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Appendix A. Patient and image data  

Supplementary Table A1. Treatment characteristics.  

Treatment     

OUS (n = 139) MAASTRO (n = 99) 

No. of patients (%)  

Radiotherapya  139 (100) 99 (100) 

Nimorazoleb 132 (95) 0 (0) 

Chemotherapy 100 (72) 26 (26) 

OUS: Oslo University Hospital; MAASTRO: Maastro Clinic, Maastricht.  
a 68–70 Gy to the high-risk clinical target volume in 1.8–2 Gy fractions.   
b Hypoxic radiosensitizer. 
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Supplementary Table A2. PET/CT acquisition and reconstruction parameters.  

Parameter     OUS (n = 139) MAASTRO (n = 99) 

Scanner Siemens Biograph 16, Siemens 

Healthineers GmbH, Erlangen, Germany 

Siemens Biograph 40, Siemens 

Healthineers GmbH, Erlangen, Germany 

CT   

Scan mode Helical (rotation time 0.5 s, pitch 0.75) Helical (rotation time 1.0 s, pitch 0.8) 

Peak tube voltage 120 kV 120 kV 

Reconstructed slice 

thickness 

2.00 mm 3.00 mm  

Reconstruction 

kernel 

B30f/B30s B31s 

Matrix size 512 × 512 512 × 512 

Pixel size 0.98 × 0.98 mm2  0.98 × 0.98 mm2 

 1.37 × 1.37 mm2 (n = 26)  

 0.89 × 0.89 mm2 (n = 1)   

 0.82 × 0.82 mm2 (n = 1)  

Contrast agent  
Visipaque 320 mg iodine/mL  Ultravist 300 mg iodine/mL 

PET    

Reconstruction 

algorithm 

OSEM, 4 iterations, 8 subsets OSEM, 4 iterations, 8 subsets 

Bed position overlap  25 % 25 %  

Post reconstruction 

filter 

Gaussian, FWHM 3.5 mm (n = 135) Gaussian, FWHM 5.00 mm  

 Gaussian, FWHM 5.0 mm (n = 2)  

 Gaussian, FWHM 2.0 mm (n = 2)  

Matrix size  256 × 256  256 × 256 

Voxel size (x–y–z)  2.66 × 2.66 × 2.00 mm3 (n = 91) 2.67 × 2.67 × 3.00 mm3 

 1.77 × 1.77 × 2.00 mm3 (n = 20)  

 2.66 × 2.66 × 5.00 mm3 (n = 20)  

 2.66 × 2.66 × 1.00 mm3 (n = 3)  

 1.33 × 1.33 × 2.00 mm3 (n = 3)  

 4.06 × 4.06 × 2.00 mm3 (n = 1)  

 4.06 × 4.06 × 1.00 mm3 (n = 1)  

OUS: Oslo University Hospital; MAASTRO: Maastro Clinic, Maastricht; CT: computed tomography; PET: 

positron emission tomography; OSEM: Ordered Subset Expectations Maximization; FWHM: full width at 

half maximum.  
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Appendix B. Radiomics features extraction 

All radiomics features used in this study were extracted using our in-house library imskaper1. The 

imskaper library can extract IBSI radiomics features using PyRadiomics (1) and ten additional 3D 

LBP features (2) for each modality/structure. 

Due to the variation of head and neck nodal structures, we only extracted radiomics features from the 

primary tumors. All resampled PET and CT images were discretized before putting into the imskaper 

pipeline. Two binning methods (3) were used for discretization: based on the number of bins (bin 

counts) and based on the magnitude of bins (bin width). The selected binning options for CT images 

were (i) 16 bin counts and (ii) a bin width of 20, whereas these options for PET images were (iii) 4 

bin counts and (iv) a bin width of 2. For each binning option, 14 shape features, 18 first-order 

features, 75 texture features and 10 LBP features were extracted, giving a total of 117 radiomics 

features. Since there were four binning options (two for each image modality), the original radiomics 

features contained 468 features. 

Since all shape features depended solely on the primary tumor masks, the discretization process did 

not affect these values. Therefore, there were 42 duplicated shape features, which were then removed 

during data pre-processing (see Section 2.4). Similarly, LBP features depended on the input image 

modality and the primary tumor mask, resulting in the removal of 20 duplicated LBP features. In 

addition, 32 first-order features were also removed due to duplication. Thus, the radiomics features 

used in this study consisted of 374 features. 

 

  

 

1 Available at https://github.com/NMBU-Data-Science/imskaper 

https://github.com/NMBU-Data-Science/imskaper
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Appendix C. Models architectures and hyperparameters 

In this study, we used the Python library scikit-learn2 version 1.0.2 to train, validate and test the 

logistic regression model M1 and random forest M2. Therefore, if not mentioned, the 

hyperparameters of these models took the default values according to scikit-learn. For deep learning 

models M3-M7, we focused on optimizing hyperparameters relating to model complexity and loss 

function. Supplementary Table C1 shows the list of hyperparameters that were optimized during 

model training and validation. The selected values for these hyperparameters are shown in 

Supplementary Table C2. 

All deep learning experiments were run using deoxys3 version 0.1.11, our in-house Python 

framework for running deep-learning pipelines with emphasis on tasks relating to medical data. The 

code for running the full deep learning pipeline is available at https://github.com/huynhngoc/hnc-

outcome-analysis. 

The neural networks M3 (without interaction) and M4 (with interaction) are outlined in 

Supplementary Table C3 and C4. The interaction between nodes in model M4 was based on adding 

(Add layers) and multiplying (Multiply layers) nodes between different layers. Before the prediction 

layer, dropout with a rate of 25% was applied. Sigmoid activation function was also applied to the 

prediction layer, making the model outputs between 0 and 1. 

While the input for the M5 model (PET/CT only) can be fed directly to the EfficientNet (4), models 

M6 (PET/CT and GTVp) and M7 (PET/CT, GTVp, and GTVn) needed some preliminary layers to 

emphasize the effect of the additional primary tumor GTVp and node GTVn masks, as shown in 

Supplementary Table C5. The outputs of these layers (namely input_1) were then fed into the scaled 

3D EfficientNet. 

The 3D EfficientNet (B1 complexity, as outline in GitHub4) in this study was down-scaled, making 

all convolutional layers have only half of the filters compared to the original model. The 

implementation of 3D EfficientNet was by replacing any 2D layers with 3D layers from the 

TensorFlow version of 2D EfficientNet. 

To avoid the model being optimistic toward one metric, we used a weighted score for 

hyperparameters optimization. The score was mainly based on the validation AUC, MCC and 

positive class (class 1) F1 score. In addition, F1 score on the negative class (class 0) was also 

considered with a slightly lower weight. Since there were only few samples in each validation fold 

(27-28 samples), the risk that a model performed well on the validation but poorly on the training 

dataset or vice versa was high. Therefore, we included the training F1 score (class 1) to select models 

 

2 https://scikit-learn.org/1.0/modules/classes.html  

3 https://pypi.org/project/deoxys/  

4 https://gist.github.com/huynhngoc/fc385142dd9255343ae27c398a0ab843 

https://github.com/huynhngoc/hnc-outcome-analysis
https://github.com/huynhngoc/hnc-outcome-analysis
https://scikit-learn.org/1.0/modules/classes.html
https://pypi.org/project/deoxys/
https://gist.github.com/huynhngoc/fc385142dd9255343ae27c398a0ab843
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that performed well on both training and validation data. The weighted score (scoreweighted) is given 

by the following equation: 

scoreweighted = 𝐴𝑈𝐶𝑣𝑎𝑙 +𝑀𝐶𝐶𝑣𝑎𝑙 + 𝐹11𝑣𝑎𝑙 + 0.75 ∙ 𝐹10𝑣𝑎𝑙 + 0.5 ∙ √𝐹11𝑡𝑟𝑎𝑖𝑛  

Supplementary Table C1. List of hyperparameters choices for training and validating machine 

learning models (M1 and M2), the fully connected neural networks (M3 and M4) and the 

convolutional neural networks (M5-M7). 

ID Model name Hyperparameters Values 

M1 Logistic model Solver liblinear 

 Regularizer L1, L2 

 C 0.01, 0.03, 0.09, 0.23, 0.62, 1.62, 

4.48,…, 545 a  

M2 Random forest Number of Estimators 10, 20, 30, 40, …, 100 

 Max Features 1, 2, 3, …, <number of input features> 

M3 Neural Network (without 

interation) 

Optimizer Adam, SGD 

 Learning rate 0.0001, 0.001, 0.01, 0.1 

 Loss function Binary Cross Entropy, F1 Loss 

 First layer’s number 

of nodes 

16, 32, 64, 128 

 Drop-out rate 0.1, 0.25, 0.3, 0.5 

M4 Neural Network (with 

interaction) 

Optimizer Adam, SGD 

 Learning rate 0.0001, 0.001, 0.01, 0.1 

 Loss function Binary Cross Entropy, F1 Loss 

 First layers’ number 

of nodes 

4, 8, 16 

 Drop-out rate 0.1, 0.25, 0.3, 0.5 

M5-

M7 

EfficientNet (PET/CT only, 

PET/CT with GTVp, 

PET/CT with both GTVp and 

GTVn) 

Base model B0, B1, B2 

 Scaled factor 0.25, 0.5, 1 

a This is the geometric sequence starting from 0.01, with the common ratio of 100.4. 
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Supplementary Table C2. List of selected hyperparameters for the machine learning models (M1 

and M2), the fully connected neural networks (M3 and M4) and the convolutional neural networks 

(M5-M7). 

Model Input Group RENT 

frequency 

Hyperparameter name Value for 

DFS 

Value for 

OS 

Logistic Model 

(M1) 

Clinical factors 

(D1) 

NA Penalty L2 L2 
 

C 0.01 0.01 

1 % Penalty L2 L2 
 

C 0.01 0.03 

50 % Penalty L2 L2 
  

C 0.23 0.01 

Radiomics data 

(D2) 

NA Penalty L1 L1 
 

C 0.62 0.23 

1 % Penalty L2 L2 
 

C 0.62 0.03 

50 % Penalty L2 L1 
 

C 0.23 78.48 

Tabular data 

(D1+D2) 

NA Penalty L1 L1 
 

C 0.23 0.23 

1 % Penalty L2 L2 
 

C 0.23 0.03 

50 % Penalty L2 L2 
 

C 0.62 0.01 

Random forest 

(M2) 

Clinical factors 

(D1) 

NA number of estimators 70 70 
 

max features 1 3 

1 % number of estimators 20 30 
 

max features 1 4 

50 % number of estimators 50 20 
 

max features 1 2 

Radiomics data 

(D2) 

NA number of estimators 90 80 
 

max features 7 11 

1 % number of estimators 90 100 
 

max features 3 13 

50 % number of estimators 80 80 
 

max features 1 4 
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Tabular data 

(D1+D2) 

NA number of estimators 30 20 
 

max features 14 11 

1 % number of estimators 80 60 
 

max features 11 1 

50 % number of estimators 100 60 
 

max features 1 2 

Neural Network (without interaction) (M3) Optimizer Adam 

Learning rate 0.001 

Loss function Binary Cross Entropy 

First layer’s number of 

nodes 

64 

Drop-out rate 0.25 

Neural Network (with interaction) (M4) Optimizer Adam 

Learning rate 0.001 

Loss function Binary Cross Entropy 

First layers number of 

nodes 

8 

Drop-out rate 0.25 

EfficientNet (M5-M7) Base model B1 

Scaled factor 0.5 

 

 

Supplementary Table C3. The fully connected neural network (M3) architecture. 

Name Inputs Output Shape 

Dense1 Input 64 

Dense2 Dense1 32 

Dense3 Dense2 16 

Dense4 Dense3 8 

Dense5 Dense4 8 

Prediction Dense5 1 
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Supplementary Table C4. The fully connected neural network (M4) with interaction architecture. 

Name Inputs Output Shape 

Path1_Dense1 Input 8 

Path2_Dense1 Input 8 

Path3_Dense1 Input 8 

Path1_Dense2 Path1_Dense1 8 

Path2_Dense2 Path2_Dense1 8 

Path3_Dense2 Path3_Dense1 8 

Path1_Add Path1_Dense1, Path1_Dense2 8 

Path2_Add Path2_Dense1, Path2_Dense2 8 

Path3_Add Path3_Dense1, Path3_Dense2 8 

Multiply_12 Path1_Add, Path2_Add, 8 

Multiply_23 Path2_Add, Path3_Add, 8 

Multiply_13 Path1_Add, Path3_Add, 8 

Multiply_123 Path1_Add, Path2_Add, Path3_Add, 8 

Concatenate Input, Path1_Add, Path2_Add, 

Path3_Add, Multiply_12, 

Multiply_23,  Multiply_13, 

Multiply_123 

56 + <input shape> 

Dense1 Concatenate 32 

Dense2 Dense1 16 

Prediction Dense2 1 
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Supplementary Table C5. The architecture of the first few layers in the 3D EfficientNet M6 and 

M7. 

 

Name Input Output Shape 

EfficientNet M6 (CT, PET, GTVp) 

CT_tumor_area CT, GTVp 173×191×265×1 

PET_tumor_area PET, GTVp 173×191×265×1 

input_1 Input (PET, CT, GTVp), 

CT_tumor_area, PET_tumor_area 

173×191×265×5 

EfficientNet M7 (CT, PET, GTVp, GTVn) 

CT_tumor_area CT, GTVp 173×191×265×1 

PET_tumor_area PET, GTVp 173×191×265×1 

CT_node_area CT, GTVp 173×191×265×1 

PET_node_area PET, GTVp 173×191×265×1 

input_1 Input (PET, CT, GTVp, GTVn), 

CT_tumor_area, 

PET_tumor_area, CT_node_area, 

PET_node_area 

173×191×265×8 
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Appendix D. Performance metric definitions 

As outlined in Section 2.8, the following five main performance metrics were computed: (i) 

Accuracy, (ii) the area under the receiver operating characteristic curve (AUC), (iii) Matthew’s 

correlation coefficient (MCC), and F1 score on class 1 (iv) and class 0 (v) separately. In addition, the 

precision, recall, and specificity were computed.  

Seven of the above eight metrics are based directly on the counts found in a binary confusion matrix, 

i.e., true positives (TP), false negatives (FN), true negatives (TN), and false positives (FP). The basic 

metric of success is accuracy: 

accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
  ,   

i.e., the proportion correctly classified patients. Further, the precision (proportion correctly classified 

among positive predictions), recall (proportion correctly classified positive samples), and specificity 

(proportion correctly classified negative samples) are defined as: 

precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  ,          recall =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,        specificity=

𝑇𝑁

𝑇𝑁+𝐹𝑃
. 

Furthermore, we report the F1 score for the positive class F11 (event, class 1) and negative class F10 

(no event, class 0), given by: 

F11 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
  ,          F10 =

2𝑇𝑁

2𝑇𝑁+𝐹𝑁+𝐹𝑃
 .  

The latter is included since the F1 score is an asymmetric metric disregarding TN for class 1 and TP 

for class 0. F1 is the harmonic mean of precision and recall. 

We also include the MCC, which is defined as (5):  

MCC =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 .  

MCC is a symmetric correlation measure shown to be more robust than F1 and ACC (6). This means 

that switching positive (event) and negative (no event) class labels gives the same MCC. The MCC 

scales from -1 to 1, where 1 is perfect correlation, 0 is random prediction and -1 is reversing the 

classes in prediction. Since all other metrics used in this study scale from 0 to 1, we rescaled MCC to 

the interval 0 to 1 for easier comparison, as follows: 

MCCscaled =
𝑀𝐶𝐶+1

2
 .  

Finally, we included the AUC, which is another measure of success ranging from 0 to 1 where 0.5 is 

random prediction. AUC is based on the receiver operating characteristic curve (ROC), which is 

produced by tracing the true positive rate (TPR, which is also referred to as recall) as a function of 

the false positive rate (FPR): 

TPR =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  ,        FPR =

𝐹𝑃

𝐹𝑃+𝑇𝑁
 .  

from right to left (1 to 0) where each occurrence of a negative sample (class 0) results in a drop in the 

curve, ideally clustered at the very left of the plot. However, according to a recent simulation study, 

the MCC should replace the ROC as the standard metric for assessing binary classification as ROC, 
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in similarity with the F1-score, can in some cases be overly optimistic (7). For simplicity, the scaled 

MCC (MCCscaled) is referred to as MCC throughout the main text of our study.  
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Appendix E. RENT selected features 

Supplementary Table E1. Features selected by RENT for predicting DFS. 

Feature name Frequency (%) 

Clinical factors & PET parameters (D1) 

hpv_related 98 

uicc8_III-IV 89 

pack_years 41 

cavum_oris 39 

oropharynx 37 

larynx 4 

charlson 2 

female 1 

age 1 

SUVpeak 1 

Radiomics data (D2) 

shape_Sphericity 95 

LBP_102_PET 95 

shape_Elongation 69 

glszm_SmallAreaLowGrayLevelEmphasis_CT_c16 63 

LBP_201_PET 48 

glszm_GrayLevelNonUniformityNormalized_PET_c04 31 

LBP_201_CT 12 

shape_Flatness 9 

glrlm_ShortRunLowGrayLevelEmphasis_PET_c04 9 

glszm_ZoneEntropy_PET_b2 8 

LBP_021_PET 4 

glszm_SizeZoneNonUniformityNormalized_PET_b2 3 

glszm_ZoneEntropy_PET_c04 2 

gldm_LargeDependenceLowGrayLevelEmphasis_d_1_CT_c16 2 

glszm_SmallAreaHighGrayLevelEmphasis_PET_b2 2 

glcm_MaximumProbability_d_1_PET_b2 1 

LBP_003_CT 1 

LBP_300_CT 1 

glszm_GrayLevelVariance_PET_c04 1 
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LBP_102_CT 1 

glrlm_ShortRunHighGrayLevelEmphasis_PET_c04 1 

glcm_SumSquares_d_1_PET_c04 1 

glrlm_HighGrayLevelRunEmphasis_PET_c04 1 

first_order_Minimum_PET 1 

glszm_GrayLevelNonUniformityNormalized_PET_b2 1 

All tabular data (D1+D2) 

shape_Sphericity 98 

shape_Elongation 95 

LBP_102_PET 94 

glszm_SmallAreaLowGrayLevelEmphasis_CT_c16 85 

LBP_201_PET 68 

hpv_related 55 

glszm_GrayLevelNonUniformityNormalized_PET_c04 49 

uicc8_III-IV 47 

shape_Flatness 18 

glszm_ZoneEntropy_PET_b2 17 

glrlm_ShortRunLowGrayLevelEmphasis_PET_c04 16 

glszm_SmallAreaHighGrayLevelEmphasis_PET_b2 13 

cavum_oris 12 

LBP_201_CT 11 

age 10 

female 9 

LBP_021_PET 8 

larynx 5 

hypopharynx 5 

glszm_SizeZoneNonUniformityNormalized_CT_b20 3 

glrlm_HighGrayLevelRunEmphasis_PET_c04 3 

glszm_ZoneEntropy_PET_c04 2 

glcm_SumSquares_d_1_PET_c04 2 

glcm_ClusterProminence_d_1_PET_b2 2 

glszm_SizeZoneNonUniformityNormalized_PET_b2 2 

glszm_SizeZoneNonUniformity_PET_b2 2 

glszm_SmallAreaLowGrayLevelEmphasis_PET_b2 2 
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glszm_GrayLevelNonUniformityNormalized_PET_b2 2 

histgrade_high 2 

glcm_Imc1_d_1_CT_b20 1 

glcm_MaximumProbability_d_1_PET_b2 1 

first_order_Kurtosis_PET 1 

gldm_LargeDependenceLowGrayLevelEmphasis_d_1_CT_c16 1 

LBP_102_CT 1 

glrlm_ShortRunHighGrayLevelEmphasis_PET_c04 1 

glcm_JointEnergy_d_1_CT_b20 1 

gldm_DependenceEntropy_d_1_PET_c04 1 

first_order_Skewness_CT 1 

LBP_021_CT 1 

glcm_MCC_d_1_CT_c16 1 

glcm_ClusterTendency_d_1_PET_c04 1 

glcm_MCC_d_1_CT_b20 1 

 

 

  



  Supplementary Material 

 16 

Supplementary Table E2. Features selected by RENT for predicting OS.  

Feature name Frequency (%) 

Clinical factors & PET parameters (D1) 

uicc8_III-IV 100 

hpv_related 95 

pack_years 47 

oropharynx 36 

age 6 

cavum_oris 4 

charlson 4 

Radiomics data (D2) 

shape_Sphericity 100 

glcm_JointAverage_d_1_CT_c16 79 

glcm_SumAverage_d_1_CT_c16 79 

shape_MajorAxisLength 57 

first_order_Maximum_CT 35 

glrlm_HighGrayLevelRunEmphasis_PET_c04 34 

shape_Maximum3DDiameter 31 

glcm_ClusterShade_d_1_PET_b2 25 

gldm_LargeDependenceLowGrayLevelEmphasis_d_1_CT_c16 17 

gldm_LargeDependenceHighGrayLevelEmphasis_d_1_CT_c16 12 

glrlm_LowGrayLevelRunEmphasis_PET_c04 7 

glcm_JointAverage_d_1_PET_c04 7 

glcm_SumAverage_d_1_PET_c04 7 

LBP_102_PET 7 

first_order_Minimum_PET 6 

glcm_Autocorrelation_d_1_PET_c04 5 

glszm_ZoneEntropy_CT_b20 5 

glrlm_ShortRunHighGrayLevelEmphasis_PET_c04 4 

shape_Maximum2DDiameterSlice 3 

gldm_DependenceVariance_d_1_CT_b20 3 

first_order_Skewness_PET 3 

LBP_210_CT 2 

first_order_Skewness_CT 2 
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glszm_GrayLevelNonUniformityNormalized_CT_b20 2 

ngtdm_Busyness_d_1_PET_c04 2 

gldm_HighGrayLevelEmphasis_d_1_CT_c16 2 

glcm_Autocorrelation_d_1_CT_c16 2 

first_order_Range_CT 1 

ngtdm_Busyness_d_1_CT_b20 1 

ngtdm_Busyness_d_1_PET_b2 1 

shape_Elongation 1 

gldm_HighGrayLevelEmphasis_d_1_PET_c04 1 

All tabular data (D1+D2) 

shape_Sphericity 100 

uicc8_III-IV 88 

hpv_related 86 

oropharynx 12 

pack_years 6 

cavum_oris 2 

Age 2 
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Appendix F. Model performances 
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A. CLINICAL (D1) 

 
B. RADIOMICS (D2) 

 
C. CLINICAL + RADIOMICS (D1+D2) 

 
Supplementary Figure F1. Median performance metrics for prediction of DFS by tabular based 

models (M1-M4) trained on (A) clinical data (D1), (B) radiomics features (D2) and (C) all tabular 

data (D1+D2). All metrics were calculated from bootstrap sampling the OUS and MAASTRO 

datasets to maintain the 1:1 ratio between class 1 (event occurrence) and class 0. The column group 

indicates which features were selected as input: all features were used in the first column group, 

while models in the second and third column group trained on features that were selected by RENT 

once or with 50% frequency, respectively. 
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Supplementary Figure F2. Median performance metrics for prediction of DFS by CNN models 

(M5-M7). All metrics were calculated from bootstrap sampling the OUS and MAASTRO datasets to 

maintain the 1:1 ratio between class 1 (event occurrence) and class 0. The column groups show (first 

column) models trained on D3 only (images + GTV masks), and (second to fourth columns) models 

trained on D3 combined (via ensemble averaging) with models trained on clinical data (D1), 

radiomics data (D2) and all tabular data (D1+D2). 
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A. CLINICAL (D1) 

 
B. RADIOMICS (D2) 

 
C. CLINICAL + RADIOMICS (D1+D2) 

 
Supplementary Figure F3. Median performance metrics for prediction of OS by tabular based 

models (M1-M4) trained on (A) Clinical data (D1), (B) Radiomics features (D2) and (C) all tabular 

data (D1+D2). All metrics were calculated from bootstrap sampling the OUS and MAASTRO 

datasets to maintain the 1:1 ratio between class 1 (event occurrence) and class 0. The column group 

indicates which features were selected as input: all features were used in the first column group, 

while models in the second and third column group trained on features that were selected by RENT 

once or with 50% frequency, respectively. 
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Supplementary Figure F4. Median performance metrics for prediction of OS by CNN models (M5-

M7). All metrics were calculated from bootstrap sampling the OUS and MAASTRO datasets to 

maintain the 1:1 ratio between class 1 (event occurrence) and class 0. The column groups show (first 

column) models trained on D3 only (images + GTV masks), and (second to fourth columns) models 

trained on D3 combined (via ensemble averaging) with models trained on clinical data (D1), 

radiomics data (D2) and all tabular data (D1+D2).
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Supplementary Table F1. Median performance metrics for prediction of DFS by all models (M1-M7) from clinical data D1, radiomics data 

D2, image data D3 or combination of these input data. All metrics were calculated from bootstrap sampling the OUS and MAASTRO datasets 

to maintain the 1:1 ratio between class 1 (event occurrence) and class 0. 
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D1 All M1 69 73 68 68 66 73 70 54 72 61 60 91 76 40 68 66 

  M2 68 71 62 70 59 73 64 57 64 62 55 89 68 44 62 68 

  M3 64 67 63 65 59 71 66 48 66 57 54 89 72 34 63 62 

  M4 69 70 66 66 65 71 68 49 68 59 62 91 71 34 66 63 

 At least once M1 71 72 69 68 66 73 71 54 74 61 60 91 78 40 69 66 

  M2 68 72 63 69 61 73 64 54 64 61 57 91 66 40 63 66 

  M3 69 70 69 67 65 72 71 55 73 61 57 87 78 42 68 65 

  M4 69 71 69 68 66 72 71 56 74 62 60 87 78 44 69 66 

 50 % M1 68 68 63 70 61 74 65 56 65 62 57 91 68 42 63 67 

  M2 64 66 73 69 67 73 76 56 83 62 56 91 88 42 72 67 

  M3 68 68 74 70 68 73 76 56 83 62 56 91 88 42 72 67 

  M4 71 67 70 69 66 73 73 56 77 62 56 91 82 42 69 67 

D2 All M1 75 60 71 65 72 68 71 57 72 61 71 77 72 51 71 64 

  M2 64 68 61 61 55 64 65 57 64 61 48 67 73 55 61 61 

  M3 64 68 61 64 57 67 63 62 62 63 54 71 66 59 61 64 

  M4 65 69 62 63 61 66 63 57 63 61 57 73 65 53 61 63 

 At least once M1 85 53 79 55 78 62 79 45 81 54 75 71 82 36 79 55 

  M2 81 59 73 56 71 63 74 45 77 55 65 75 79 36 73 56 

  M3 79 56 74 56 74 64 74 44 75 55 74 77 75 34 74 56 

  M4 82 56 78 56 77 63 78 46 80 55 75 75 81 38 78 56 
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 50 % M1 78 50 73 50 71 54 73 46 75 50 68 56 76 42 72 50 

  M2 78 45 69 48 68 54 69 40 69 49 68 59 69 34 69 48 

  M3 76 47 72 50 72 53 72 46 73 50 70 56 73 42 72 50 

  M4 78 49 74 50 72 53 74 46 76 50 68 56 78 42 74 50 

D1+D2 All M1 78 68 69 64 67 70 71 43 73 56 61 91 78 30 69 61 

  M2 66 70 65 66 62 69 67 62 68 63 56 75 72 55 65 66 

  M3 66 69 63 65 63 68 62 61 63 63 62 73 63 57 63 65 

  M4 66 71 64 66 64 69 66 60 66 63 61 77 68 53 64 65 

 At least once M1 85 64 79 59 77 67 80 43 83 55 71 83 85 32 79 57 

  M2 82 66 72 56 70 65 73 40 75 54 65 81 78 30 72 55 

  M3 83 65 76 57 75 66 76 45 78 55 71 79 79 34 76 56 

  M4 80 63 76 59 77 64 76 49 76 56 77 75 75 40 76 57 

 50 % M1 84 61 76 61 75 68 76 47 77 56 72 85 78 36 76 60 

  M2 84 61 76 60 76 66 77 49 78 56 74 79 79 40 76 59 

  M3 81 56 76 61 75 67 76 50 78 57 72 79 79 40 76 60 

  M4 80 56 73 57 71 64 74 50 76 56 67 73 78 42 73 57 

D3  M5 67 72 65 72 65 72 65 71 65 72 65 71 66 71 65 72 

  M6 69 74 66 71 68 72 65 69 65 69 70 75 62 67 66 71 

  M7 69 75 68 66 68 69 67 64 68 65 68 71 66 61 68 66 

D1 + D3  M5 70 74 66 74 63 77 68 69 69 69 57 85 72 61 66 73 

  M6 71 77 69 73 70 76 69 63 69 65 71 91 68 51 69 71 

  M7 72 78 74 74 73 77 74 68 75 68 71 87 76 59 74 73 

D2 + D3  M5 69 79 66 73 65 73 66 73 67 73 64 73 68 73 66 73 

  M6 69 75 64 72 62 74 66 70 66 70 57 79 69 67 64 72 

  M7 68 76 64 69 61 71 66 67 66 67 56 75 71 63 64 69 

D1 + D2 + D3  M5 70 79 67 72 67 74 68 70 68 70 65 77 69 67 67 72 

  M6 71 78 69 71 69 73 69 67 70 67 69 79 69 61 69 70 

  M7 71 78 66 69 65 72 66 64 67 66 64 79 68 59 66 68 

OUS: Oslo University Hospital; MAASTRO: Maastro Clinic, Maastricht; RENT: the feature selection library using repeated elastic net technique; 

AUC: area under the receiver operating characteristic curve; MCC: Matthew’s correlation coefficient 
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Supplementary Table F2. Median performance metrics for prediction of OS by all models (M1-M7) from clinical data D1, radiomics data 

D2, image data D3 or combination of these input data. All metrics were calculated from bootstrap sampling the OUS and MAASTRO datasets 

to maintain the 1:1 ratio between class 1 (event occurrence) and class 0. 
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D1 All M1 79 66 75 65 74 70 76 49 78 59 70 89 81 36 75 63 

  M2 73 65 71 67 68 72 73 54 75 61 62 87 79 42 71 65 

  M3 72 61 71 61 67 67 73 47 75 56 61 81 79 36 70 59 

  M4 76 62 73 60 71 67 75 43 78 56 64 85 82 32 73 59 

 At least once M1 79 65 76 66 74 71 77 51 80 59 69 89 82 36 76 64 

  M2 73 61 69 62 67 69 69 43 70 56 64 87 72 30 69 60 

  M3 75 60 74 60 73 67 75 47 78 56 68 81 81 36 74 59 

  M4 76 62 73 62 69 68 76 50 80 57 61 83 85 38 73 61 

 50 % M1 73 65 74 67 71 72 76 50 80 59 65 89 83 36 74 64 

  M2 70 64 76 66 73 71 78 51 84 59 64 89 88 38 76 64 

  M3 73 65 77 66 73 71 78 51 84 59 65 89 88 36 76 64 

  M4 72 64 76 66 73 71 78 50 84 59 64 89 88 36 76 64 

D2 All M1 75 68 73 64 71 69 74 56 76 60 67 81 79 46 72 63 

  M2 71 70 62 62 53 61 67 62 67 63 44 59 79 63 61 62 

  M3 66 72 63 69 55 70 67 66 68 67 47 75 78 63 62 68 

  M4 70 74 66 68 62 71 69 64 71 65 54 79 78 57 66 68 

 At least once M1 79 67 72 62 69 67 74 54 76 59 64 77 81 46 71 61 

  M2 75 66 71 60 67 62 74 57 77 60 60 65 82 55 71 60 

  M3 76 66 72 62 69 65 73 59 75 61 64 69 79 55 71 62 

  M4 78 67 71 57 66 59 74 56 79 57 55 59 85 57 70 57 

 50 % M1 78 68 72 65 70 65 74 65 76 65 65 65 79 65 72 65 

  M2 75 59 67 57 64 62 70 53 71 56 57 67 76 48 67 56 



  Supplementary Material 

 26 

  M3 78 68 71 64 67 62 73 65 76 66 60 56 82 71 70 64 

  M4 79 69 73 64 67 60 76 67 83 67 55 55 89 73 72 64 

D1+D2 All M1 80 74 74 62 72 69 75 36 77 55 68 91 81 24 74 57 

  M2 72 73 65 67 59 67 68 67 69 67 51 67 78 67 64 67 

  M3 72 76 69 73 65 74 72 71 74 71 56 77 79 69 69 72 

  M4 70 75 67 73 63 75 70 69 73 69 55 83 79 63 67 72 

 At least once M1 84 69 77 65 75 71 78 49 81 59 70 89 83 34 76 63 

  M2 81 65 74 56 72 66 75 39 78 54 67 83 81 28 74 56 

  M3 81 67 75 63 73 69 77 47 80 57 67 85 83 34 75 61 

  M4 83 66 77 60 75 67 78 43 82 56 69 85 85 32 77 57 

 50 % M1 84 71 79 65 78 71 80 49 82 59 75 89 83 34 79 63 

  M2 78 66 72 56 69 65 73 41 76 54 62 81 81 30 71 56 

  M3 83 69 75 66 72 71 76 52 80 60 67 87 82 40 74 64 

  M4 82 69 77 63 74 69 78 47 82 57 68 86 85 34 76 61 

D3  M5 71 71 62 66 61 64 63 68 63 69 60 59 65 73 62 66 

  M6 77 75 69 69 67 71 70 68 72 68 62 73 75 67 69 69 

  M7 75 76 69 68 67 68 71 67 72 68 62 67 75 69 69 68 

D1 + D3  M5 76 73 74 70 72 73 75 64 78 65 66 83 81 55 74 69 

  M6 80 76 72 72 69 73 73 70 76 70 62 77 79 67 71 72 

  M7 77 78 72 69 71 70 73 67 74 67 68 73 76 65 72 69 

D2 + D3  M5 73 81 66 76 62 76 69 75 70 76 55 77 76 75 66 76 

  M6 81 78 78 76 78 76 79 76 81 76 75 77 81 75 78 76 

  M7 79 79 73 75 70 75 75 74 78 75 65 75 81 76 73 75 

D1 + D2 + D3  M5 75 82 69 77 66 78 71 75 72 74 61 81 76 71 69 77 

  M6 78 80 72 75 68 76 74 72 79 71 59 83 84 67 71 74 

  M7 77 80 71 77 67 78 73 76 77 75 59 81 82 73 71 77 

OUS: Oslo University Hospital; MAASTRO: Maastro Clinic, Maastricht; RENT: the feature selection library using repeated elastic net 

technique; AUC: area under the receiver operating characteristic curve; MCC: Matthew’s correlation coefficient 
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