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Phylogenetically and catabolically diverse
diazotrophs reside in deep-sea cold seep
sediments

Xiyang Dong 1,2,3,9 , Chuwen Zhang1,2,9, Yongyi Peng 1,2, Hong-Xi Zhang4,5,
Ling-Dong Shi 6, Guangshan Wei1, Casey R. J. Hubert 7, Yong Wang 4,5 &
Chris Greening 8

Microbially mediated nitrogen cycling in carbon-dominated cold seep envir-
onments remains poorly understood. So far anaerobic methanotrophic
archaea (ANME-2) and their sulfate-reducing bacterial partners (SEEP-SRB1
clade) have been identified as diazotrophs in deep sea cold seep sediments.
However, it is unclear whether other microbial groups can perform nitrogen
fixation in such ecosystems. Tofill this gap,we analyzed61metagenomes, 1428
metagenome-assembled genomes, and six metatranscriptomes derived from
11 globally distributed cold seeps. These sediments contain phylogenetically
diverse nitrogenase genes corresponding to an expanded diversity of diazo-
trophic lineages. Diverse catabolic pathways were predicted to provide ATP
for nitrogen fixation, suggesting diazotrophy in cold seeps is not necessarily
associated with sulfate-dependent anaerobic oxidation of methane. Nitrogen
fixation genes among various diazotrophic groups in cold seeps were inferred
tobegeneticallymobile and subject topurifying selection.Ourfindings extend
the capacity for diazotrophy to five candidate phyla (Altarchaeia, Omni-
trophota, FCPU426, Caldatribacteriota and UBA6262), and suggest that cold
seep diazotrophs might contribute substantially to the global nitrogen
balance.

Cold seeps occur in continental margins worldwide. At these sites,
there is discharge of biologically or geologically sourced hydro-
carbons, ranging in complexity from methane to the varying con-
stituents of petroleum1,2. Cold seeps are often classified as slow-flow
mineral-prone or high-flux mud-prone systems according to their
hydrocarbon fluid regime1. They span oil and gas seeps, methane
seeps, gas hydrates, asphalt volcanoes, mud volcanoes, brine pools,

andbrinebasins amongothers. The seeping hydrocarbons support the
development of extensive local diversity of archaea and bacteria,
dominated by aerobic methane-oxidizing bacteria (MOB, e.g., mem-
bers of the methanotrophic family Methylococcaceae) mainly at the
oxygen-rich sediment-water interface3 and microbial consortia of
anaerobic methane-oxidizing archaea (ANME) with sulfate-reducing
bacteria (SRB) within anoxic sediment layers4–6. Various studies have
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revealed microorganisms that oxidize non-methane hydrocarbons,
such as ethane, butane, propane, liquid alkanes and aromatic hydro-
carbons, also inhabit these environments7–12. In contrast with the rich
and expanding knowledge ofmicrobial hydrocarbon oxidation at cold
seeps, little is known about how microbiomes in these ecosystems
control the cycling of other essential nutrients. Seeping hydrocarbons
introduce little nitrogen into these carbon-dominated systems, mak-
ing cold seep sediments inherently limited by nitrogen supply to
support biomass production1,13.

Biological nitrogen fixation (diazotrophy)—the reduction of
atmospheric dinitrogen gas (N2) to ammonia (NH3) with concomitant
hydrogen gas (H2) production—is a critical source of bioavailable
nitrogen for living organisms14–16. The key enzymes mediating this
process are nitrogenases, which include three forms distinguished by
their active site metal cofactors: molybdenum-iron nitrogenase Nif
(Mo-Fe), vanadium-iron nitrogenase Vnf (V-Fe) and iron-only nitro-
genase Anf (Fe-Fe)17,18. All three nitrogenase forms are structurally and
functionally similar, each containing two protein components: a dini-
trogenase reductase (NifH, VnfH, or AnfH) and a catalytic component
(NifDK, VnfDGK, or AnfDGK). Most biological N2 fixation is catalyzed
by the more efficient Mo-Fe nitrogenase, while Fe-V and Fe-Fe nitro-
genases are alternative enzymes used in Mo-limited settings19,20. A
combination of rate measurements, lab cultivation, flow cytometry,
molecular analysis, and cellular imaging have revealed that diazo-
trophs are active throughout the oceans. Multiple cyanobacterial dia-
zotrophs are responsible for a substantial portion of new nitrogen
input in the surface ocean21–24. Various diazotrophs are also active in
both surface and deeper waters, including diverse heterotrophic
Proteobacteria25–28. Over the past decade, the deep benthos has been
found to host diverse groups of previously unrecognized diazotrophs
that actively and significantly contribute to local nitrogen balance,
including members of Acidobacteria, Firmicutes, Nitrospirae, Gam-
maproteobacteria and Deltaproteobacteria15,29,30. Despite these
advances, there remains limited knowledge about the distribution and
evolution of biological nitrogen fixation in sediments from the deep
sea, which covers nearly two-thirds of the Earth.

Multiple lines of evidence have demonstrated diazotrophy in
different deep-sea cold seep sediments. These include a methane
seep in the South China Sea, a mud volcano offshore Costa Rica, gas
hydratemounds in the Gulf of Mexico, and an activemethane seep in
the Eel River Basin13,31–34. Based on 15N2 tracer experiments coupled
with nanoSIMS, to date only two cold seep taxa have been identified
as diazotrophs, the methanotrophic ANME-2 archaea and their
sulfate-reducing bacterial partners of the SEEP-SRB1 clade31,32,34,35.
However, PCR amplicon surveys targeting the nitrogenase reductase
nifH gene suggested greater phylogenetic diversity among diazo-
trophs in methane seep sediments36–38. Biological nitrogen fixation
requires large amounts of ATP and high-potential electrons, whereas
anaerobic methane oxidation associated with ANME and SRB are
among the lowest energy-yielding reactions that can sustain life20,31,39.
From this point of view, we hypothesize that biological nitrogen
fixation in cold seeps does not necessarily rely on sulfate-dependent
anaerobic oxidation of methane. Considering the existence of phy-
logenetically and functionally diverse communities in cold seep
sediments11,40, other catabolic processes are predicted to also drive
nitrogen fixation.

In this study, we investigate the hidden diversity and distribu-
tions of nitrogenases and diazotrophs, and compile evidence for
their in situ activities within deep-sea cold seep sediments. To this
end, gene- and genome-centric analyses of 61 metagenomes are
coupled with six metatranscriptomes derived from 11 globally dis-
tributed areas of hydrocarbon seepage (Fig. 1 and Supplementary
Data 1). Samples originate from five types of cold seeps, namely gas
hydrates, mud volcanoes, asphalt volcanoes, oil and gas seeps and
methane seeps. Most seep types have previously been shown to have
lighter δ15N indicative of biological nitrogen fixation, compared to
nearby background sediments13,41,42 (Supplementary Fig. 1 and Sup-
plementary Notes). Overall, this study corroborates deep-sea cold
seep sediments as overlooked habitats for uncovering diverse dia-
zotrophs from uncultivated lineages supported by diverse energy
sources, and emphasizes the importance of nitrogen fixation in a
carbon-dominated environment.
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Fig. 1 | Geographic distribution of 11 cold seep sites where metagenomic and
metatranscriptomic data were collected. These samples were originated from
five types of cold seeps: gashydrates,mudvolcanoes, asphalt volcanoes, oil andgas
seeps and methane seeps. Sites with red asterisks denote that both metagenomes

and metatranscriptomes were collected, sites with blue asterisks denote that only
metatranscriptomes were collected, and sites without asterisks denote that only
metagenomes were collected. Also see details in Supplementary Data 1. The world
map was drawn using the ggplot2 package in R v4.0.3.
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Results and discussion
Cold seeps harbor canonical and novel nitrogenase gene
homologues
The nifH marker gene, which encodes a key structural protein of the
nitrogenase enzyme, is commonly used to explore the diversity and
abundance of diazotrophs in various environments15,43. Annotations of
contigs assembled from 61 metagenomes collected at 11 globally dis-
tributed cold seep sampling stations (Fig. 1 and Supplementary Data 1)
revealed 202 non-redundant nifH homologues falling into the nitro-
genase superfamily. The phylogenetic tree (Fig. 2) suggested that nifH
homologues were classified into distinct bona fide nitrogenase
sequences (canonical groups I to III) as well as nitrogenase-like groups
(groups IV toVI)44–48. These include (1) typicalMo-Fenitrogenases from
aerobic and facultative anaerobic bacteria (group I; n = 1); (2) Mo-Fe
nitrogenases fromanaerobic bacteria and archaea (group II;n = 32); (3)
alternative nitrogenases (Mo-independent Anf and Vnf) and someMo-
Fe nitrogenases from Euryarchaeota48 (group III; n = 11); (4) poorly
characterized nif homologues (group IV; n = 123); (5) bacterio-
chlorophyll and chlorophyll biosynthesis genes49 (group V; n = 1); and
(6) putative tetrapyrrole cofactor biosynthesis genes44 (group VI;
n = 5). Group IV genes include its subclusters B (n = 19), C (n = 19) and E
(n = 16) with unknown functions, as well as subcluster D (n = 69)
involved in archaeal methionine biosynthesis44–48. Subcluster A within

group IV also includes functional nitrogenases found in Endomicro-
bium proavitum that can fix nitrogen50, but none of the identified nifH
homologues from the cold seep assemblies are affiliated with this
subcluster. Despite this diversity, this classification scheme (based on
Meheust et al.)44 still did not sufficiently reflect the variety of nitro-
genase genes found in cold seep diazotrophic populations. Following
the approaches reported by Dekas et al.35, Miyazaki et al.37 and Al-
Shayeb et al.51, unclassified sequences formed three distinct lineages
(Fig. 2) including (1) a clade similar to nifH found in Methanosarcina
species but not clearly falling into the canonical groups (i.e., Metha-
nosarcina-like group, MSL; n = 7), (2) a novel clade proposed here as
group VII (n = 15), and (3) a novel clade proposed here as group VIII
containing nifH-like genes (n = 6). Among the three novel lineages,
MSL and group VII were considered as bona fide nifH based on the
analyses of nitrogenase operon structure and conserved motif
detailed below.

Read abundance ratios of bona fide nifH (n = 66) and single-copy
ribosomal protein genes were used as a proxy for the relative abun-
dance of putative diazotrophs in the total microbial community52,53.
Diazotrophs were typically abundant within various types of cold seep
sediments (24 ± 22% of the total bacterial and archaeal community)
(SupplementaryData 2), but this varied greatly between samples (from
0.7% at a North Pacific gas hydrate to 93% at Gulf of Mexico oil and gas
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samples) exhibiting correlation with seep type and sediment depth
(Fig. 3a). Heterotrophic microorganisms must oxidize large amounts
of organic carbon to generate sufficient ATP to fix nitrogen under
anoxic conditions43. Accordingly, cold seeps classified as high-flux
mud-prone systems, including oil, gas and methane seeps, hosted the
highest densities of diazotrophs (Fig. 3a, b), suggesting a potential

control exerted by hydrocarbon flux rates on cold seep diazotrophs.
Interestingly, a positive correlation was also observed between the
gene abundance for nifH and the oxidativemcrA gene typical of ANME
archaea (Spearman’s ρ = 0.77, P = 2.2e−16; Fig. 3c). Variants of the
oxidative methyl-coenzyme M reductase A (McrA) are used as indica-
tors for estimating the relative abundance of anaerobic methane- and
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multi-carbon alkane-metabolizing archaea5,54,55. In this context, nifH
sequences belonging to the newly discovered clade group VII were the
most abundant (Fig. 3a), highlighting the unique diversity of hydro-
carbon seep diazotrophs compared to other studied ecosystems,
including the deep-sea background sediments29,56.

Diverse diazotrophs from ten different phyla reside in cold seep
sediments
Using metagenomic assembly and binning strategies, we recovered
1428 non-redundant bacterial (n = 1146) and archaeal (n = 282) popu-
lation genomes (Supplementary Data 3) belonging to 76 phyla based
on the Genome Taxonomy Database (GTDB; see Methods). Most

genomes were affiliated with the phyla Chloroflexota (n = 239, namely
Chloroflexi in NCBI taxonomy), Desulfobacterota (n = 185, namely
Deltaproteobacteria), Halobacteriota (n = 114, namely Euryarchaeota),
Proteobacteria (n = 130), Acidobacteriota (n = 70, namely Acid-
obacteria), Bacteroidota (n = 65, namely Bacteroidetes), Planctomy-
cetota (n = 54, namely Planctomycetes), Thermoplasmatota (n = 48,
namely Thermoplasmata), and Asgardarchaeota (n = 43, namely
Asgard superphylum). Among these genomes, 20 bacterial and 15
archaeal MAGs spanning ten different phyla encoded nitrogenase
genes (Fig. 4a and Supplementary Data 4), and belong to the Halo-
bacteriota (n = 14), Desulfobacterota (n = 11), Chloroflexota (n = 2),
UBA6262 (n = 2, candidate phylum), Altarchaeota (n = 1),

Fig. 3 | Relative abundance patterns of 202 nifH genes. a Relative abundances of
202 nifH genes from different cold seep sediments, shown as RPKM (reads per
kilobase per million mapped reads). b Comparison of nifH gene abundances in
different types of cold seep ecosystems.n values refer to thenumber of biologically
independent samples for statistics analysis. Asterisks indicate statistically sig-
nificant differences between groups of mud volcanoes, oil and gas seeps, and
methane seeps (determined by two-sided Wilcoxon Rank Sum test; * for P <0.05,
** for P <0.01 and *** for P <0.001). Boxplot components: center line, median values;

box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points,
outliers. c Significant Spearman correlation between relative abundances of nifH
and the oxidativemcrA gene. Percentages were calculated by dividing the RPKM
value of nifH genes by the mean of RPKM values estimated from 14 single-copy
marker genes. The gray shadow indicates the 95% confidence interval. The abbre-
viations of the sites are shown in Fig. 1. Source data are provided as a Source
Data file.

Fig. 4 | Maximum-likelihood phylogenetic trees of nitrogen-fixing MAGs and
their NifH protein sequences. a Phylogenomic analysis of 35 MAGs containing
nitrogenfixationgenes. Thismaximum-likelihood tree is basedonconcatenationof
43 conserved protein sequences. MAGs are colored based on their phylogenetic
affiliation at the phylum level. b Phylogenetic analysis of identified NifH protein

sequences and genomic context of corresponding nif genes in the same 35 MAGs
with nitrogen fixation genes. The scale bar represents one amino acid substitution
per sequence position. For both trees, bootstrap values of >70% are indicated as
black circles at the nodes, and scale bars indicate themeannumber of substitutions
per site.
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Caldatribacteriota (n = 1, namely Atribacteria), Omnitrophota (n = 1,
namely Omnitrophica), FCPU426 (n = 1, candidate phylum), Verruco-
microbiota (n = 1, namely Verrucomicrobia), and Firmicutes (n = 1).
Within the phylum Halobacteriota, nitrogenase-encoding MAGs span
the lineages ANME-1 (n = 1), ANME-2 (n = 7), Methanotrichaceae (n = 1),
and Methanosarcinaceae (n = 5). Within the Desulfobacterota,
nitrogenase-encoding MAGs belonged to the order of “C00003060”
(aka SEEP-SRB1c39) along with other non-ANME-associated bacterial
groups such as BuS5 (aka Desulfosarcina sp. BuS5 in NCBI taxonomy),
Desulfatiglandaceae and Syntrophales known to degrade alkanes or
aromatic hydrocarbons coupled with sulfate reduction7,57. The
increased diversity of bacterial and archaeal diazotrophic lineages
substantially broadens the genomic database ofmicrobial diazotrophs
in deep-sea cold seep sediments48, which previously only included
ANME-2b and SEEP-SRB1g34. Indeed, to our knowledge, this represents
the first genomic evidence of nitrogen fixation potential in five dif-
ferent phyla, namely Altarchaeia, Omnitrophota, Caldatribacteriota
along with two bacterial candidate phyla FCPU426 and UBA626248,58.
Among archaea, only lineages related to anaerobic methanogens and
closely related anerobic methanotrophs are known or predicted to
possess nitrogenases58,59. Our detection of Altarchaeia and other
archaeal lineages (e.g., ANME-1) as potential diazotrophs also expand
the known diversity of nitrogen-fixing archaea (Fig. 4a and Supple-
mentary Data 4).

Phylogenetic analysis of NifH (Fig. 4b) reveals that nitrogenases
encodedby these 35 genomesbelong to groupsof II, III,MSL, andVII. A
largemajority of these genomes (32 out of the 35) encode nifHDK gene
clusters for synthesis of the complete nitrogenase complex. Pairwise
alignments of amino acids with bona fide nitrogenases (Supplemen-
tary Fig. 2) show that 28 identified NifH sequences contain conserved
residues important for ATP hydrolysis and [4Fe4S] cluster coordina-
tion (Cys97 and Cys132)46,60. These NifH sequences also contain con-
served residues (Arg100) for ADP-ribosylation, a reversible post-
translational modification for nitrogenase activity regulation in the
bona fide nitrogenases45. All residues required for the coordination of
the P-cluster (Cys62, Cys88 and Cys154) with the Fe atom of the FeMo
cofactor (Cys275 and His442) are conserved among 30 NifD
sequences45,61 (Supplementary Fig. 3). Crucial residues of the P cluster
(Cys70, Cys95, and Cys153) are also conserved in 31 NifK sequences
(Supplementary Fig. 4). By contrast, one or more conserved cysteine
residues in the molybdenum nitrogenase subunits NifD and NifK for
P-cluster coordination are absent in the bacteriochlorophyll oxidor-
eductase (ChlLNB and BchXYZ) and reductive cyclase of F430 synthesis
(CbfCD) systems (which both ligate a catalytic [4Fe4S] cluster
instead)46,62. Overall, the conserved active sites observed among NifH,
NifD and NifK homologues suggest that the newly assigned groups
MSL and VII nitrogenases most likely function analogously to their
canonical group I-III counterparts.

For these 35 MAGs, each nif gene cluster also contained a pair of
genes downstream of nifH that are here designated as nifI1 and nifI2
(Fig. 4b). The products of nifI1 and nifI2 are both members from the PII
family of nitrogen-regulatory proteins, known to switch-off nitrogen-
ase activity at the post-translational level63. NifI1I2 regulatory mechan-
isms are typically present in anaerobes, including all diazotrophic
methanogens, as well as anaerobic bacteria including Chlorobium
tepidum,Dehalococcoides ethenogenes and someDesulfobacterota64,65.

Based on read mapping, distributions of the 35 diazotrophs were
compared acrossmetagenomes obtained in different types of samples
from all of the cold seeps analyzed in this study (Supplementary Fig. 5
and Supplementary Data 5). Their overall relative abundance is 4 ± 3%,
far below the estimated values based on read abundance ratios of nifH
genes (Supplementary Data 2). Two possible explanations might
account for this: (1) diazotrophic MAGsmight contain multiple copies
of nifH; (2) there are still some diazotrophs that we did not recover
here. When considered individually, Desulfobacterota (comprising up

to 2% of the microbial community) and Caldatribacteriota (also up to
2%) represented the major bacterial diazotrophs, and Halobacteriota
constitutedmajor archaeal diazotrophs (up to 13%). Whilemembers of
theCaldatribacteriota phylumareprevalent in cold seep sediments11,40,
no previous studies have inferred that they are diazotrophic. These
results highlight that Caldatribacteriota may play biogeochemically
and ecologically significant roles within diverse cold seeps besides
their role in carbon cycling66. Most other diazotrophs are at lower
abundance (<1% of the microbial community). Overall, it can be
speculated that cold seep diazotrophs are widespread and abundant
to substantially contribute to the deep-sea nitrogen balance.

Various organic and inorganic energy sources support nitrogen
fixation
With the consumption of 16 ATP molecules per dinitrogen reduced,
the nitrogenase system is energetically costly formicroorganisms28. To
provide a global view of functional capabilities among the 35 diazo-
trophs, metabolic capabilities were annotated based on marker genes
and pathways. Genomic analyses of these 35 MAGs identified four
distinct groups regarding carbon cycling (Fig. 5 and Supplementary
Data 6–8): (1) anaerobic methane-oxidizing archaea, including one
ANME-1 and six ANME-2 (Fig. 5a); (2) hydrogenotrophic methanogens,
including one Methanotrichaceae and three Methanosarcinaceae
(Fig. 5c); (3) anaerobic non-methane alkane-degrading bacteria,
including two Desulfobacteria (one Desulfatiglandaceae and one
BuS5), one Syntrophales and one Caldatribacteria (Fig. 5d); and (4)
heterotrophs capable of degrading complex organic matter, such as
cellulose, chitin, glucan, pectin, polyphenols, and starch (Supple-
mentary Data 8). With respect to electron acceptors, sulfate reduction
genes were identified in eight Desulfobacterota and one Calda-
tribacteriota (Fig. 5b and Supplementary Data 7), in agreement with a
previous report that sulfate reduction supports diazotrophy inmarine
sediments29. Metal reduction related mtrC was identified in the gen-
ome of ETH-SRB1 (Supplementary Data 6), suggesting that this
organism may also use iron or manganese as a terminal electron
acceptor67. Three Desulfobulbales may be capable of both nitrate
reduction and nitrogen fixation based on the presence of napA and
napB (Supplementary Data 6). Based on the presence of two structural
genes of form I RuBisCO and various genes for the Wood Ljungdahl
pathway (Supplementary Data 6), some microorganisms represented
by these MAGs can function as autotrophs, suggesting potential che-
molithoautotrophic diazotrophy. The genomes also exhibit the
potential for further assimilation of fixed ammonium into amino acids
through the sequential action of glutamine synthetase (GS) and glu-
tamate synthase (GOGAT) enzymes or NADH-glutamate dehy-
drogenase (GDH)68 (Fig. 5).

Nitrogenases not only mediate the reduction of molecular nitro-
gen into ammonia, but also reduce protons into molecular hydrogen
during their reaction cycle69. Some diazotrophs identified here,
including those within Caldatribacteriota, Desulfobacterota and
Methanosarcinaceae (Supplementary Data 9), have the potential to
internally recycle this hydrogen as an energy source, for example by
using group 1 [NiFe]-hydrogenases linked to anaerobic respiratory
chains70. Not all diazotrophs possess hydrogenases, potentially allow-
ing non-diazotrophic bacteria to deploy uptake hydrogenases to
consume hydrogen released by hydrogenase-deficient diazotrophs.
The latter include various Chloroflexota, Desulfobacterota, Gamma-
proteobacteria, Campylobacterota, and Planctomycetota in the cold
seep sediments. Thus, the nitrogenase reaction is also likely to have
diverse consequences for nutrient cycling in cold seep sediments.

To infer whether the potential diazotrophs identified in the
metagenomes can fix N2 under in situ conditions, two metatran-
scriptomes sequenced from Haima cold seep sediments and four
metatranscriptomes sequenced from Jiaolong cold seep sediments
(Fig. 1 and Supplementary Data 1) were mapped against nitrogenase-
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encoding MAGs. For both seep sites, the nifH genes of ANME-1, ETH-
SRB1, and Caldatribacteriota were transcribed at moderate to high
levels, up to 60–335 transcripts per million reads (TPM) (Supple-
mentary Data 10), whereas fewer transcripts from ANME-2 were
detected. Transcript levels were higher in deeper sediments relative
to surficial layers, suggesting nitrogen fixation is particularly
important when microbial carbon metabolism (e.g., methane

oxidation) is prevalent and nitrogen oxides are limited71. Transcribed
nifH genes in various microbial groups suggest that diverse catabolic
processes actively fuel nitrogen fixation in cold seep sediments. This
supports the hypothesis that nitrogenases have been acquired by
organisms inhabiting nearly every characterized ecological niche,
consistent with a selective advantage for organisms able to relieve
nitrogen limitation.
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nif genes are subject to mobile genetic element transfers and
purifying selection
Microorganisms can acquire genes through horizontal gene transfer
(HGT), which enables them to adapt to changing environmental con-
ditions and thus occupy expanded ecological niches72. Previous stu-
dies have suggested that HGT events have crucially impacted the
distribution of nitrogenase genes45,48,73. For example, thermophilic
Aquificales acquired the ability to fix N2 from thermophilic
Deferribacteres56, and the acquisition of Nif by Firmicutes possibly
arose through a HGT event with an ancestral methanogen58,74. Gene
neighborhood analyses of MAGs from cold seeps revealed gene clus-
ters of mobile genetic elements (MGEs) together with nifHDK, nitro-
genase regulation and metal cofactor biosynthesis genes, and
molybdenum/molybdate and ammonium transporter genes (Fig. 6).
TheMGEs identifiedhere included retrotransposable and transposable
elements, with the former transferred via an RNA intermediate75

between host genomes and the latter serving as mobile DNAs72. Five
diazotrophic MAGs contained genes for retrotransposable elements,
including reverse transcriptase, endonuclease, DEAD/DEAH box heli-
case and nucleotidyltransferase. A transposon gene, integron inte-
grase, was only found in one ETH-SRB1 genome. MGEs near nif gene
clusters have been previously reported in other diazotrophs, indicat-
ing HGT26,60. To integrate into the host genome, MGEs require ATP
hydrolysis76. Accordingly, AAA-type ATPase genes are interspersed
with retrotransposable elements in the nif gene cluster of UBA6262
HMR_13C2018. These proteins have been biochemically demonstrated
to control efficient transposition through DNA remodeling and trans-
posase recruitment77. Meanwhile, the phylogenies of most NifH
sequences were observed to be inconsistent with their corresponding
taxonomies (Fig. 4). Except for Methanosarcina-like group NifH,
sequences fromgroup II, group III and groupVII were scattered among
diverse bacterial and archaeal phyla (Fig. 4). For example, six different
bacterial phyla encoded NifH sequences of group II. Combined with
the MGEs analysis, these results suggest that HGTs occurred among
cold seep communities during their evolution. Nevertheless, vertical
transmission of these genes in deep-sea cold seeps, like what has been
observed for nitrogenases in the surface ocean, cannot be ruled out25.

Intra-population genetic diversity (i.e., microdiversity) may
increase the fitness of a genotype in ecosystems with changing con-
ditions. InStrain78 was used to assess within-sample nif microdiversity
based onmetagenomic paired reads. Genomic nucleotide diversity (π)
was calculated based on all reads, and as the average number of
nucleotide differences per base pair for nifHDK genes. The observed
nucleotide diversity was low, ranging from zero to 0.04, and mostly
varied without significance between five different cold seep types
(Fig. 7a). This indicates that these genes are highly conserved both
across and within samples, regardless of sampling location, possibly
because few mutations accumulated during sediment burial79.
Nucleotide diversity was also estimated to be similar among nifH, nifD
and nifK genes (Fig. 7a). The ratios of the two rates of non-synonymous
to synonymous polymorphism (pN/pS) in nifHDK were determined
(Fig. 7b) to assess if genes are under purifying (negative) selection
which involves the selective removal of deleterious mutations79. In
general, pN/pS ratios below 1 indicate that a gene is under selective
pressure to remove deleterious mutations to maintain protein

function80. Calculation values were all well below 1 (between 0.02 and
0.5), suggesting that nifH, nifD and nifK genes are under strong pur-
ifying selection in cold seep sediments81. This is consistent with pre-
vious studies, as generally microbial genes encoding key functions will
undergo higher purifying selection compared to genes that are
dispensable80.

Conclusion
In the deep-sea cold seep sediments that are impacted by darkness,
low temperatures, and high hydrostatic pressure, growth of micro-
biomes consuming rich hydrocarbons is also supposed to be nitrogen
limited. Biological nitrogen fixation is one main source of bioavailable
nitrogen, offsetting localized nitrogen limitation and promoting eco-
system productivity. The present work demonstrates the diversity,
abundance, and distribution of diazotrophs at cold seeps, revealing
this metabolic guild to be diverse, widespread and probably suffi-
ciently abundant to influence deep-sea benthic nitrogen cycling. To
our knowledge, most diazotrophs detected in these cold seeps belong
to candidate phyla, including the first known diazotrophs with the
Altarchaeia, Omnitrophota, FCPU426, Caldatribacteriota and
UBA6262. Of the 35 recovered diazotrophic MAGs, 23 represent
microorganisms that are involved directly or indirectly in hydrocarbon
metabolisms, including anaerobic methane-oxidizing archaea and
anaerobic non-methane alkane-degrading bacteria. The tight correla-
tion between hydrocarbon-derived carbon and nitrogen cycles indi-
cates that nitrogen fixation pathways might be selected for
microorganisms making use of the most abundant energy source at
cold seeps. Moreover, we show that HGTs and purifying selection
mediate cold seep nitrogenase evolution. Overall, the findings in this
study highlight the importance of exploring the diversity and activity
of diazotrophs in deep-sea benthic ecosystems and suggest cultivation
of novel diazotrophs from cold seep sediments should be possible.

Methods
Compilation of δ15N records of bulk sediment organic matter
from published literature
Thepreviously publishedδ15N records of bulk sediment organicmatter
from five active cold seep sites were compiled (Supplementary
Data 11), including the Napoli and Amsterdam mud volcanoes in the
easternMediterranean Sea, an oil and gas seep in the Northern Gulf of
Mexico, and methane seeps in the South China Sea (Site F and Haima;
both in the vicinity of gas hydrate deposits). To eliminate the influence
of sources of organicmatter, the δ15N values of background sediments
nearby these seep sites were also compiled and used as controls.

Metagenomic datasets for deep-sea cold seep sediments
Metagenomes were compiled from 61 deep-sea sediment samples
(water depths ranging from 860–3005m) collected from 11 geo-
graphically diverse cold seep sites from around the world (Fig. 1,
Supplementary Data 1, and references therein). Part of these meta-
genomes were downloaded from NCBI’s Sequence Read Archive,
including datasets derived from Haakon Mosby mud volcano, Eastern
North Pacific ODP site 1244, Mediterranean Sea Amon mud volcano,
Santa Monica Mounds, and Gulf of Mexico66,82–85. Other data were
obtained from our previous publications described in detail

Fig. 5 | Metabolic reconstruction of core pathways for nitrogen-fixing MAGs.
a Anaerobic archaeal oxidation of methane; b dissimilatory sulfate reduction;
c archaeal methanogenesis; d anaerobic degradation of alkanes by bacteria. Red
font indicates that not all MAGs retrieved include the gene (numbers of MAGs with
the corresponding gene indicated in parentheses). The percentages between
brackets indicate the estimated completeness of the corresponding MAGs. Mtr N5-
methyltetrahydromethanopterin–coenzyme M–methyltransferase, Mer 5,10-
methylenetetrahydromethanopterin reductase, Mtd methylenetetrahy-
dromethanopterin dehydrogenase, Mch methenyltetrahydromethanopterin

cyclohydrolase, Ftr formylmethanofuran-tetrahydromethanopterin N-for-
myltransferase, Fwd formylmethanofuran dehydrogenase, Hdr heterodisulfide
reductase, APS adenosine phosphosulfate, Apr adenylylsulfate reductase; Sat sul-
fate adenylyltransferase, GS glutamine synthetase, GOGAT glutamate synthase,
GDH NADH-glutamate dehydrogenase, Ass alkylsuccinate synthase, AssK CoA-
ligase, Mcm methylmalonyl-CoA mutase, Pcc propionyl-CoA carboxylase, Acd
acetate-CoA ligase (ADP-forming). Detailed enzyme annotation is presented in
Supplementary Data 7.
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elsewhere11,40,71,86,87, including a Scotian Basin cold seep in the north-
west Atlantic Ocean, and the South China Sea cold seeps Jiaolong,
Haiyang4, Site F and Haima (Supplementary Data 1).

Metagenome assembly and binning
Metagenomic raw reads were checked for quality, assembled and
binned using the metaWRAP v1.3.2 pipeline88. In brief, raw reads were
trimmed using the metaWRAP Read_QC module (parameters: -skip-
bmtagger). For each cold seep site, quality-controlled reads were
individually assembled and co-assembled using the metaWRAP
Assembly module (parameters: -megahit)89. Short contigs (<1000bp)
were removed. Each metagenomic assembly was binned using the
metaWRAP Binning module (parameters: -maxbin2 -concoct -meta-
bat2). The three bin sets for each assembly were consolidated using
the metaWRAP Bin_refinement module (parameters: -c 50 -x 10)88. As
an exception, filtered reads from the Haima cold seep site were indi-
vidually assembled and binned using the same method mentioned

above. All individual assemblies from Haima site were then con-
catenated and binned using the VAMB tool (v3.0.1; default
parameters)90. All produced bins were aggregated and dereplicated to
a non-redundant set of strain-level metagenome-assembled genomes
(MAGs) using dRep (v2.6.2; parameters: -comp 50 -con 10)91 at 99%
average nucleotide identities92. Completeness and contamination of
MAGs were evaluated using CheckM v1.0.1893. Additionally, we used
GUNC v1.0.194 to assess chimerism and contamination of the
diazotrophic MAGs.

Taxonomic classification of MAGs
Taxonomy assignment of each MAG was initially performed using
GTDB-TK v1.5.195 with reference to GTDB R06-RS202 and then vali-
dated using a maximum-likelihood phylogenomic tree. Reference
genomes accessed fromNCBIGenBank and theMAGs from this study
were used to construct the phylogenomic tree based on concatena-
tion of 43 conserved single-copy genes extracted by CheckM
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v1.0.1893, following procedures described previously40. The
maximum-likelihood phylogenomic tree was built using RAxML v896

with the PROTCATLG model, bootstrapped with 1000 replicates.
Genomes were classified using the naming system of the GTDB
taxonomy.

Functional annotation
For functional profiling of unassembled metagenomes, quality-
controlled reads were searched against custom protein databases of
representative NifH and McrA sequences (https://doi.org/10.26180/c.
5230745) using DIAMOND v0.9.14 (percentage identity >50%, query
coverage >80%)97. For this analysis, only readswith lengths over 80%of
average length (bp) were used. Read counts for NifH and McrA were
converted to reads per kilobase per million (RPKM) to normalize data
taking into account gene length and metagenome size. The same
metagenomic reads were also screened for 14 universal single-copy
ribosomal marker genes used in GraftM v0.12.253 by DIAMOND (query
coverage >80%, bitscore >40)97 and normalized as above. Subse-
quently, dividing the RPKM of each gene by the average RPKM of 14
universal single-copy ribosomal marker genes provided the estimated
percentage of the community with the gene, assuming one copy per
genome.

For metagenomic assemblies, functional annotation was under-
takenwithMetaErgv1.098 against PfamandTIGRFAMdatabases. Genes
annotated as nifH in each assembly were compiled and clustered at
95% sequence identity using CD-HIT v4.8.199 to remove gene redun-
dancy. A phylogenetic tree was constructed (see below for details) to
validate findings and determine the phylogenetic clades of NifH pro-
teins. This resulted in a set of 202 non-redundant unique nifH and nifH-
like genes.

For individual MAGs, gene predictions and metabolic process
analyses were performed using MetaErg v1.098. Annotations were also

curated against the KEGG GENEs database using GhostKOALA v2.2100

(genus_prokaryotes + family_eukaryotes), METABOLIC v4.0101, and
DRAM v1.0102. Genes involved in anaerobic hydrocarbon degradation
were screened using BLASTp (identity >30%, coverage >90%,
e < 1 × 10–20) against local protein databases11,40.

Phylogenetic analyses of individual protein sequences
Each individual tree was built as follows. Amino acid sequences were
aligned using MAFFT v7.471 (-auto option)103. Alignments were further
trimmed using TrimAl v1.2.59 (-gappyout option)104. Maximum-
likelihood trees were constructed using IQ-TREE v2.0.5105, with best-
fit models and 1000 ultrafast bootstraps. The produced trees were
visualized and beautified in Interactive tree of life (iTOL; v6)106.

Conserved residues and motifs
Pairwise alignment of NifH, NifD, and NifK superfamily sequences for
conserved active site residue analysis was performed using MAFFT
(EMBL-EBI)107 and visualized with Jalview108.

Abundance profiles
RPKM values were used to represent relative abundances of nifH
and nifH-like genes. The RPKM value of each nifH and nifH-like gene
was calculated using CoverM v0.4.0 “contig” (https://github.com/
wwood/CoverM) (parameters: -min-read-percent-identity 0.95
-min-read-aligned-percent 0.75 -trim-min 0.10 -trim-max 0.90 -m
rpkm). For genome-centric analyses, nif-containing genomes were
further dereplicated at species level (i.e., 95% ANI) to avoid arbitrary
mapping between representatives of highly similar genomes. The
relative abundance of each MAG was obtained using CoverM v0.4.0
“genome” (parameters: -min-read-percent-identity 0.95 -min-read-
aligned-percent 0.75 -trim-min 0.10 -trim-max 0.90 -m
relative_abundance).

n = 2 n = 1 n = 2 n = 13 n = 31 n = 2 n = 1 n = 1 n = 13 n = 31 n = 2 n = 1 n = 2 n = 13 n = 31

n = 2 n = 1 n = 2 n = 9 n = 29 n = 2 n = 1 n = 1 n = 9 n = 29 n = 2 n = 1 n = 2 n = 11 n = 26

NifD NifK

N
uc

le
ot

id
e 

di
ve

rs
ity

a

pN
/p

S

b

NifH

Gas hydrate Asphalt volcano Mud volcano Oil and gas seep Methane seep

0.000

0.005

0.010

0.015

0.020

0.00

0.01

0.02

0.03

0.00

0.01

0.02

0.03

0.04

0.0

0.2

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

P = 0.25 P = 0.51 P = 0.35

P = 0.26 P = 0.11 P = 0.68

Fig. 7 | Evolutionary metrics of nitrogen fixation genes. a Nucleotide diversity
(π) of nifHDK genes at different types of cold seeps; b pN/pS ratio of nifHDK genes
at different types of cold seeps. Nucleotide diversity is used to measure genetic
diversity within a population (microdiversity), which is calculated using the for-
mula: 1 − [(frequency of A)2 + (frequency of C)2 + (frequency of G)2 + (frequency of
T)2]. pN/pS is the ratio of non-synonymous to synonymous polymorphism rates

within a population. n values refer to the number of biologically independent
samples for statistics analysis. The significances were analyzed by two-sided
Kruskal–Wallis Rank Sum test. Boxplot components: center line, median values;
box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points,
outliers. Source data are provided as a Source Data file.
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Expression of nifH genes at Haima and Jiaolong sediments
One sediment layer from the Haima cold seep (Haima5_0.3, 28–30
cmbsf) was used for metatranscriptomic extraction and sequencing
(Fig. 1 and Supplementary Data 1). Total RNA was extracted from ~2.5 g
of sediments using the RNeasy PowerSoil Total RNA Kit (Qiagen)
according to the manufacturer’s instructions. Total RNA extracts were
treated with DNase I (Vazyme, Nanjing, China) to remove DNA. RNA
concentrations were evaluated on Qubit 2.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA). The quality of RNA was checked using gel elec-
trophoresis. RNA was reverse transcribed to cDNA using Ovation
Ultralow System V2 kit (NuGen, San Carlos, CA, USA). Metatran-
scriptomic libraries were prepared with the VAHTS Universal V8 RNA-
seq Library Prep Kit (Vazyme, Nanjing, China) and sequenced on an
Illumina NovaSeq 6000 platform. Four previously sequenced meta-
transcriptomes from Jiaolong (JL) cold seep sediments71 (JL_0.02, 0–2
cmbsf; JL_0.06, 4–6 cmbsf; JL_0.1, 8–10 cmbsf; JL_0.14, 12–14 cmbsf)
and one metatranscriptome from the Haima cold seep (S11_6, 160–170
cmbsf) in our recent study109 (Fig. 1 and Supplementary Data 1) were
also included in the metatranscriptomic analysis. All raw metatran-
scriptomic reads were quality controlled using the metaWRAP
Read_QC module within metaWRAP v1.3.2 pipeline88. SortMeRNA
v.4.3.4110 was used to remove rRNA reads. Metagenomic reads were
mapped against nifH-containing MAGs, with those having >5× cover-
age at Haima and JL cold seep sites retained for further transcript per
million (TPM) calculations. The TPM of metatranscriptomic clean
reads mapped to predicted genes from nifH-containing MAGs were
calculated using Salmon v0.13.1 (-meta -validateMappings)111.

Detection of mobile genetic elements
Contigs containing the nifHDK cluster were annotated against the
NCBI non-redundant (NR) protein database using BLASTp (identity
>60%, coverage >90%, e < 1 × 10–5).Mobile genetic elements located on
nifHDK-containing contigs were identified according to the results of
NR annotation.

pN/pS ratio and nucleotide diversity analyses
For producing BAM files, all metagenomic filtered reads were mapped
to an indexed database of the nif-containing genomes using Bowtie 2
(v2.2.5; default parameters)112. Mapping files were then taken as input
by inStrain (v1.3.1; default parameters)78 “profile” to calculate the
nucleotide diversity and pN/pS ratio at the gene level. To do the gene-
level profiling, genes were called by the program Prodigal (v2.6.3; -p
meta)113 for each MAG.

Statistical analyses
All statistical analyses were carried out in R v4.0.3. Normality of data
was evaluated using Shapiro–Wilk tests before statistical analysis. For
comparison of cold seep and background groups, δ15N values of
sedimentary organic matter were tested using Student’s t test. For
comparison of different types of cold seeps, nifH abundance was
tested usingWilcoxon Rank Sum test; nucleotide diversity and pN/pS
ratio were tested using Kruskal–Wallis Rank Sum test. Spearman
correlation was performed using ggpmisc package v0.3.6 to assess
the relationship between the abundance of nifH and oxidative
mcrA genes.

Data availability
Assemblies, reference gene catalog, MAGs, files for the phylogenetic
trees have been uploaded to figshare (https://figshare.com/s/
aaf49b2441cdcb26027a). The raw sequencing reads generated in this
study have been deposited in NCBI under BioProject ID PRJNA831433.
All other data supporting the findings of this study are available within
the article and its Supplementary Information Files. The databases
used in this study include GTDB database R06-RS202 (https://data.
gtdb.ecogenomic.org/releases/release202/), Pfam (https://pfam.xfam.

org/), TIGRfam (https://tigrfams.jcvi.org/cgi-bin/index.cgi), KEGG
GENES database (https://www.genome.jp/kegg/genes.html), NCBI
non-redundant protein database (https://ftp.ncbi.nih.gov/blast/db/),
and the custom protein databases of representative NifH and McrA
sequences (https://doi.org/10.26180/c.5230745). Source data are pro-
vided with this paper.

Code availability
The present study did not generate codes, and mentioned tools used
for the data analysis were applied with default parameters unless
specified otherwise.
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