
crosswalks between component geographies and target geographies 
(CDs). One crosswalk was created to define the relationship between 
census tract and CD populations; the second was created to define the 
relationship between county and CD populations. We identified the 
smallest component geography that perfectly nests in tracts, counties 
and CDs, census blocks. We use census blocks to create a relationship 
between tracts and CDs, or counties and CDs. Then, we calculate the 
overlapping population count for a given tract-CD or county-CD rela
tionship, which equals the sum of the population of the blocks assigned 
to both geographies. 

Using these population crosswalks, we then create population 
weights. Different weights are calculated depending on whether the 
metric unit is count or percentage. In both instances, population counts 
from tracts or counties with missing metric estimates are dropped from 
the numerator and denominator in the weight calculation. 

When aggregating count metrics, we create population weights by 
dividing the overlapping population count (from the population cross
walk) by the population count of full component geography (tract or 
county). Count values need only be weighted by the proportion of the 
component geography population that overlaps with the target geog
raphy population, to approximate what proportion of the individuals 
residing in that component geography contribute to the target 

geography (Equation One). When aggregating percent estimates, we 
create population weights by dividing the overlapping population count 
(from the population crosswalk) by the full target population count. For 
percent values it is necessary to weight by the proportion of the target 
geography contained in the component geography, to approximate what 
proportion of the target geography percentage estimate should come 
from the component geography (Equation Two). 

We multiply the population weight by the tract or county metric 
estimate, then sum all weighted estimates to calculate the final CD es
timate for the metric of interest (Equation Three). 

Equation One: Calculating Population Weights for Aggregating 
Count Values 

Pcomponent geography|CD i =
Popcomoponent geography|CD i

Popcomponent geography i  

where:  

• P represents the population weight for the component geography (i) 
• Popcomponent geography|CD i represents the component geography pop

ulation (i) that overlaps with the target geography (CD) population 
• Popcomponent geography represents the full component geography pop

ulation (i) 

Equation Two: Calculating Population Weights for Aggregating 
Percent Values 

Pcomponent geography|CD i =
Popcomponent geography|CD i

PopCD  

where:  

• P represents the population weight for the component geography (i) 
• Popcomponent geography|CD i represents the component geography pop

ulation (i) that overlaps with the target geography (CD) population  
• PopCD represents the full CD population (i) 

Equation Three: Calculating Aggregated Estimates 

EstCD =
∑n

i=1
Est(component geography i) ∗ Pcomponent geography|CD i  

where:  

⁃ Est represents the metric estimate (count or percentage) for the 
component geography (i)  

⁃ n represents the number of component geographies overlapping with 
the CD  

⁃ P represents the population weight for the component geography (i) 

2.2. Selection of comparison metrics 

To evaluate the accuracy of the aggregated estimates, we focus on 
three metrics produced by ACS and compare our aggregation results to 
CD estimates from ACS. CD estimates for other metrics are not available 
for comparison. Though the ultimate goal of this work was to create 
estimates for 118th Congress geographies, the validation analyses pre
sented here used metrics from 116th Congress geographies (and 2019 
tracts or counties for aggregation calculations) to enable these com
parisons; at the time of analysis, ACS had not released 118th Congress 
CD metric estimates. We also aggregate and validate metric estimates for 
racial/ethnic subgroup populations to validate methods for smaller 
population subgroups (see Supplemental Table 1 for definitions of race/ 
ethnicity variables). 

We utilize three metrics: percentage of population aged ≥ 25 with a 
high school diploma or higher degree (high school completion), per
centage population aged ≥ 16 years that was unemployed but seeking 

B.R. Spoer et al.                                                                                                                                                                                                                                 

http://www.congressionaldistricthealthdashboard.org
http://www.congressionaldistricthealthdashboard.org


SSM - Population Health 24 (2023) 101511

3

work (unemployment), and percentage population with a high-speed 
broadband internet connection (broadband access). See Supplemental 
Table 1 for specific metric definitions. These three metrics represent 
social determinants of health, and differences in their distributions help 
demonstrate the flexibility of the utilized aggregation methods. Specif
ically, among ACS metrics calculated for the CDHD, broadband access 
had the largest range between urban and rural areas, unemployment had 
the lowest prevalence, and high school completion had the largest range 
across racial/ethnic subgroups. Component data were provided by ACS 
for the 116th Congress, or the timeframe consistent with the 116th 
(2019). These data are not contemporaneous with our current 
congressional session (118th Congress as of this writing), but are the 
most recent data available from ACS for CDs, counties, and census tracts. 
The data available on the CDHD are aligned with the 118th CD 
boundaries, and we update the website’s estimates as CD boundaries are 
redrawn. 

3. Calculation 

3.1. Sensitivity analyses 

We perform sensitivity analyses to validate the aggregation method 
and optimize the rigor of our CD estimates. We calculate summary 
measures (mean, median, standard deviation (SD)) for derived esti
mates. Differences between ACS and derived estimates were assessed 
using mean absolute difference, median absolute difference, and root 
mean square error (RMSE). These measures of difference are frequently 
utilized when comparing geospatially aggregated estimates to ACS 
values(Liu & Martinez, 2019; McVeigh et al., 2016; Schroeder, 2007; 
Zoraghein & Leyk, 2018). We also calculate minimum and maximum 
error, and IQR of error, to characterize the full error distribution. 

The first of four sensitivity analyses focuses on metric estimates 
expressed as percentages. For a subset of demographic subgroups in each 
of our selected measures, percentage variables are not directly available 
from ACS, requiring analysts to decide between aggregating numerator/ 
denominator counts and calculating the percentage at the CD-level vs. 
aggregating percentages from the component geography. For each 
metric we first aggregate the numerator and denominator from tract to 
the CD-level, and then calculate the final percentage metric estimate at 
the CD-level. We then also calculate the percentage for each metric es
timate at the tract-level and aggregate those tract percentages to the CD- 
level. Estimates from each calculation method were compared against 
ACS 116th CD values in an effort to validate metric estimates. 

Our second sensitivity analysis assesses whether utilizing census 
tracts or counties as our component geography produced more accurate 
aggregated estimates. Our aggregation method assumes that the 
outcome we measure in a given metric is uniformly distributed across 

the start geography. Larger geographic areas (e.g., counties) with larger 
populations may demonstrate increased variation across space, poten
tially violating this assumption. Additionally, counties require more 
population weighting than do census tracts to fit into CDs (Fig. 1). 
Conversely, estimates for smaller geographies (e.g. tracts) may be less 
reliable because of statistical ‘noise’ introduced by modeled estimates or 
imprecision in estimates generated using smaller sample sizes. To 
determine which component geographies produced more accurate es
timates, we compare estimates aggregated using either county or tract to 
ACS estimates (see Fig. 2). 

Our third sensitivity analysis assesses whether the accuracy of 
aggregated estimates is affected by the extent to which component ge
ography population (census tract or county) overlaps with CD popula
tion. We calculate population overlap by averaging the component 
geographies’ population weights (i.e. proportion of component geog
raphy population contained in the target CD) across each CD(Rolheiser 
et al., 2018). A value of one indicates 100% of the component geog
raphy’s population also resided in the CD. Lower values indicate the 
component geographies’ population was less completely nested within 
the CD. We divide CDs into population overlap quartiles and compare 
CD estimates within each quartile to ACS estimates. 

Our fourth, and final, sensitivity analysis evaluates whether missing 
component geography estimates affect the accuracy of aggregated CD 
estimates. Though missingness is rare in ACS data, it is more common in 
other publicly available health-related datasets. Missingness was eval
uated for both tract- and county-to-CD aggregation. We induce random 
tract or county missingness, and then compare estimates aggregated 
with induced missingness to ACS estimates. For each metric, we sample 
10% of CDs, representing an equal distribution of CDs across urbanicity 
categories (Dashboard Team, 2023a) that were not missing estimates for 
any component geographies (n=48). Component geography missingness 
is then randomly induced for each of these CDs so that x% of component 
geography estimates are artificially set to missing, x% being an 
increasing percentage of the component geography’s population, 
ranging from 5% to 50%, in 5% increments, to simulate varying levels of 
population missingness. Then we aggregate a new estimate from the 
component geography estimates that includes induced missingness. This 
process was repeated 50 times for each x% threshold to create a sample 
of 50 aggregate estimates per CD in which x% of the component geog
raphy estimates are missing at random. The estimates calculated with 
induced missingness are compared to CD estimates calculated using ACS 
congressional district data. 

4. Results 

Table 1 presents two categories of CD estimates for the three ACS 
metrics; the first is drawn directly from ACS, the second displays 

Fig. 1. County and Census Track nesting within Congressional Districts: an illustration  
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aggregated estimates produced using percent estimates, with tracts as 
the component geography. Aggregated estimates were very similar to 
ACS estimates, with a mean absolute error less than 1.4 percentage 
points, median absolute error less than 1.0, and RMSE less than 2 per
centage points. Minimum and maximum error and IQR of error highlight 
that there are error outliers, especially among subgroups, but error 
values (those within the IQR) are generally small. Error values for each 
metric for the entire distribution of aggregated estimates are visible in 
Figure Two, using the percent aggregation method. 

In the first sensitivity analysis we explored whether calculating 
percentage estimates at the CD level after aggregation of count values 
produced more or less accurate estimates than calculating percentage 
estimates at the tract level and then aggregating. The minimum and 
maximum error and IQR of error metrics follow a similar pattern to that 
described above-there are some large minimum and maximum values, 
especially among smaller population subgroups, and the IQR of error 
tends to be similar in size to measures of central tendency (Supplemental 
Table 2). Both methods produced estimates very similar to ACS 
estimates. 

In the second sensitivity analysis we evaluated whether deriving CD 
estimates from tracts or counties produced values closer to ACS esti
mates. Summary statistics were similar to ACS estimates across metrics, 
subgroups, and component geographies (Table 2a). Across metrics, 
median absolute error was generally higher for county-derived estimates 
for broadband access and high school completion, but similar between 
tract and county for unemployment. Minimum and maximum error were 
sometimes high, especially among smaller subgroup populations, but 
IQR of error was generally smaller. IQR of error was larger when 
aggregating from counties than from tracts. 

In the third sensitivity analysis, we explored whether population 
overlap between component geographies (census tracts and counties) 

and CDs impacted aggregated CD estimate accuracy, stratified by pop
ulation overlap quartile. In general, tracts overlap very well with CDs, 
while there is more variation in population overlap between counties 
and CDs (Fig. 3). Results for tracts are displayed in Table 2b, and for 
counties in Table 2c. Differences across population percentage overlap 
quartiles were overall small for high school completion for tracts, but 
somewhat larger for counties. For unemployment, median absolute 
error and IQR of error decreased as population overlap quartile 
increased for county-derived estimates, and fluctuated across quartiles 
for tract estimates. As with high school completion, error for unem
ployment and broadband access was larger for county than for tract. In 
the lowest population overlap quartile for county-derived broadband 
access estimates, median absolute error was 4.2 and IQR of error was 
0.73; these are among the largest error values produced by these ana
lyses, yet are still below 5. 

For all tract-derived metrics, measures of error tended to be low and 
similar across quartiles, with a slight decrease in error measurements as 
population percentage overlap quartiles increased. Mean absolute error 
and RMSE were not significantly larger than median standard error, 
indicating minimal outliers. Unlike tract-derived estimates, all measures 
of error for county-derived metrics exhibited a gradient, with CDs in 
lower quartiles of population percentage overlap (where component 
geography population comprised smaller proportions of the CD popu
lation) having larger measures of error. These patterns held true for 
minimum and maximum error and IQR of error. Mean absolute error and 
RMSE values were larger than median absolute error across all quartiles, 
indicating some outliers. 

Results of the fourth sensitivity analysis identified that summary 
statistics of estimates with induced population missingness remained 
close to ACS estimates, even at high levels of missingness, for both tract 
and county component geographies (Tables 3a and 3b). CD summary 

Fig. 2. Differences between American community survey true estimates and aggregated congressional district estimates by metric.  
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Table 1 
Comparison of 2019 US Census American Community Survey (ACS) 116th Congressional District estimates to Congressional District estimates aggregated from tract 
percent estimates.  

Metric Demographic 
group 

Method Mean 
(SD) 

Median Mean Absolute 
Error 

Median 
Absolute Error 

Root Mean 
Square Error 

Minimum and 
Maximum Error 

IQR of 
error 

Broadband access Total ACS 68.70 
(9.24) 

69.10 0.57 0.40 0.81 − 1.54, 4.87 0.69 

Aggregated 68.25 
(9.47) 

68.58 

High school 
completion 

Total ACS 87.8 
(5.9) 

89.4 0.41 0.31 0.54 − 0.54, 2.17 0.41 

Aggregated 87.5 
(6.1) 

89.0 

Asian ACS 86.21 
(6.06) 

87.27 1.30 0.86 1.99 − 13.99, 5.30 1.75 

Aggregated 86.68 
(6.15) 

87.85 

Black ACS 86.77 
(4.77) 

87.03 0.80 0.61 1.26 − 4.57, 13.98 0.76 

Aggregated 86.29 
(4.99) 

86.65 

Hispanic ACS 70.70 
(8.90) 

71.31 1.07 0.89 1.37 − 4.47, 5.64 1.28 

Aggregated 70.24 
(9.12) 

70.59 

Other ACS 75.38 
(8.18) 

75.87 1.35 0.99 1.80 − 5.42, 6.94 2.11 

Aggregated 75.12 
(8.31) 

75.57 

White ACS 92.93 
(3.12) 

93.39 0.16 0.10 0.28 − 0.92, 2.76 0.19 

Aggregated 92.84 
(3.16) 

93.32 

Female ACS 88.49 
(5.88) 

90.00 0.44 0.33 0.58 − 0.57, 2.36 0.45 

Aggregated 88.07 
(6.09) 

89.62 

Male ACS 87.14 
(6.02) 

88.65 0.36 0.27 0.50 − 1.09, 2.22 0.48 

Aggregated 86.86 
(6.18) 

88.38 

Unemployment Total ACS 5.41 
(1.55) 

5.20 0.18 0.13 0.26 − 1.87, 0.26 0.19 

Aggregated 5.58 
(1.66) 

5.30 

Asian ACS 4.27 
(1.53) 

4.17 0.54 0.32 0.88 − 6.75, 3.60 0.63 

Aggregated 4.27 
(1.64) 

4.14 

Black ACS 9.07 
(2.71) 

8.90 0.87 0.55 1.41 − 8.41, 3.59 0.84 

Aggregated 9.58 
(3.07) 

9.25 

Hispanic ACS 6.11 
(1.83) 

5.70 0.41 0.23 0.81 − 9.89, 2.31 0.46 

Aggregated 6.22 
(2.12) 

5.74 

Other ACS 7.63 
(2.36) 

7.08 0.71 0.46 1.01 − 3.01, 5.82 1.00 

Aggregated 7.35 
(2.27) 

6.89 

White ACS 4.44 
(1.04) 

4.30 0.15 0.11 0.22 − 1.87, 0.26 0.19 

Aggregated 4.57 
(1.09) 

4.46 

Female ACS 4.90 
(1.51) 

4.60 0.15 0.11 0.22 − 1.51, 0.37 0.18 

Aggregated 5.03 
(1.58) 

4.74 

Male ACS 5.10 
(1.57) 

4.80 0.22 0.13 0.35 − 2.31, 0.26 0.23 

Aggregated 5.31 
(1.74) 

4.99  
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Table 2a 
Comparison of 2019 tract vs. county percent-derived Congressional District estimates to US Census American Community Survey (ACS) 116th Congressional District 
estimates (Sensitivity analysis #2).  

Metric Demographic 
group 

Method Mean 
(SD) 

Median Mean Absolute 
Error 

Median Absolute 
Error 

Root Mean 
Square Error 

Minimum and 
Maximum Error 

IQR of 
error 

Broadband access Total Tract 68.25 
(9.47) 

68.58 0.57 0.4 0.81 − 1.54, 4.87 0.69 

County 68.7 
(8.48) 

69.42 2.18 0.93 3.62 − 19.66, 13.2 1.76 

ACS 68.7 
(9.24) 

69.10 – – – – – 

High school 
completion 

Total Tract 87.45 
(6.1) 

89.01 0.41 0.31 0.54 − 0.54, 2.17 0.41 

County 87.88 
(4.38) 

88.83 1.83 0.63 3.63 − 22.71, 17.00 1.20 

ACS 87.8 (5.9) 89.4 – – – – – 
Asian Tract 86.68 

(6.15) 
87.85 1.3 0.86 1.99 − 13.99, 5.30 1.75 

County 86.31 
(5.18) 

87.39 2.02 1.12 3.25 − 18.01, 11.49 2.17 

ACS 86.21 
(6.06) 

87.27 – – – – – 

Black Tract 86.29 
(4.99) 

86.65 0.78 0.61 1.26 − 4.57, 13.98 1.75 

County 86.46 
(4.34) 

87.02 1.24 0.67 1.85 − 6.49, 6.49 1.41 

ACS 86.77 
(4.77) 

87.03 – – – – – 

Hispanic Tract 70.24 
(9.12) 

70.59 1.07 0.89 1.37 − 4.47, 5.64 1.28 

County 69.78 
(8.01) 

69.74 2.66 1.41 4.29 − 13.10, 22.08 2.78 

ACS 70.70 
(8.90) 

71.31 – – – – – 

Other Tract 75.12 
(8.31) 

75.57 1.35 0.99 1.8 − 5.42, 6.94 2.11 

County 74.68 
(7.28) 

74.42 2.69 1.41 4.29 − 19.30, 23.92 2.71 

ACS 75.38 
(8.18) 

75.87 – – – – – 

White Tract 92.84 
(3.16) 

93.32 0.16 0.1 0.28 − 0.92, 2.76 0.19 

County 93.68 
(2.87) 

93.68 0.69 0.3 1.25 − 8.30, 4.50 0.61 

ACS 92.93 
(3.12) 

93.39 – – – – – 

Female Tract 88.07 
(6.09) 

89.62 0.44 0.33 0.58 − 0.60, 2.36 0.45 

County 88.54 
(4.39) 

89.51 1.77 0.6 3.55 − 22.20, 16.80 1.20 

ACS 88.49 
(5.88) 

90.00 – – – – – 

Male Tract 86.86 
(6.18) 

88.38 0.36 0.27 0.5 − 1.09, 2.22 0.48 

County 87.21 
(4.45) 

88.18 1.91 0.67 3.73 − 23.65, 17.10 1.38 

ACS 87.14 
(6.02) 

88.65 – – – – – 

Unemployment Total Tract 5.58 
(1.66) 

5.3 0.18 0.13 0.26 − 1.87, 0.26 0.19 

County 5.43 
(1.24) 

5.35 0.46 0.21 0.78 − 3.05, 5.56 0.37 

ACS 5.41 
(1.55) 

5.20 – – – – – 

Asian Tract 4.27 
(1.64) 

4.14 0.54 0.32 0.88 − 6.75, 3.60 0.63 

County 4.23 
(1.33) 

4.09 0.53 0.35 0.82 − 3.19, 7.62 0.69 

ACS 4.27 
(1.53) 

4.17 – – – – – 

Black Tract 9.58 
(3.07) 

9.25 0.87 0.55 1.41 − 8.41, 3.59 0.84 

County 9.41 
(2.49) 

9.4 0.99 0.50 1.61 − 10.34, 4.24 1.00 

ACS 9.07 
(2.71) 

8.90 – – – – – 

(continued on next page) 
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statistics across increasing levels of induced population missingness and 
for both component geographies shift, but differences are not dramatic- 
within 1% for high school completion and unemployment, and 5% for 
broadband access. Across metrics, error measures generally increase as 
the percentage missing population increases. Similarly, minimum and 
maximum error, and IQR of error, also increase as population missing
ness increases; for the broadband access metric at the tract level, for 
example, IQR of error increased from 0.65 in the lowest missingness 
strata to 1.55 in the highest missingness strata. 

More pronounced differences were observed when utilizing county 
as the start geography, as opposed to tract. For broadband access at the 
county level, IQR of error increased from 1.69 in the lowest missingness 
strata to 7.74 in the highest missing strata. This metric provides the most 

extreme example among the three metrics analyzed. Median absolute 
error remains relatively low, demonstrating that even with high levels 
(>50%) of induced population missingness, CD estimates are overall 
similar to ACS estimates. The corresponding low levels of mean absolute 
error and RMSE across component geographies suggest there are few 
extreme outliers. 

5. Discussion 

We describe a systematic approach to validating a population 
weighted method for aggregating US Census metric estimates from 
census tracts and counties to CDs. Overall, aggregated estimates were 
very similar to estimates drawn from ACS, suggesting the approach is 

Table 2a (continued ) 

Metric Demographic 
group 

Method Mean 
(SD) 

Median Mean Absolute 
Error 

Median Absolute 
Error 

Root Mean 
Square Error 

Minimum and 
Maximum Error 

IQR of 
error 

Hispanic Tract 6.22 
(2.12) 

5.74 0.41 0.23 0.81 − 9.89, 2.31 0.46 

County 6.21 
(1.77) 

5.87 0.51 0.3 0.77 − 3.10,4.09 0.58 

ACS 6.11 
(1.83) 

5.70 – – – – – 

Other Tract 7.35 
(2.27) 

6.89 0.71 0.46 1.01 − 3.01,5.82 1.00 

County 7.65 
(2.16) 

7.16 0.63 0.43 0.94 − 4.45, 5.92 0.84 

ACS 7.63 
(2.36) 

7.08 – – – – – 

White Tract 4.57 
(1.09) 

4.46 0.15 0.11 0.22 − 1.87, 0.26 0.19 

County 4.41 (0.9) 4.3 0.27 0.13 0.46 − 1.60, 3.40 0.25 
ACS 4.44 

(1.04) 
4.30 – – – – – 

Female Tract 5.03 
(1.58) 

4.74 0.15 0.11 0.22 − 1.51, 0.37 0.18 

County 4.92 
(1.23) 

4.8 0.43 0.2 0.72 − 3.05, 4.65 0.36 

ACS 4.90 
(1.51) 

4.60 – – – – – 

Male Tract 5.31 
(1.74) 

4.99 0.22 0.13 0.35 − 2.31, 0.26 0.23 

County 5.13 
(1.25) 

5.0 0.47 0.221 0.8 − 2.67, 6.08 0.41 

ACS 5.10 
(1.57) 

4.80 – – – – –  

Fig. 3. Percentage of Congressional Districts by Proportion Population Overlap with Tracts and Counties, 2019 (Sensitivity analysis #3).  

B.R. Spoer et al.                                                                                                                                                                                                                                 



SSM - Population Health 24 (2023) 101511

8

generally robust. Given that most observed differences between ACS 
estimates and aggregated estimates are small and do not exhibit 
consistent patterns (with the exception of component geography size/ 
population overlap, and among racial/ethnic subgroups), it is likely that 
observed differences reflect statistical noise, potentially introduced as a 
result of small differences in block population proportions compared to 
ACS block population count/percentages, or random error in ACS esti
mates, rather than properties of the underlying metric estimate 
distributions. 

Aggregated total population percentage estimates were broadly 
similar when aggregating either counts or percentages, using either tract 
or county as the component geography, and by variation in percentage 
population overlap between component geography and CD. Generally, 

county-derived estimates had larger errors and more and larger outliers, 
and counties with low percentage population overlap with the target CD 
produced estimates more different than ACS estimates, indicating tract- 
derived estimation is likely to yield more precise results. This may be 
because lower population overlap tends to occur in higher density, more 
urban, more heterogeneous areas where CDs are small and numerous, 
and higher population overlap tends to occur in lower density, more 
suburban or rural, more homogenous areas where CDs are large. As 
such, wherever possible we utilize census tracts as our component ge
ography. Total population results were robust to induced component 
geography missingness, in some cases up to 50% induced missingness. 

Racial/ethnic subgroup estimates generally had larger error mea
sures than did total population estimates. This is likely driven by many 

Table 2b 
Comparison of 2019 tract percent-derived total population Congressional District estimates to US Census 116th Congressional District estimates, by quartile of 
population overlap (Sensitivity analysis #3).  

Metric Tract Population Overlap 
Quartile 

Mean 
(SD) 

Median Mean Absolute 
Error 

Median Absolute 
Error 

Root Mean 
Square Error 

Minimum and 
Maximum Error 

IQR of 
Error 

Broadband access 1 (0.85–0.97) 72.36 
(8.51) 

73.01 0.6 0.45 0.92 − 0.86, 4.87 0.73 

2 (0.97–0.98) 67.9 
(9.23) 

67.97 0.63 0.48 0.85 − 1.54, 2.24 0.82 

3 (0.98–0.99) 66.77 
(10) 

67.48 0.54 0.36 0.75 − 0.66, 3.6 0.67 

4 (0.99–1.00) 65.98 
(8.88) 

65.58 0.51 0.38 0.70 − 1.15, 2.82 0.57 

High school 
completion 

1 86.37 
(6.89) 

87.98 0.48 0.42 0.6 − 0.54, 1.84 0.43 

2 86.51 
(6.88) 

88.32 0.45 0.38 0.58 − 0.33, 1.91 0.43 

3 87.86 
(5.88) 

89.44 0.37 0.27 0.5 − 0.19, 1.89 0.41 

4 89.07 
(3.94) 

89.94 0.23 0.23 0.46 − 0.28, 2.17 0.34 

Unemployment 1 5.66 
(1.67) 

5.32 0.17 0.1 0.3 − 1.87, 0.1 0.19 

2 5.51 (3) 5.51 0.19 0.15 0.27 − 1.02, 0.26 0.22 
3 5.33 (3) 5.33 0.18 0.13 0.26 − 1.05, 0.05 0.17 
4 5.14 

(1.16) 
5.03 0.16 0.12 0.22 − 1.06, 0.06 0.14  

Table 2c 
Comparison of 2019 county percent-derived total population Congressional District estimates to US Census 116th Congressional District estimates, across quartile of 
population overlap (Sensitivity Analysis #3).  

Metric County Population 
Overlap Quartile 

Mean 
(SD) 

Median Mean Absolute 
Error 

Median Absolute 
Error 

Root Mean 
Square Error 

Minimum and 
Maximum Error 

IQR of 
Error 

Broadband access 1 (0.06–0.47) 73.1 
(4.94) 

71.99 4.8 4.2 6.19 − 19.66, 13.2 8.54 

2 (0.47–0.8) 72.21 
(7.04) 

73.67 2.36 1.86 3.23 − 12.06, 8.57 3.18 

3 (0.8–0.95) 67.54 
(8.38) 

67.24 1.07 0.66 1.67 − 7.9, 6.67 1.34 

4 (0.95–1.0) 61.95 
(8.15) 

62.84 0.49 0.27 0.84 − 1.56, 4.89 0.51 

High school 
completion 

1 85.53 
(4.38) 

86.1 4.88 3.6 6.75 − 22.71, 17.0 6.49 

2 88.65 
(4.42) 

89.6 1.75 1.3 2.57 − 12.41, 8.32 2.33 

3 88.98 
(4.27) 

90.05 0.54 0.4 0.74 − 1.8, 2.76 0.76 

4 88.38 
(3.59) 

88.86 0.16 0.1 0.26 − 0.98, 0.94 0.15 

Unemployment 1 5.81 
(1.16) 

5.8 0.99 0.77 1.33 − 3.05, 5.56 1.47 

2 5.46 
(1.28) 

5.3 0.54 0.39 0.75 − 1.92, 2.46 0.75 

3 5.18 
(1.11) 

5.22 0.21 0.14 0.31 − 1.43, 1.07 0.27 

4 5.27 
(1.31) 

5.22 0.11 0.06 0.16 − 0.66, 0.44 0.14  
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factors, including random error due small sample sizes, and that racial/ 
ethnic groups may be less likely to be uniformly distributed across ge
ographies - due to racial residential segregation, ethnic enclave effects, 
and other social forces - violating an assumption of this aggregation 
method. We are exploring ways to highlight potentially unstable esti
mates, including racial/ethnic subgroup estimates, on the CDHD. 

On the CDHD we elected to aggregate percentage estimates, use tract 
as the start geographies whenever possible, and apply censorship 
criteria for estimates with high missingness (when 10% of county pop
ulation, or 25% of tract population, is missing). We are also using the 
results of the present analysis to identify CDs that may consistently 
exhibit high error. Preliminary results indicate that CDs which are 
smaller than counties, and CDs that include component geographies 
with both high and low population density, are more likely to exhibit 
high error. We plan to continue this investigation, identifying patterns 
among CDs that have larger errors, and flag or censor those CDs on our 
website. 

In conducting these sensitivity analyses we addressed numerous 
important questions about the validity of the described aggregation 
method. Robust population-weighted aggregation methods can unlock 
the ability of researchers and analysts to provide public health metrics 
for salient geographies for which geospatially specific data were previ
ously unavailable. Importantly, these methods can be used to create 
metric estimates for other geographies, such as school districts, city 

council districts, and other spatially delimited administrative and 
policy-making entities. To that end, the geographic aggregation func
tions we developed are available, free of charge, upon request to the 
authors. 

Though this research focused on social determinant of health metrics 
derived from ACS, we have used these methods to aggregate metric 
estimates from multiple other health-related data sources, including the 
Centers for Disease Control and Preventions’ PLACES and USA Life Ex
pectancy Estimation Program projects, among others (PLACES recom
mends the method we have described (PLACES: Local Data for Better 
Health, 2021)). These other data sources were not featured in this 
research because there are no comparator data available against which 
to validate aggregated estimates. This underscores a potential limitation 
of the present analysis, that it was not possible to conduct validation 
analyses on non-ACS or modeled metrics, which may be noisier than 
ACS metrics. Nonetheless, the variety of metrics and component geog
raphies from which our metric estimates were aggregated demonstrates 
the versatility of this method. 

We believe these aggregated metric estimates can be immediately 
useful in identifying and addressing federal public health priorities. 
CDHD allows congresspersons, lobbyists, and voters to compare health, 
health equity and their drivers in their districts to outcomes and drivers 
in districts throughout the country. These data can help policy makers 
and others identify areas in which their districts are doing well, and 

Table 3a 
Descriptive statistics & measures of error of aggregated Congressional District estimates with percentage thresholds of total population missingness artificially induced 
at the tract level in a sample of 48 Congressional Districts (Sensitivity analysis #4).  

Metric Name % Population Missing 
Threshold 

Mean 
(SD) 

Median Mean Absolute 
Error 

Median Absolute 
Error 

Root Mean 
Square Error 

Minimum and 
Maximum Error 

IQR of 
Error 

Broadband Access (%) <=10% pop missing 68.41 
(8.61) 

69.66 0.54 0.43 0.37 − 2.44, 2.12 0.65 

>10–20% pop missing 68.65 
(8.63) 

69.83 0.61 0.49 0.38 − 2.76, 3.32 0.85 

>20–30% pop missing 68.60 
(8.54) 

69.87 0.69 0.56 0.38 − 3.14, 3.38 0.99 

>30–40% pop missing 68.51 
(8.72) 

69.64 0.83 0.65 0.40 − 4.24, 3.70 1.23 

>40–50% pop missing 68.56 
(8.69) 

69.98 0.91 0.74 0.35 − 3.80, 4.64 1.40 

>50% pop missing 68.41 
(8.60) 

69.57 1.02 0.85 0.46 − 3.23, 4.36 1.55 

US Census ACS 68.93 
(8.51) 

70.30 NA NA NA NA NA 

High School 
Completion (%) 

<=10% pop missing 87.62 
(5.93) 

88.61 0.42 0.34 0.39 − 0.59, 2.12 0.45 

>10–20% pop missing 87.61 
(5.97) 

88.59 0.44 0.34 0.39 − 0.93, 2.67 0.49 

>20–30% pop missing 87.62 
(5.98) 

88.61 0.48 0.36 0.39 − 1.27, 2.94 0.60 

>30–40% pop missing 87.63 
(5.97) 

88.62 0.54 0.41 0.39 − 1.73, 3.74 0.71 

>40–50% pop missing 87.70 
(5.90) 

88.64 0.58 0.43 0.38 − 1.78, 3.59 0.82 

>50% pop missing 87.37 
(6.18) 

88.56 0.66 0.49 0.40 − 1.88, 4.67 0.92 

US Census ACS 88.0 
(5.81) 

89.05 NA NA NA NA NA 

Unemployment (%) <=10% pop missing 5.41 
(1.52) 

5.35 0.17 0.12 0.15 − 0.88, 0.29 0.20 

>10–20% pop missing 5.40 
(1.52) 

5.32 0.18 0.13 0.15 − 0.97 0.48 0.23 

>20–30% pop missing 5.40 
(1.51) 

5.31 0.20 0.15 0.16 − 1.23, 0.54 0.26 

>30–40% pop missing 5.38 
(1.53) 

5.24 0.22 0.17 0.16 − 1.27, 0.68 0.30 

>40–50% pop missing 5.42 
(1.56) 

5.31 0.25 0.19 0.15 − 1.65, 0.77 0.36 

>50% pop missing 5.42 
(1.50) 

5.21 0.28 0.21 0.17 − 1.51, 0.90 0.39 

US Census ACS 5.25 
(1.46) 

5.20 NA NA NA NA NA  
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areas that could benefit from intervention. Metrics of particular interest 
that are available on the website include firearm homicide and suicide 
rates, opioid overdose mortality rate, frequent mental distress, and 
many others. 

The described method has limitations. One major limitation is that 
aggregated metric estimates are subject to, and in some cases may 
amplify, limitations of the source data. If the source data oversampled or 
undersampled certain populations, or suffered from response or selec
tion bias or other challenges common to survey research, the aggregated 
estimates will also suffer these limitations. Rare events are difficult to 
measure accurately at any level, and when aggregating estimates, a few 
missed rare events can have a substantial impact on the final metric 
estimate. Similarly, the data we use to validate these estimates - US 
Census ACS measures - are themselves estimates with margins of error, 
which tend to be larger in small geographies. 

Also important is an assumption inherent in area-based metric esti
mates drawn from survey data. Such estimates implicitly assume a 
uniform distribution of the outcome of interest across the geographic 
unit in question. Given that populations are not uniformly distributed 
across geographic units, and that outcomes/exposures are not uniformly 
distributed across populations, it is unlikely any metric meets this 
assumption. Other researchers are currently innovating statistical 
techniques that can address this assumption in regression models 
(Nethery et al., 2023). We attempt to reduce the impact of this limitation 

by utilizing the smallest analytic geography available, the census block, 
to calculate population weights. We have also recently added census 
tracts, a smaller geographic unit, to the Congressional District Health 
Dashboard, partially to display within-CD variation in metric estimates. 
Finally, this analysis was conducted prior to the release of 2020 
decennial census block population counts, instead relying on 2010 data. 
These results cannot account for population changes between 2010 and 
2019 (the metric data year). 

The present research also has numerous strengths. The sensitivity 
analyses described here have, to our knowledge, not been published 
previously. The analyses were conducted using publicly available data, 
and the authors will share relevant code upon request, making the ag
gregation method easy to reproduce (analytic code for a similar method 
has recently become available via the tidycensus R package). In 
demonstrating its validity and reliability, this research describes a 
geographic aggregation method that researchers, policy makers, and 
members of the public health workforce can use to produce needed data 
for geographies that otherwise lack data parsed to their boundaries. This 
is an important step towards empowering data-driven decision making 
and holding accountable policy makers, health officials, and others 
responsible for the public’s health. Put another way, these methods can 
extend “what gets measured”, in the hopes that doing so will empower 
public health professionals and policy makers to extend “what gets 
done”. Finally, the metric estimates generated using these methods are 

Table 3b 
Descriptive statistics & measures of error of aggregated Congressional District estimates with total percentage thresholds of population missingness artificially induced 
at the county level in a sample of 48 Congressional Districts (Sensitivity analysis #4).  

Metric Name % Population Missing 
Threshold 

Mean 
(SD) 

Median Mean Absolute 
Error 

Median Absolute 
Error 

Root Mean Square 
Error 

Range of Error 
(min, max) 

IQR of 
Error 

Broadband (%) <=10% pop missing 67.84 
(6.79) 

67.72 1.76 0.73 0.32 − 8.88, 5.13 1.69 

>10–20% pop missing 65.49 
(8.27) 

67.05 1.70 1.05 0.19 − 10.49, 6.08 2.00 

>20–30% pop missing 63.32 
(8.1) 

62.61 1.63 1.29 0.32 − 3.61, 8.15 2.65 

>30–40% pop missing 63.23 
(7.92) 

62.56 2.37 1.86 1.17 − 5.60, 10.06 3.37 

>40–50% pop missing 63.44 
(9.02) 

63.39 2.26 1.49 1.48 − 5.11, 9.97 2.65 

>50% pop missing 62.45 
(9.71) 

62.19 5.73 4.10 4.36 − 11.40, 45.40 7.74 

US Census ACS 68.93 
(8.51) 

70.30 NA NA NA NA NA 

High School 
Completion (%) 

<=10% pop missing 89.17 
(2.68) 

89.35 1.44 0.52 0.00 − 5.40, 5.46 1.01 

>10–20% pop missing 89.32 
(2.78) 

90.17 0.88 0.34 0.59 − 1.17, 6.05 0.88 

>20–30% pop missing 88.84 
(3.28) 

89.43 1.18 0.61 0.07 − 5.23, 6.20 1.31 

>30–40% pop missing 88.5 
(3.46) 

88.78 1.15 0.78 0.26 − 3.81, 5.97 1.38 

>40–50% pop missing 88.7 
(3.28) 

89.47 1.21 0.73 0.64 − 4.05, 7.12 1.42 

>50% pop missing 88.78 
(3.27) 

89.07 1.90 1.29 0.67 − 6.00, 14.60 2.44 

US Census ACS 88.0 
(5.81) 

89.05 NA NA NA NA NA 

Unemployment (%) <=10% pop missing 5.19 
(0.99) 

5.36 0.32 0.14 0.04 − 0.93, 1.65 0.27 

>10–20% pop missing 5.20 
(1.07) 

5.09 0.26 0.17 0.19 − 1.03, 0.84 0.34 

>20–30% pop missing 5.17 
(1.13) 

5.17 0.38 0.23 0.13 − 1.24, 1.85 0.66 

>30–40% pop missing 5.16 
(1.28) 

4.81 0.50 0.34 0.14 − 1.66, 2.10 0.63 

>40–50% pop missing 4.91 
(1.27) 

4.63 0.37 0.27 0.16 − 2.17, 1.37 0.47 

>50% pop missing 5.48 
(1.42) 

5.46 0.64 0.47 0.34 − 3.90, 2.48 0.95 

US Census ACS 5.25 
(1.46) 

5.20 NA NA NA NA NA  
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available to view and download via the CDHD (https://www.congressio 
naldistricthealthdashboard.org/), and the website’s technical docu
mentation has further detail on the methods described here (Dashboard 
Team, 2023c). 

6. Conclusion 

The present research describes and validates a geographic aggrega
tion method that can be used to generate metric estimates for health- 
and policy-relevant geographies that have previously lacked location- 
specific data. In general, aggregated estimates were similar to ACS 
derived estimates. Large geographies and those with lower population 
overlap produced more error, and more outliers, when aggregated. 
These methods can be used to provide data for public health decision 
making, and in doing so, can contribute to improving population health 
and health equity across the nation. Future research should continue to 
explore what drives high error measures in the geographies that produce 
the largest errors. 
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