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Abstract

For de novo mutational signature analysis, the critical first step is to decide how many signa-

tures should be expected in a cancer genomics study. An incorrect number could mislead

downstream analyses. Here we present SUITOR (Selecting the nUmber of mutatIonal sig-

naTures thrOugh cRoss-validation), an unsupervised cross-validation method that requires

little assumptions and no numerical approximations to select the optimal number of signa-

tures without overfitting the data. In vitro studies and in silico simulations demonstrated that

SUITOR can correctly identify signatures, some of which were missed by other widely used

methods. Applied to 2,540 whole-genome sequenced tumors across 22 cancer types,

SUITOR selected signatures with the smallest prediction errors and almost all signatures of

breast cancer selected by SUITOR were validated in an independent breast cancer study.

SUITOR is a powerful tool to select the optimal number of mutational signatures, facilitating

downstream analyses with etiological or therapeutic importance.

Author summary

Mutational signatures are the footprints of exogenous exposures and endogenous muta-

tional processes on the cancer genomes. To estimate de novomutational signatures, the

first step is to decide how many signatures should be extracted in a cancer genomics

study, which determines downstream analytical steps and has been insufficiently studied.

We developed SUITOR, an unsupervised cross-validation method to select the optimal

number of signatures without overfitting the data. We demonstrated SUITOR’s superior

performance using in vitro experimental studies, in silico simulations and in vivo pan-can-

cer applications of 2,540 whole-genome sequenced tumors across 22 cancer types, and val-

idated signatures of breast cancer in additional 440 breast tumors. SUITOR advances the

methodological frontier of identifying de novomutational signatures and would help dis-

cover the causes of cancer and the means of cancer prevention and treatment.
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This is a PLOS Computational BiologyMethods paper.

Background

Mutational signatures are patterns of somatic mutations imprinted on the cancer genome by

operative mutational processes, including signatures of single base substitution [1], doublet

base substitutions [1], structural variations [2,3] and copy number alterations [4–6]. For exam-

ple, seventy-eight single base substitution mutational signatures have been identified across

cancer types (https://cancer.sanger.ac.uk/signatures/) [1,7], with some associated with exoge-

nous mutagenic exposures [8–10] and endogenous mutational processes [11–14]. Moreover,

mutational signatures have been associated with cancer predisposition genes (e.g., NTHL1 in

multiple cancer types [15], including breast cancer [16]), and used to stratify cancer patients

[17–20] for precision treatment. In these studies, deciding the expected number of signatures

is the pivotal first step, which determines the downstream steps of extracting signature profiles,

estimating signature activities and stratifying tumors based on signatures for treatment. As an

example, the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium reported that

the discordance between the extracted and known signatures is usually caused by the difficulty

in selecting the correct number of signatures [1].

There are two main types of mutational signatures analysis [21–23]: signature extraction

and signature refitting. Signature extraction aims to extract de novo signature profiles [24–28]

while signature refitting to estimate signature activities based on reference mutational signa-

tures with potential applicability in the clinical setting [29,30]. Our interest is on selecting the

correct number of de novomutational signatures for signature extraction in cancer genomics

studies [31,32], which has been insufficiently explored. SomaticSignatures [24] measures the

goodness of fit of the number of signatures based on the residual sum of squares and the

explained variance with no automatic selection criterion. SigProfilerExtractor [25] considers

the mean reconstruction error and the stability of signature extraction; however, it is unclear

how these features could be combined to jointly predict the number of signatures. EMu [26]

and signeR [27] adopt a Bayesian information criterion (BIC) [33]. Although BIC is a popular

model selection criterion for supervised learning (e.g., regression and classification) where the

number of parameters is fixed, it may not be applicable to unsupervised learning, including

mutational signature analysis, where the number of parameters increases with the sample size

(other limitations of BIC are elaborated in Supplementary Note 1 in S1 Text). SignatureAnaly-

zer [1] uses an automatic relevance determination (ARD) prior [34] which imposes a sparsity

assumption on mutation profiles and activities. The number of signatures chosen by Signa-

tureAnalyzer is sensitive to the pre-specified sparsity assumption, especially hyperparameters

of the ARD prior and the tolerance level.

To overcome the limitations of previous methods, we propose selecting the number of sig-

natures through cross-validation. Selecting the number of signatures is essentially a problem

of model selection, which has been addressed by cross-validation in other research areas

[35,36], including identification of cancer subtypes [37], exploration of population structure

[38] and prediction of lymph node metastasis [39]. In the setting of mutational signature anal-

ysis, cross-validation splits the full dataset (here, the mutation counts) into a training set and a

validation set; for a given number of signatures, these signatures are estimated in the training

set and then they are used to predict the mutations in the validation set. Multiple candidate

numbers of signatures are considered; and the number of signatures which predicts most

closely the mutations in the validation (not the training) set is selected. Hence, cross-validation

can prevent selecting too few or too many signatures (corresponding to an underfitting or
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overfitting model), both of which would predict mutation counts in the validation set poorly.

In addition, unlike the BIC or the ARD prior, cross-validation requires little assumptions and

no numerical approximations [36]. Therefore, cross-validation provides a viable solution for

selecting the correct number of signatures.

Despite being conceptually appealing, the standard cross-validation approach does not

work for unsupervised mutational signature analysis. In the standard cross-validation scheme

for the supervised learning (e.g., regression or classification in machine learning), it is feasible

to remove a subset of subjects all together as a validation set. In contrast, cross-validation for

mutational signature analysis requires retaining all tumors in the training set but removing

some mutation counts from each tumor as a validation set. Consequently, missing data emerge

in the training set and current methods for mutational signature analysis are inapplicable for

cross-validation.

These limitations are overcome by SUITOR (Selecting the nUmber of mutatIonal signa-

Tures thrOugh cRoss-validation), an unsupervised cross-validation method that selects the

optimal number of signatures to attain the minimal prediction error in the validation set.

SUITOR extends the probabilistic model to allow missing data in the training set, which

makes cross-validation feasible. Moreover, we propose an expectation/conditional maximiza-

tion (ECM) algorithm [40] to extract signature profiles, estimate signature activities and

impute the missing data simultaneously. We demonstrated SUITOR’s superior performance

using in vitro experimental data, in silico simulations, in vivo applications to 2,540 tumors

across 22 cancer types, and validation of signatures of breast cancer in additional 440 breast

tumors. Recently, other cross-validation methods have been proposed to select the number of

signatures; compared to SUITOR, CV2K focuses on selecting the number of signatures only

(without extracting signature profiles and estimating signature activities) and is based on ran-

dom, not balanced separation [41]; SparseSignatures applies cross-validation to select both the

number of signatures and the shrinkage parameter simultaneously, which is computationally

intensive and tends to infer signatures with spiking profiles [42].

Results

Overview of SUITOR

Mutational signature analysis decomposes the somatic mutation type matrix. Take single base

substitution (SBS) as an example. A somatic mutation type matrix V of size 96×N contains

mutation counts for N cancer genomes and 96 SBS types. Each SBS type refers to a mutated

pyrimidine (C or T) in the center and two unmutated adjacent nucleotides (flanking 5’ and 3’

bases) with total 4×6×4 = 96 types. For example, a genomic sequence ACG in the normal tissue

is mutated to AGG in the tumor tissue. This SBS belongs to the A[C > G]G mutation type.

SUITOR is built upon a probabilistic model [43,44], for which the maximum likelihood

estimation (MLE) is equivalent to the solution of non-negative matrix factorization (NMF),

the most popular method for mutational signature analysis [25]. More details are included in

Methods section. NMF or equivalently the Poisson NMF model requires a given number of

signatures r, which is unknown in practice; and SUITOR can select this number empirically.

The steps of SUITOR are outlined as follows (with a schematic illustration in Fig 1): 1) the

mutation type matrix is separated into the training and validation sets. The training set con-

tains missing data held out as validation data; 2) the missing data are imputed in the initial

step; 3) the ECM algorithm iteratively imputes the missing data in the expectation step (E-

step) and estimates the signature activities (of the H matrix) and profiles (of the W matrix) in

the conditional maximization steps (CM-steps) until the ECM algorithm allows V�WH for a

given number of signatures; 4) the missing data are imputed and compared to the validation
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data to calculate the prediction error in the validation set; 5) the above described steps are con-

ducted for multiple candidate numbers of signatures and the one with the minimal prediction

error will be chosen as the optimal number of signatures (corresponding to the red dot in the

prediction error curve of validation set in Fig 1).

There are three key contributions of SUITOR. First, SUITOR selects the number of signa-

tures with the minimal prediction error, which prevents selecting too few or too many signa-

tures (as model underfitting or overfitting). Although the prediction error in the training set is

reduced with increasing signatures (as illustrated by the prediction error curve of the training

set in Fig 1), the prediction error in the validation set will decrease first (due to the model

underfitting with insufficient signatures) and then inflate (due to the model overfitting with

redundant signatures). This is the well-known bias-variance tradeoff for model complexity

[45] measured by the number of signatures in the setting of mutational signature analysis. Sec-

ond, the cross-validation scheme of SUITOR guarantees that the missing data pattern does not

depend on the remaining or missing mutation counts in the training set. Hence, the missing

data mechanism is missing completely at random (MCAR), which ensures that the estimated

signature profiles and activities would not be biased due to the missing data [46]. Third, the

proposed ECM algorithm for SUITOR enjoys the convergence property, which guarantees the

increase of the likelihood function over iterations until the ECM algorithm converges [40].

Evaluation of SUITOR in two in vitro studies

We assessed the performance of SUITOR in two experimental studies [8,11], for which the

true number and profile of signatures were generated experimentally and validated in vitro
(see details in Methods). The first study created endogenous mutational signatures through

CRISPR-Cas9-mediated knockouts of DNA repair genes in an isogenic human cell line [11].

The second study generated exogenous mutational signatures in human-induced pluripotent

Fig 1. A schematic overview of SUITOR. This schematic diagram illustrates how SUITOR selects the number of de
novomutational signatures. Details are given in Results. Each column of the mutation type matrix V represents a

tumor, each row a mutation type. The bottom left shows prediction error curves in the training set (blue) and

validation set (red), which are manually drawn for the illustration purpose, with the red dot representing the minimal

prediction error in the validation set. ECM algorithm: expectation/conditional maximization algorithm; CM-steps:

conditional maximization steps; E-step: expectation step; W: signature profile matrix of size 96×r,r the number of

signatures; H: signature activity matrix of size r×N, N the number of tumor;Q(W,H|Wt,Ht): conditional expectation of

complete likelihood of W and H at the (t+1)-th step, given estimated Wt and Ht in the t-th step of ECM algorithm.

https://doi.org/10.1371/journal.pcbi.1009309.g001
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stem cell (iPSC) lines exposed to environmental or therapeutic mutagens [8]. For both studies,

we evaluated whether SUITOR could correctly select the number of signatures and recover the

profiles of single base substitution signatures. We then compared SUITOR’s performance with

SigProfilerExtractor, SignatureAnalyzer and signeR.

We first evaluated the in vitro CRISPR-Cas9-mediated knockout study of the DNA repair

geneMSH6, which was known to induce a detectable signature [11] and hence could be used

for evaluation as the positive control. SUITOR correctly detected the background signature,

which existed before the knockout ofMSH6 andMSH6 knockout-induced signature (Fig 2A)

and recovered the corresponding signature profiles (Fig 2B and Table A in S1 Table). SigProfi-

lerExtractor, SignatureAnalyzer and signeR correctly identified these two signatures as well

(S1 Fig and Table A in S1 Table). Next, we extracted signatures of knockout studies of six

DNA repair genes (CHEK2, NEIL1, NUDT1, POLB, POLE and POLM), which did not induce

experimentally detectable signatures [11] and hence could be used as the negative controls.

SUITOR and the other three methods correctly identified one background signature only

without false detection of knockout-induced signatures (S2 Fig). We conclude that in this in
vitro study with at most two signatures, all four methods perform equally well. This is not the

case when the number of signatures increases as shown below.

For the in vitro study of 79 exogenous mutagens, stable mutational signatures were experi-

mentally identified for 28 mutagens. These 28 signatures are not distinct as some signatures

are very similar to each other (details in Methods); for example, both benzo[a]pyrene (BaP)

and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) are polycyclic aromatic hydrocar-

bons (PAHs) which are the established mutagens in tobacco smoke (S3 Fig). Although all four

methods could find the background mutational signature, SUITOR detected 9 additional sig-

natures induced by mutagens (Fig 2C, 10 signatures, including one background signature and

9 mutagen-induced signatures), SigProfilerExtractor detected 4, SignatureAnalyzer 8, and

signeR 5 additional signatures (Figs 2D and S4 and Table B in S1 Table). Next, we extracted de
novo signature profiles and compared them with signature profiles reported in the original in
vitro study [8]. Indeed, de novo signatures extracted by SUITOR, SigProfilerExtractor, Signa-

tureAnalyzer and signeR could be matched to 10, 5, 9, 6 of 11 in vitro true signatures respec-

tively with the cosine similarity threshold 0.8 (sensitivity = 91%, 45%, 82%, 55%, Table B in S1

Table). The signature of 1,2-dimethylhydrazine (1,2-DMH) was detected by SUITOR and

missed by the other methods. When cosine similarity threshold was increased to 0.9, the num-

bers of matched signatures were reduced to 7, 5, 7, 6 for SUITOR, SigProfilerExtractor, Signa-

tureAnalyzer and signeR, respectively (sensitivity = 64%, 45%, 64%, 55%, Table B in S1 Table).

Besides detecting more true signatures, SUITOR also achieved the lowest prediction error

(SUITOR:1292.5; SigProfilerExtractor:2295.4; SignatureAnalyzer:2176.6; signeR:1585.1). This

indicates that the signatures detected by SUITOR in the training set predicted most closely the

mutation counts in the validation set. Finally, we examined the signature activity matrices

which were estimated by each method. Since each tumor subclone was exposed to one exoge-

nous mutagen, we expected that the signature activities of the corresponding mutagen and the

background signature should be high, while the activities of other signatures should be close to

zero (but not necessarily as exactly zeros); consequently, when we clustered tumor subclones

based on signature activities, tumor subclones exposed to the same mutagen would be clus-

tered together and separated from others. We found that SUITOR and SignatureAnalyzer

were able to separate most subclones into distinct clusters, each corresponding to a unique

mutagen exposure (S5 Fig). In contrast, SigProfilerExtractor merged subclones exposed to

BPDE and dibenz[a,h]anthracene diol-epoxide (DBADE); signeR mixed subclones exposed to

N-ethyl-N-nitrosourea (ENU) and 1,2-DMH; and both SigProfilerExtractor and signeR mixed

subclones exposed to 9-Nitrochrysense and aristolochic acid I (AAI).

PLOS COMPUTATIONAL BIOLOGY Selecting the number of mutational signatures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009309 April 4, 2022 5 / 27

https://doi.org/10.1371/journal.pcbi.1009309


We note that in vitro study of exogenous mutagens favors the method of SignatureAnalyzer.

SignatureAnalyzer implicitly assumes few signatures are present per sample and hence the

loadings of signatures are sparse, which holds here since each sample was treated with a single

Fig 2. In vitro evaluation of SUITOR and other methods. a) Prediction errors of SUITOR for the training and

validation sets of in vitro knockout study of DNA repair geneMSH6. The red dot denotes the number of signatures

with the minimal prediction error in the validation set. b) Profiles of single base substitution signature estimated by

SUITOR inMSH6 gene knockout study. The x-axis indicates the 5’ and 3’ nucleotides for each substitution type (e.g., T

[C>A]C, cytosine to adenine substitution with 5’ thymine and 3’ cytosine). The top panel: the true and estimated

background signatures (cosine similarity = 0.991; cosine similarity = 1 suggests two profiles being identical.); the

bottom panel: the true and estimatedMSH6 knockout-induced signatures (cosine similarity = 0.997). c) Prediction

errors by SUITOR for the training and validation sets of in vitro study of environmental or therapeutic mutagens. The

red dot indicates the minimal prediction error in the validation set achieved by ten signatures, including one

background signature and nine mutagen-induced signatures. d) Signatures discovered from the in vitro study of

environmental or therapeutic mutagens by four methods. Methods which could identify a given mutagen are enclosed

in parentheses. ENU: N-ethyl-N-nitrosourea; 6-Nitrochrysene+S9: 6-Nitrochrysene mixed with S9 rodent liver-

derived metabolic enzyme; DES: diethyl sulfate; SSR: simulated solar radiation; AAI: aristolochic acid I; 1,2-DMH+S9:

1,2-dimethylhydrazine mixed with S9 rodent liver-derived metabolic enzyme; BPDE: benzo[a]pyrene-7,8-dihydrodiol-

9,10-epoxide; DBADE: dibenz[a,h]anthracene diol-epoxide.

https://doi.org/10.1371/journal.pcbi.1009309.g002
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mutagen in this in vitro study of exogenous mutagens. In spite of that, SUITOR performed bet-

ter than SignatureAnalyzer. When the sparsity assumption does not hold, as demonstrated in

in silico simulations and the PCAWG study described below, SignatureAnalyzer would find

more false-positive signatures than the other methods. In contrast, SUITOR, which does not

rely on the sparsity assumption, is not susceptible to it.

In silico simulation studies

To benchmark the performance of SUITOR and other methods, we evaluated them through

additional in silico simulations, for which the estimated signature profiles are compared to the

given signature profiles as the ground truth. First, we considered a simple setting of one true

signature, for which any additional signature found would be a false positive (details in Meth-

ods). SUITOR, SigProfilerExtractor and signeR correctly identified the single true signature

(S6 Fig) in 20 of 20 replicates; SignatureAnalyzer found a false positive signature (S7 Fig) in 17

of 20 replicates.

Next, we examined a more compressive setting of nine true signatures with varying signa-

ture activities (details in Methods; S8 Fig and Table C in S1 Table). All methods correctly iden-

tified six common signatures (SBS1, 2, 3, 5, 13, 18) in 20 of 20 replicates with the cosine

similarity threshold 0.8; SUITOR and SignatureAnalyzer detected two rare signatures

(SBS8,41) in more replicates than the other two methods (Fig 3A). None of the methods identi-

fied the extremely rare and flat signature SBS40 (present in one tumor only). Interestingly,

there existed one replicate where two detected de novo signatures were most similar to SBS5

(cosine similarity 0.97 and 0.91, respectively) for SUITOR. It indicates that two flat signatures

(likely SBS5 and SBS40) were detected in this replicate, which is consistent with the simulation

design; indeed, the signature with cosine similarity 0.91 to SBS5 was also similar to SBS40 with

cosine similarity 0.83. In addition, signeR found two flat signatures in two replicates. Both flat

signatures were most similar to signature SBS5 followed by SBS40. Moreover, signeR found

two SBS2 signatures in 3 replicates and two SBS13 signatures in 2 replicates, suggesting that

signeR would occasionally overidentify APOBEC signatures (SBS2 and SBS13). Notably, all

methods detected no other signatures besides the nine true signatures. We measured the

cosine similarity between detected signatures and true ones (S9A Fig) averaged over 20 repli-

cates. The cosine similarities of five common signatures (SBS1, 2, 3, 5, 18) were all over 90%

for 4 methods; the cosine similarities of SBS13 were slightly lower than 90% for SignatureAna-

lyzer and signeR and higher than 90% for the other two methods; as expected, the cosine simi-

larities of two rare signatures (SBS8,41) were much lower than other signatures (except cosine

similarities of SBS41 by SUITOR and SignatureAnalyzer). As a result, the increasement of

cosine similarity threshold from 0.8 to 0.9 would impact the frequency of signatures SBS8, 13,

41 to be detected across 20 replicates but not other signatures (Table D in S1 Table).

Finally, we investigated the setting when part of somatic mutations was called by mistake,

which likely occurs in practice due to sequencing and/or calling errors. We simulated a muta-

tion type matrix for 300 tumors of eight signatures which cover six major substitution types.

In addition, we added mutation counts caused by errors for each tumor generated from a uni-

form distribution with various error levels (rounded to the nearest integer, details in Methods).

We repeated this simulation by 20 times. Notably, SUITOR consistently detect eight signatures

regardless of error levels (Fig 3B) with the cosine similarity threshold 0.8; in contrast, although

SBS9 was detected by SigProfilerExtractor (5 over 20 replicates), SignatureAnalyzer (20 over

20 replicates), and signeR (1 over 20 replicates) when there are no mutation calling errors, it

was rarely detected when mutation calling errors present; for example, when the error level is

1.2, all three methods could not detect SBS9. Besides SBS9, signature SBS39 was missed by

PLOS COMPUTATIONAL BIOLOGY Selecting the number of mutational signatures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009309 April 4, 2022 7 / 27

https://doi.org/10.1371/journal.pcbi.1009309


signeR when there existed error mutations. Compared to the given signature profiles, cosine

similarities of signatures detected by SUITOR were higher than 90% for SBS4, 6, 7a, 17b, 22,

26 and 39 and slightly lower than 90% for SBS9 (S9B Fig). Consequently, if the cosine similar-

ity threshold is increased to 0.9, only the frequency of signature SBS9 to be detected across 20

replicates would be reduced for all methods (Table E in S1 Table), and SUITOR could still

detect SBS9 in more replicates than other methods. For this simulation involved mutations

called by errors, we further evaluated the performance of CV2K and SparseSignatures. When

Fig 3. In silico evaluation of SUITOR and other methods. a) The number of replicates in which a given signature (of

total 9 signatures) will be detected by each method; the rare signatures SBS8 and SBS41 were discovered in 12, 6, 14

and 6 replicates, and 17, 7, 19 and 11 replicates over total 20 replicates by SUITOR, SigProfilerExtractor,

SignatureAnalyzer and signeR, respectively. b) The number of replicates in which a given signature (of total 8

signatures) will be detected by each method under various error levels. Error level equaling to zero means no somatic

mutations called by errors.

https://doi.org/10.1371/journal.pcbi.1009309.g003
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there were no mutation calling errors, CV2K was able to detect true 8 signatures among 19 of

20 replicates; however, its performance declined with increasing error levels; when the error

level is at 1.2, CV2K detected 8 signatures in 6 of 20 replicates and detected 7 signatures in

other 14 replicates (Table F in S1 Table). SparseSignatures tended to find more signatures even

without mutation calling errors; it detected more than 12 signatures (as many as 20 signatures

for one replicate) in 9 of 20 replicates; when the error level was 1.2, SparseSignatures identified

the true 8 signatures in only 2 replicates (Table F in S1 Table).

Together, the simulation studies suggest that SUITOR is able to find both common and

rare signatures while well controlling the rate of false positives, outperforming other methods.

Detection of pan-cancer mutational signatures

We tested the four methods in whole-genome sequencing (WGS) data of 2,540 tumors across

22 cancer types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) study [1] (details

in Methods).

First, we extracted de novomutation signatures one cancer type at a time for eight cancer

types, each with at least 100 tumors. Unlike in in vitro or in silico studies, the true signatures

were unknown here. Nevertheless, we could evaluate if the signatures detected in part of the

dataset predict mutation counts in the remaining part well. Specifically, the mutation type

matrix is separated into training, validation and testing sets, the last of which is used to evalu-

ate the performance of the selected number of signatures (details in Methods). Among the

four methods, SUITOR clearly attained the smallest prediction errors across eight cancer types

(Fig 4A). It suggests that the existing tools are not designed for dealing with missing data and

hence cannot conduct cross-validation, which motivates us to develop SUITOR. In addition,

we compared signature profiles extracted by each method, using all counts in the mutation

type matrix (i.e., without the split of the mutation type matrix for SigProfilerExtractor, Signa-

tureAnalyzer and signeR); most signatures found by SUITOR were highly similar to the COS-

MIC signatures [7] (with cosine similarity > 0.8, Fig 4B) and frequently detected by the other

methods (Fig 4C). In contrast, SignatureAnalyzer identified more de novo signatures, some of

which were not matched to any COSMIC signatures (Fig 4B).

Next, we extracted de novo signatures combining WGS data from 2,540 tumors (pan-cancer

analysis). SUITOR found 22 signatures, eighteen of which could be matched to the COSMIC

signatures (Fig 4B). These signatures had the smallest prediction error (Fig 4A), compared to

signatures detected by the other methods: SUITOR 36,017; SigProfilerExtractor 255,111 (>7

times SUITOR’s prediction error); SignatureAnalyzer 402,409 (>11 times SUITOR’s predic-

tion error); and signeR 193,191 (>5 times SUITOR’s prediction error). As expected, the signa-

tures commonly found in multiple cancer types (e.g., SBS1, SBS2 and SBS13) could be

identified when combining all cancer types together, while signatures specific to a single can-

cer type (e.g., SBS24 specific to liver cancer) were absent in the combined signature analysis

(Fig 4C). When we clustered 2,540 tumors based on signature activities H estimated by

SUITOR, four clusters emerged in the t-SNE plot (Fig 5A). Liver tumors formed a distinct

cluster, possibly due to its specific signature SBS24 caused by aflatoxin exposure; the remaining

clusters included: i) a subset of lymphomas; ii) the majority of kidney tumors; iii) all remaining

tumors. Similarly, we clustered the same 2,540 tumors based on signature activities H esti-

mated by the other methods; liver tumors were separated from the other tumors across all of

the t-SNE plots generated by the other methods (Fig 5B–5D); however, kidney tumors and

lymphoma were mixed with other cancer types in the t-SNE plot from SignatureAnalyzer.

In addition, we applied CV2K and SparseSignatures to select the number of signatures. The

numbers selected by CV2K were comparable to ones by SUITOR (e.g, CV2K: 8 signatures vs
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SUITOR: 9 signatures for breast cancer; CV2K: 4 signatures vs SUITOR: 4 signatures for pros-

tate cancer; Table G in S1 Table). Since CV2K does not infer signatures profiles, we were

unable to evaluate their similarities to COSMIC signatures. SparseSignatures tended to detect

slightly fewer signatures than other methods (Table G in S1 Table); since SparseSignatures

Fig 4. Mutational signature results of eight cancer studies of PCAWG. a) The prediction errors of SUITOR,

SigProfilerExtractor, SignatureAnalyzer and signeR for eight cancer types (scale on the left-side Y axis) and for 2,540

tumors across 22 cancer types together, namely Pan-Cancer (scale on the right-side Y axis). SD: standard deviation. b)

The number of signatures identified by each method. The shaded bars and the numbers above indicate the number of

signatures whose profiles could be matched to COSMIC profiles (with cosine similarity> 0.8). c) The cosine

similarities between de novo signatures and COSMIC signatures. Only the matched pairs are shown (with cosine

similarity> 0.8). The higher the cosine similarity the better match to a COSMIC signature profile. The cosine

similarity equivalent to one denotes a perfect match.

https://doi.org/10.1371/journal.pcbi.1009309.g004
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imposed the sparsity assumption, its inferred profiles were spiky and less similar to the COS-

MIC signatures (Table H in S1 Table).

External validation of breast cancer mutational signatures

We validated the nine PCAWG breast cancer signatures (based on 194 breast tumors) using

an independent WGS set of 440 breast tumors of the Sanger breast cancer (BRCA) study from

the same ethnicity [2]. SUITOR (Fig 6A and Table I in S1 Table) and signeR (Table J in S1

Table) identified nine breast cancer signatures in PCAWG and validated eight in the Sanger

BRCA study (with cosine similarity > 0.8); SigProfilerExtractor identified eight signatures and

confirmed seven (Table K in S1 Table); SignatureAnalyzer identified twelve and validated

eight (Table L in S1 Table). Overall, six signatures (SBS1,2,8,13,17b and 18) were identified in

both studies by all methods, while the flat featureless signature SBS5 could not be validated by

any method.

Fig 5. The t-SNE visualization of clustering patterns for 2,540 tumors across 22 cancer types based on signature

activities. Signature activities are estimated by four methods: (a) SUITOR, (b) SigProfilerExtractor, (c)

SignatureAnalyzer and (d) signeR. Each dot represents a tumor and is colored by the cancer type.

https://doi.org/10.1371/journal.pcbi.1009309.g005
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Besides validating eight PCAWG breast cancer signatures, SUITOR found four additional

signatures in the Sanger BRCA study (Fig 6A and Table M in S1 Table). Two of them were

highly similar to COSMIC signatures SBS26 and SBS30 (cosine similarity > 0.93) and were

identified by the other three methods as well. The other two (similar to SBS3 and SBS6) were

also detected by SignatureAnalyzer and/or signeR. Similarly, three other methods found a few

more signatures as well (Tables N, O, and P in S1 Table). These findings suggest that there

likely exist additional signatures in the Sanger BRCA study that are missed in the PCAWG

breast cancer study because of either the larger sample size or specific operative mutational

processes (e.g., BRCA1 mutation carriers with signature SBS3) in Sanger BRCA study.

Fig 6. The results of Sanger breast cancer study by SUITOR. a) The heatmap of cosine similarity between de novo
signatures detected in the PCAWG breast cancer (BRCA) study and de novo signatures in the Sanger BRCA study. The

signatures of the Sanger BRCA study are annotated by COSMIC signatures (if cosine similarities> 0.8) among

parentheses. For example, DNSigA (SBS1) refers to de novo signature A (DNSigA) being annotated by COSMIC

signature SBS1. The four signatures which were detected in the Sanger BRCA study only were annotated by the red

rectangular frames around the names of signature. b) The heatmap of signature activities estimated by SUITOR with

hierarchical clustering in the Sanger BRCA study. The number of tumors included in each signature cluster is shown

among parentheses on the top of the heatmap. Q1, Q2, Q3: the 1st, 2nd and 3rd quantiles of signature activities. c) The

t-SNE visualization of tumors in G3 and G4 signature clusters, color-coded by signature clusters and molecular

subtypes. TNBC: triple negative breast cancer.

https://doi.org/10.1371/journal.pcbi.1009309.g006
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Finally, as an example of clinical utility of the signatures estimated by SUITOR, we stratified

the 440 breast tumors of the Sanger BRCA study using the signature activities. Four signature

clusters were found; two dominant clusters (G3 and G4) included overall 430 tumors (Fig 6B).

Compared to the G4 subgroup, the G3 subgroup showed significantly higher activities of the

nine signatures (S10 Fig and Table Q in S1 Table) and significantly lower activities of the de
novo signature A (similar to COSMIC signature SBS1 associated with aging). We found a

number of clinical factors associated with the subgroups G3 and G4, including age at diagnosis

and tumor grade (Table R in S1 Table). The singular most important associated factor was the

molecular subtype: triple negative breast cancers were significantly enriched in the subgroup

G3 (Fig 6C; odds ratio = 25.1, P-value < 2.2x10-16, two-sided Fisher’s exact test).

Other applications

Besides selecting the number of signatures of single base substitution, SUITOR could be used

to select the number of signatures of other genomic alterations in tumors, including double

base substitutions, small insertion and deletions (INDELs), and structure variations. For exam-

ple, SUITOR could detect four de novo INDEL signatures in ovarian adenocarcinoma (n = 113

tumors). Three of them were similar to the COSMIC INDEL signatures: ID1 (associated with

replication slippage, cosine similarity = 0.97; Table S in S1 Table), ID6 (associated with defec-

tive homologous recombination-based DNA damage repair, cosine similarity = 0.95) and ID8

(associate with DNA double-strand breaks repair by non-homologous end joining, cosine sim-

ilarity = 0.88). Although SUITOR is primarily designed for human tumors with whole genome

sequencing, it can be applicated to select the number of signatures in other model organisms.

As an example, we applied SUITOR to an experimental study on C. elegans [47]. Since muta-

tion counts of C. elegans are very low (partially due to its smaller genome size around 101 Mb)

relative to the mutation counts of human tumors based on WGS (human genome size around

3,000 Mb), we combined 100 C. elegans together to increase the mutation counts as a group

(leading to 28 groups for 2717 C. elegans). SUITOR could detect five de novo SBS signatures.

Compared to the signatures reported in the original C. elegans study [47], two de novo SBS sig-

natures are highly similar to signatures of alkylating agents dimethyl sulfate (DMS, cosine sim-

ilarity = 0.94, Table T in S1 Table) and ethyl methanesulfonate (EMS, cosine similarity = 1.00),

respectively; and another two de novo SBS signatures are similar to signatures of DNA repair

deficiencies due to genes SLX1 (cosine similarity = 0.89) andMLH1 (cosine similarity = 0.87),

respectively.

For analyzing PCAWG study and Sanger breast cancer study, we excluded hypermutated

tumors with mutation burden more than 10 mutations/Mb. The eight cancer types we ana-

lyzed had just few hypermutated tumors each. We further analyzed a couple of cancer types

with more prevalent hypermutated tumors (colorectal adenocarcinomas n = 60, esophageal

adenocarcinomas n = 98, Head and neck squamous cell carcinoma n = 57). SUITOR would

find less signatures when we included hypermutated tumors (Table U in S1 Table). For exam-

ple, only SBS6 (associated with defective DNA mismatch repair) and SBS10a (associated with

polymerase epsilon exonuclease domain mutations) could be detected for colorectal adenocar-

cinoma when including hypermutated tumors (17 over 60 tumors). It suggests the inclusion of

hypermutated tumors would likely hinder the detection of other signatures by SUITOR, as

least when the number of tumors is small.

Discussion

It’s crucial to select the correct number of de novomutational signatures for a cancer genomics

study. Here we present SUITOR that selects the number of signatures through cross-validation
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to minimize the prediction error in the validation set. We have shown how SUITOR outper-

forms common existing methods most of the time. In vitro studies show that SUITOR is capa-

ble of retrieving the correct number and profiles of both endogenous and exogenous

signatures, allowing the correct stratification of tumor subclones exposed to distinct mutagens.

In silico simulation studies show that SUITOR can detect common signatures in all replicates

and rare signatures (as low as 1%) in the majority of replicates. Applications to eight in vivo
PCAWG cancer types show that SUITOR discovers signatures which achieve the lowest pre-

diction errors in the testing sets. Most of these signatures are confirmed by other methods and

matched to the COSMIC signatures. All except one signature found in PCAWG BRCA study

were validated in the independent Sanger BRCA study. The activities of signatures selected by

SUITOR in the Sanger BRCA study are dominated by two clusters, driven by the molecular/

histological subtypes.

In this paper, we used 10-fold cross validation, which is recommended as a good compro-

mise for the bias-variance trade-off regarding the choice of k in K-fold cross validation [48,49].

In addition, we have tried 20-fold cross validation (i.e., 5% of data as validation data) for

PCAWG studies, which led to the same number of signatures (results not shown).

In summary, SUITOR has shown to perform better than other commonly used methods in

revealing mutational signatures, the “footprints” engraved in the cancer genomes by operative

mutational processes with potentially important etiological or therapeutic implications.

Methods

The probabilistic non-negative matrix factorization (NMF) model

Given the number of signatures r to be extracted, NMF factorizes the mutation type matrix

into two non-negative matrices: the matrix of signatures W of size 96×r and the matrix of

activities/exposures H of size r×N such that V�WH. Each column of W forms a signature pro-

file with the elements summed to 1, showing how 96 mutation types comprise a signature pro-

file; each column of H contains activities of r signatures, reflecting how intense rmutational

signatures are in a tumor. To estimate W and H, it is common to minimize the generalized

Kullback-Leibler (KL) divergence

DKL VjWHð Þ ¼
X96

p¼1

XN

n¼1
vpnlog vpn

.Xr

j¼1
wpjhjn

� �
þ
Xr

j¼1
wpjhjn � vpn

n o
;

subject to wpj�0 and hjn�0 with 1�j�r, 1�n�N and 1�p�96. Lowercase letters, vpn, wpj and

hjn, denote elements of the corresponding matrices, V, W and H, respectively. NMF can also

be solved with other objective functions such as Frobenius norm or more general β-diver-

gence, depending on the applications [34].

Notably, minimization of the generalized KL divergence is equivalent to maximize a likeli-

hood function of a probabilistic NMF model [44,50]. Indeed, for a Poisson NMF model, vpn of

the nth tumor and pth mutation type is assumed to be independently distributed, following a

Poisson distribution with mean
Pr

j¼1
wpjhjn. The log-likelihood of Poisson NMF model can be

written as log{Pr(V|WH)} = −DKL(V|WH)+C with a constant C. Therefore, minimizing gener-

alized KL divergence DKL(V|WH) is equivalent to maximizing the log-likelihood log{Pr(V|

WH)}. In addition, it could be shown that the multiplicative update algorithm [51], which is

commonly used to minimize the generalized KL divergence, is equivalent to an expectation/

conditional maximization (ECM) algorithm [40] for the Poisson NMF model (Supplementary

Note 2 in S1 Text). These two equivalences are used to develop SUITOR.
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Unsupervised cross-validation for mutational signature analysis

SUITOR aims to select the optimal number of signatures which minimizes the prediction

error in the validation set through cross-validation. Here, we describe the steps to create the

validation set and the related challenges.

For a K-fold cross-validation, we divide the type matrix V into K parts where the Poisson

NMF model is fitted on K−1 parts as the training set, and the fitted model is validated on the

remaining one part as the validation set. The cross-validation is carried out K times with each

part served as a validation set once, using the balanced separation [52,53] detailed as follows.

In the kth fold (1�k�K) of a balanced separation, a set of mutation counts {vpn|p = (n mod 10)

+(k−1)+aK, a = 1,2,. . ..} are held out for the nth tumor as validation data, where a is restricted

such that 1�p�96. For example, (1, 11,� � �,91)st mutation types of the first tumor are held out

in the 1st fold, (2, 12,� � �,92)nd mutation types in the 2nd fold and so on. Note that the balanced

separation keeps equal number of retained mutation types for each tumor in the training set,

which is computationally more stable than randomly splitting V into the training and valida-

tion sets. The latter may randomly remove a large number of mutation types for a tumor.

As validation data are held out, missing data emerge in the training set, the reason for

which existing methods of NMF fail. To address this challenge, we extended the Poisson NMF

model and propose an expectation/conditional maximization (ECM) algorithm to incorporate

the missing data.

Expectation/conditional maximization (ECM) algorithm of SUITOR

Let S be the set of indices of mutation type matrix V such that

S ¼ fðn; pÞj1 � n � N and 1 � p � 96g. For a K-fold cross-validation, S would be divided

into K disjoint sets S1; � � � ;SK . For the kth fold, VL
k ¼ fvpnjðn; pÞ 2 Skg denotes the validation

set and VT
k ¼ fvpnjðn; pÞ 2 S Skg the training set, where S Sk represents the indices of V

excluding ones in Sk. Mutation counts in Sk will be removed from V and denote as missing

data Mk ¼ fmpnjðn; pÞ 2 Skg. The vpn in VT
k andmpn in Mk are assumed to be independently

distributed as a Poisson distribution with the mean
Pr

j¼1
wpjhjn. By the scheme of balanced sep-

aration, VL
k is missing completely at random (MCAR), since VL

k is removed from V, indepen-

dent of values of VT
k and VL

k . MCAR enables us to propose an ECM algorithm to incorporate

missing data and obtain unbiased estimates [46] of W and H.

Next, we outline the ECM algorithm in the following iterative steps (details in Supplemen-

tary Note 3 in S1 Text).

1. Initial step: choose initial values of Mk and set initial parameters W0 and H0.

2. E-step: given the observed data VT
k and the parameters Wt and Ht of the previous step t, the

ECM algorithm calculates the conditional expectation of complete likelihood

QðW;HjWt;HtÞ ¼ E½logfPrðVT
k ;MkjWHÞgjWt;Htg� ¼ � DKLðV

�jWHÞ þ C�;

where C� is a constant independent of W and H, v�pn the elements of V� as v�pn ¼ vpn for

ðn; pÞ 2 S Sk and v�pn ¼ E½mpn� ¼
Pr

j¼1
wt
pjh

t
jn for ðn; pÞ 2 Sk.

3. CM1-step: update parameters Wt+1 by maximizing Q(W, Ht|Wt, Ht) with respect to W.

4. CM2-step: update parameters Ht+1 by maximizing Q(Wt+1, H|Wt, Ht) with respect to H.

5. Iterate steps 2 to 4 until convergence.
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In the initial step, we use the median of mutation counts in VT
k per each mutation type as

initial values for Mk; other more complicated methods of specifying initial values, such as near-

est neighbors, lead to similar results (results not shown). We are aware that the ECM algorithm

possibly converges to a local saddle point. To overcome it, we try 300 random initial values W0

and H0, which leads to 300 pairs of Ŵ i and Ĥ i, the estimates of W and H for the ith initial

value, i = 1,2,. . .,300. The final reported Ŵ and Ĥ are the Ŵ i and Ĥ i which maximize the

logfPrðVT
k jŴ l; Ĥ lÞg among all Ŵ i0s and Ĥ i0s.

Selecting number of signatures by SUITOR

For a given number of signatures r, we first evaluate the prediction error, i.e., the disparity

between the observed validation data VL
k and the predicted ones M̂k ¼ E½Mk� ¼

fðŴĤÞpnjðn; pÞ 2 Skg; for the kth fold, k = 1,2,. . .,K,

ERRr;k � � logfPrðV
L
kM̂kÞg ¼ DKLðV

L
k jM̂kÞ � C

�:

We then evaluate overall prediction error, ERRr ¼
PK

k¼1
ERRr;k, across K folds. Since the

term C� is unrelated to Ŵ and Ĥ, it is dropped. Finally, we select the number of signatures r�

which minimizes ERRr over a range of numbers of signatures 1�r�R.

Extracting signature profiles and estimating activities of signatures

Once the optimal number of signatures r� is determined by SUITOR, we extract mutational

signature profiles W and estimating signature activities H, via maximizing log{Pr(V|WH)}

with the fixed rank r�. Similar to the ECM algorithm in SUITOR, we evaluate multiple initial

values and use Ŵ and Ĥ which maximizes logfPrðVjŴĤÞg to relieve local optima problem.

Parameters used for SUITOR and other mutational signatures analysis

tools

The parameters used for SUITOR and other mutational signatures analysis tools are listed as

follows.

SUITOR: minimum rank: 1; maximum rank: 10; number of folds: 10; EM algorithm stop-

ping tolerance: 1e-5; maximum number of iterations in EM algorithm: 2000; number of

seeds:300

SigProfilerExtractor: sig.sigProfilerExtractor("matrix", "Output_folder_name", data, start-

Process = 1, endProcess = 15, totalIterations = 100, cpu = 36).

SigneR: signeR(M = t(input), nlim = c(1,15), try_all = TRUE),

where try_all = TRUE means it evaluate BIC for rank in nlim = c(1, 15).

SignatureAnalyzer: the default parameters.

CV2K: the default parameters.

SparseSignatures: the default parameters.

In vitro studies

The datasets of two in vitro studies were downloaded from http://medgen.medschl.cam.ac.uk/

serena-nik-zainal/. The details of study design and implementation were described previously

[8,11]. In these in vitro studies, the endogenous and exogenous mutational signatures were

experimentally generated in vitro and hence the true number of signatures and profiles are

known.
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We created the mutation type matrix for both studies and applied SUITOR, SigProfilerEx-

tractor, SignatureAnalyzer and signeR. We chose SigProfilerExtractor and SignatureAnalyzer,

since they have been applied to a number of studies [13,14,28,54–56], and signeR [27] because

it utilizes Bayesian information criterion (BIC), a popular model selection criterion for super-

vised learning. For SUITOR, we used 10-fold cross-validation with 90% of counts in mutation

type matrix as the training set and the remaining 10% as the validation set. In contrast, the

whole mutation type matrix V was analyzed by SigProfilerExtractor, SignatureAnalyzer and

signeR, respectively under the default setting.

The first study induced endogenous mutational signatures by CRISPR-Cas9-mediated

knockouts of DNA repair genes in an isogenic human cell line. First, we focused on the MSH6
knockout-induced single base substitution signature, which is characterized by C>T and T>C

single base substitutions (~148 substitutions per cell division). We evaluated whether the four

methods were able to retrieve the background signature and theMSH6 knockout-induced sig-

natures. Next, we analyzed the gene-knockout studies with no induced signatures (for genes

CHK2, NEIL1, NUDT1, POLB, POLE and POLM), to evaluate whether the four methods

would find false positive signatures in addition to the background signature.

In the second study, exogenous mutational signatures were created by environmental or

therapeutic mutagens. We selected 324 subclones (including 35 control subclones) of human-

induced pluripotent stem cell (iPSC) lines, for which the mutations were measured by whole-

genome sequencing (WGS). While controls are not exposed to mutagens, each subclone is

exposed to one of 79 mutagens, including simulated solar radiation (SSR), dibenzo[a,l]pyrene

(DBP) and alkylating agent therapy temozolomide (TMZ). SSR recapitulates the UV-associ-

ated signatures and DBP is a potent carcinogen of the polycyclic aromatic hydrocarbons

(PAHs) produced when coal, crude oil, or gasoline is burned. The stable mutational signatures

were experimentally identified for 28 mutagens. Note that these 28 signature profiles identified

by experiments are not distinct. Hierarchical clustering of 28 signature profiles indicated sig-

nature profiles are clustered together with 13 clusters based on cosine similarity > 0.8 between

profiles (S11A Fig); consensus clustering showed that 13 clusters of signature profiles demon-

strated the stable clustering (consensus matrix in S11B Fig).

For each method, we checked if the correct number of signatures were attained with its

impacts on the downstream analyses. Specifically, we investigated whether the retrieved de
novo signature profiles were highly similar to the true signature profiles. We further explored

if signature contributes could separate subclones exposed to the distinctive mutagens, visual-

ized by t-distributed stochastic neighbor embedding (t-SNE [57]).

In silico simulation design of one signature

We simulated a mutation type matrix for 500 tumors and analyzed it by the four methods,

each repeated 20 times. We used the signature profile of SBS8 as the true signature profile for

W and generated the activity vector H from a uniform distribution within the range [20000,

40000]. SBS8 is dominated by C>A and T>A mutations but not as flat as signature SBS3 or

SBS5 and not as spiky as signature SBS1 or SBS2. Then the mutation type V was generated by a

Poisson distribution with mean WH.

In silico simulation design of nine signatures

We simulated signatures mimic to the ones observed in the Pan-Cancer Analysis of Whole

Genomes (PCAWG) breast cancer study [1]. The nine signatures identified by SUITOR show

various signature activities and signature profiles; some signatures contribute to all tumors

(e.g., SBS1 and SBS5, present in 100% of tumors; Table C in S1 Table) while others contribute
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to a few tumors (e.g., SBS41, present in 6% of tumors) and even to one (SBS40) or two tumors

(SBS8); some signature profiles are spiky (e.g., SBS1 and SBS2/13; S8 Fig) while others are rela-

tively flat (e.g., SBS5).

Specifically, we generated mutation type matrices similar to VBR, the mutation type matrix

of PCAWG breast cancer study. VBR is approximated by WBRHBR, for which WBR contains the

COSMIC signature profiles and HBR is the corresponding signature activity matrix (down-

loaded from https://www.synapse.org/#!Synapse:syn11738669). We removed signatures with

zero activities to all tumors and chose 9 signatures to compose the signature profile matrix

WBR of size 96×9. With WBR fixed, we took bootstrap samples HBR
boot from each column of

matrix HBR, and generated VBR
boot which follows a Poisson distribution with mean WBR HBR

boot .

Due to the dependencies between SBS1 and SBS5 as well as between SBS2 and SBS13, their

activities are resampled jointly while the activities of other signatures are sampled individually.

We simulated 20 mutation type matrices for 200 tumors, and each was analyzed by four meth-

ods respectively.

In silico simulation of eight signatures with some mutations called by

mistake

We simulated a mutation type matrix for 300 tumors with mutation calling errors. We

repeated this simulation 20 times and analyzed the simulated type matrices by SUITOR, Sig-

ProfilerExtractor, SignatureAnalyzer, signeR, CV2k and sparseSignatures. We chose eight sig-

nature profiles as the true signature profiles for W to cover all six major substitution types:

SBS4 for [C > A], SBS39 for [C > G], SBS6 and SBS7a for [C > T], SBS22 for [T> A], SBS26

for [T > C], SBS17b for [T > G] and SBS9 for [T> C] and [T > G]. The activity matrix H was

first generated from a uniform distribution with the range [0, 100], then some randomly cho-

sen elements in the activity matrix H were set as zero to mimic the real data. The true mutation

type V0 without error was generated by a Poisson distribution with mean WH. In addition, we

added error mutation counts for each mutation type and each tumor caused by possible

sequencing and/or calling errors; we chose a relatively simple noise model to imitate error

mutation counts not specific to a subset of mutation types. Specifically, error mutation counts

were generated independently and identically from a uniform distribution for each mutation

type with the range [0, a×b] and were rounded to the nearest integer, where the error level a

equates to 0 (i.e., no error mutation counts), 0.4, 0.8 and 1.2, and b is the average mutation

count of each tumor (i.e., b being the column average of the matrix V0). Hence, the error

mutation counts were proportional to counts of true mutation counts with varying error

levels.

In vivo human cancer genomics studies

We analyzed 2, 540 tumors across 22 cancer types of PCAWG [1], including 321 tumors of

hepatocellular carcinoma, 286 tumors of prostate adenocarcinoma, 237 tumors of pancreatic

adenocarcinoma, 194 tumors of breast adenocarcinoma, 146 tumors of central nervous system

medulloblastoma, 143 tumors of renal cell carcinoma,112 tumors of ovary adenocarcinoma

and 100 cases of B-cell non-Hodgkin lymphoma. Other cancer types have less than 100 tumors

per cancer type. The tumors were whole genome sequenced and datasets of the somatic muta-

tion calls were downloaded from https://www.synapse.org/#!Synapse:syn11726620, which

includes single base substitution (SBS) and Insertions and Deletions (INDEL). The hypermu-

tator tumors with SBS mutation burden more than 10 mutations/Mb were excluded [58] (e.g.,

we excluded 5 tumors of hepatocellular carcinoma, 4 tumors of pancreatic adenocarcinoma, 4

tumors of breast adenocarcinoma, 1 tumor of renal cell carcinoma,1 tumor of ovary
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adenocarcinoma, 7 tumors of B-cell non-Hodgkin lymphoma and zero tumors for other two

cancer types). For each cancer type, we applied SUITOR, SigProfilerExtractor, SignatureAna-

lyzer and signeR to select the number of signatures and estimate signature activities and pro-

files. The signatures with cosine similarity larger than 0.8 were reported. The higher the cosine

similarity the better match to a COSMIC signature profile. The cosine similarity equivalent to

one denotes a perfect match. Note that the cosine similarity larger than 0.9 is a more stringent

cutoff and our simulation studies show few true signatures may be missed by using the cosine

similarity 0.9 as the cutoff.

To compare the prediction errors, we split the mutation type matrix into a training set

(90% of counts in the mutation type matrix), a validation set (5%) and a testing set (5%). For

SUITOR, the training set was used to fit the probabilistic NMF model with multiple numbers

of signatures and the validation set to select the number of signatures. The other methods used

both the training and validation sets to select the number of signatures. Next, we compared the

prediction errors of selected signatures by each method on the testing set. For SigProfilerEx-

tractor, SignatureAnalyzer and signeR, we imputed missing training data by medians of avail-

able mutation counts per each mutational type, applied each method, predicted the testing

data and calculated the prediction error as SUITOR did. For SUITOR, it could handle missing

data and predict the testing data by the ECM algorithm. Note that the split of the mutation

type matrix into a training set (90% of counts in the mutation type matrix), a validation set

(5%) and a testing set (5%) was used for comparing the prediction errors only. For comparing

the extracted profiles (Fig 4B and 4C), all counts in the mutation type matrix were used for Sig-

ProfilerExtractor, SignatureAnalyzer and signeR.

Sanger whole genome sequencing breast cancer study

The Sanger whole genome breast cancer (BRCA) study sequenced 560 breast tumors. The

somatic mutation calls files were downloaded from http://ftp.sanger.ac.uk/pub/cancer/Nik-

ZainalEtAl-560BreastGenomes. Among 560 breast tumors, 110 tumors were included in

PCAWG and hence excluded from this validation study. Ten hypermutator tumors were also

excluded. We applied SUITOR, SigProfilerExtractor, SignatureAnalyzer and signeR to a) select

the number of signatures and estimate signature activities and profiles; b) compare the signa-

tures with ones detected in the PCAWG breast cancer study; and c) investigate if additional

signatures are found in Sanger whole genome breast cancer study. In addition, we stratified

the tumors based on mutation activities and associated the signature clusters with epidemio-

logical or clinical characteristics.

Supporting information

S1 Fig. The number of signatures selected for the knockout study of DNA repair gene

MSH6. Each plot shows how SigProfilerExtractor (A), SignatureAnalyzer (B) and signeR (C)

select the optimal number of signatures respectively.

(TIF)

S2 Fig. The signatures detected in knockout studies of six DNA repair genes. A) The plots

of criteria to select the optimal number of signatures by SUITOR, SigProfilerExtractor, signeR

and SignatureAnalyzer (in clockwise order). B) The profiles of signatures discovered by each

method.

(TIF)

S3 Fig. Signature profiles identified experimentally from the in vitro study of environmen-

tal or therapeutic mutagens. The signatures include 28 mutagen-induced signatures and a
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background signature existing in control samples and all mutagen treated samples. ENU: N-

ethyl-N-nitrosourea; DBP+S9: dibenzo[a,l]pyrene mixed with S9 rodent liver-derived meta-

bolic enzyme; PhiP+S9: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine mixed with S9

rodent liver-derived metabolic enzyme; MNU: N-methyl-N-nitrosourea; DBPDE: dibenzo[a,l]

pyrene diol-epoxide; MX: 3-chloro-4-(dichloromethyl)-5-hydroxy- 2(5H)-furanone; AAI:

aristolochic acid I; 1,2-DMH+S9: 1,2-dimethylhydrazine mixed with S9 rodent liver-derived

metabolic enzyme; 1,8-DNP: 1,8-Dinitropyrene; DBA+S9: dibenz[a,h]anthracene mixed with

S9 rodent liver-derived metabolic enzyme; 3-NBA: 3-nitrobenzanthrone; DBADE: dibenz[a,h]

anthracene diol-epoxide; 1,6-DNP: 1,6-Dinitropyrene; DES: diethyl sulfate; DBAC: dibenz[a,j]

acridine; 5-Methylchrysene+S9: 5-Methylchrysene mixed with S9 rodent liver-derived meta-

bolic enzyme; SSR: simulated solar radiation; BaP+S9: benzo[a]pyrene mixed with S9 rodent

liver-derived metabolic enzyme; 6-Nitrochrysene+S9: 6-Nitrochrysene mixed with S9 rodent

liver-derived metabolic enzyme; BPDE: benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide.

(TIF)

S4 Fig. The number of signatures selected from the in vitro study of environmental or

therapeutic mutagens by A) SigProfilerExtractor, B) SignatureAnalyzer and C) signeR.

The numbers of detected signatures include one background signature and additional muta-

gen-induced mutational signatures.

(TIF)

S5 Fig. Clusters of subclones of in vitro study of exogenous mutagens, visualized by t-SNE

for SUITOR, SigProfilerExtractor, SignatureAnalyzer and signeR. Each dot represents a

subclone, colored by the mutagen treatment.

(TIF)

S6 Fig. The number of signatures selected for in silico simulation studies with one signature

by SUITOR (A), SigProfilerExtractor (B), SignatureAnalyzer (C) and signeR (D) for one repli-

cate as an illustration.

(TIF)

S7 Fig. The signature profiles of the true mutational signature and the ones discovered by

each method for a replicate in in silico simulation studies with one signature.

(TIF)

S8 Fig. The profiles of nine signatures pre-specified in the in silico simulation studies.

Some signature profiles are spiky (e.g., SBS1 and SBS2/13), while others are relatively flat (e.g.,

SBS5).

(TIF)

S9 Fig. The cosine similarities over 20 replicates of SUITOR, SigProfilerExtractor, Signa-

tureAnalyzer and signeR for in silico simulation (A) with nine COSIMIC signatures and

(B) with eight COSMIC signatures added by sequencing errors. The length of the solid line

represents the standard deviation.

(TIF)

S10 Fig. The boxplots of mutation contributions of 12 signatures for signature clusters G3

and G4 in Sanger breast cancer study. The signatures of the Sanger BRCA study are anno-

tated by COSMIC signatures (if cosine similarities > 0.8) among parentheses. For example,

DNSigA (SBS1) refers to de novo signature A (DNSigA) being annotated by COSMIC signa-

ture SBS1.

(TIF)
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S11 Fig. (A) The dendrogram of hierarchical clustering of 28 mutagens with complete linkage

method. The height of the branches represents the dissimilarity defined as 1 minus cosine sim-

ilarity between two signature profiles. The dashed red line corresponds to 0.8 cosine similarity

which suggests 13 clusters. (B) The heatmap of the cluster consensus matrix for k = 13. Ele-

ments of the consensus matrix show the proportions of concordant mutagen pairs over resam-

pled data: white (0%) indicates never clustered together and dark blue (100%) shows clustered

together always.

(TIF)

S1 Text. Supplementary notes. Supplementary note 1 in S1 Text: on Bayesian information

criteria (BIC) for mutational signature analysis. Supplementary note 2 in S1 Text: on equiva-

lence between multiplicative update algorithm of NMF and exception/conditional maximiza-

tion (ECM) algorithm for a Poisson NMF model. Supplementary note 3 in S1 Text:

expectation/conditional maximization (ECM) algorithm.

(DOCX)

S1 Table. Supplementary tables. Table A in S1 Table: The cosine similarities between the de
novo signatures and the true in vitro signatures. De novo signatures are discovered by SUITOR,

SUITOR, SigProfilerExtractor, SignatureAnalyzer and signeR. Cosine similarity is used to

compare them with true in vitro signatures: the background signature and signature induced

by MSH6 gene knockout. Cosine similarity ranges from 0 to 1, with a cosine of 1 indicating a

perfect match. Table B in S1 Table: The cosine similarities between the signatures discovered

by SUITOR, SigProfilerExtractor, SignatureAnalyzer, signeR and the true mutagen-induced

signatures. For each de novo signature, the largest cosine similarities are highlighted in red,

indicating the strongest similarity to the corresponding in vitro signatures. ENU: N-ethyl-N-

nitrosourea; DES: diethyl sulfate; 1,2-DMH+S9: 1,2-dimethylhydrazine mixed with S9 rodent

liver-derived metabolic enzyme; TMZ: Temozolomide; SSR: simulated solar radiation; 6-NC:

6-Nitrochrysene; AAI: aristolochic acid I. Table C in S1 Table: The percentage of nonzeros,

mean and standard deviation (SD) of signature contributions in in silico simulation studies of

nine signatures. Table D in S1 Table: The selected number of signatures out of 20 in in silico
simulations of nine signatures for SUITOR, SigProfilerExtractor, SignatureAnalyzer, signeR.

The column with #(CS > 0.8) indicates the number of signatures based on the threshold 0.8,

while the column with #(CS>0.9) indicates the number of signatures based on the threshold

0.9. Table E in S1 Table: The selected number of signatures out of 20 in in silico simulations

with sequencing errors for SUITOR, SigProfilerExtractor, SignatureAnalyzer, signeR. The col-

umn with #(CS > 0.8) indicates the number of signatures based on the threshold 0.8, while the

column with #(CS>0.9) indicates the number of signatures based on the threshold 0.9.

Sequencing errors per each tumor were generated from a uniform distribution within the

range [0, a×b], where the letter a denotes ErrorLevel (0 means no sequencing errors) and b is

the average mutation count of each tumor. The frequencies of signature SBS9 are highlighted

in red because the frequency of signature SBS9 to be detected across 20 replicates would be

reduced for all methods if the cosine similarity threshold is increased to 0.9. Table F in S1

Table: The selected number of signatures out of 20 in in silico simulations with sequencing

errors for SparseSignatures and CV2K. Sequencing errors per each tumor were generated

from a uniform distribution within the range [0, a×b], where the a denotes ErrorLevel (0

means no sequencing errors) and b is the average mutation count of each tumor. Table G in

S1 Table: The number of signatures identified by SparseSignatures and CV2K for eight cancer

types of PCAWG studies, entire PCAWG data and Sanger Breast cancer study. The column

with CS� > 0.8 indicates the number of signatures whose largest cosine similarity is greater

than 0.8 for SparseSignatures method. Table H in S1 Table: The cosine similarities between de
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novo signatures discovered by SparseSignatures in in vivo studies. We annotated them with

COSIMC signature having the largest cosine similarity. COSMIC signatures and cosine simi-

larities are highlighted in red if it is larger than 0.8. Duplicated signatures with repsect to the

highest cosine similarity are marked with an asterisk. Table I in S1 Table: The cosine similar-

ity between de novo signatures discovered by SUITOR in PCAWG breast cancer study and de
novo signatures discovered by SUITOR in Sanger breast cancer study. For each column, the

largest cosine similarity is highlighted in red if it is larger than 0.8 or in blue otherwise, corre-

sponding to the COSMIC signature most similar to a given PCAWG or Sanger signature.

Table J in S1 Table: The cosine similarity between de novo signatures discovered by signeR in

PCAWG breast cancer study and de novo signatures discovered by signeR in Sanger breast

cancer study. For each column, the largest cosine similarity is highlighted in red if it is larger

than 0.8 or in blue otherwise, corresponding to the COSMIC signature most similar to a given

PCAWG or Sanger signature. Table K in S1 Table: The cosine similarity between de novo sig-

natures discovered by SigProfilerExtractor in PCAWG breast cancer study and de novo signa-

tures discovered by SigProfilerExtractor in Sanger breast cancer study. For each column, the

largest cosine similarity is highlighted in red if it is larger than 0.8 or in blue otherwise, corre-

sponding to the COSMIC signature most similar to a given PCAWG or Sanger signature.

Table L in S1 Table: The cosine similarity between de novo signatures discovered by Signa-

tureAnalyzer in PCAWG breast cancer study and de novo signatures discovered by Signature-

Analyzer in Sanger breast cancer study. For each column, the largest cosine similarity is

highlighted in red if it is larger than 0.8 or in blue otherwise, corresponding to the COSMIC

signature most similar to a given PCAWG or Sanger signature. Table M in S1 Table: The

cosine similarity between de novo signatures discovered by SUITOR in PCAWG breast cancer

study and in Sanger breast cancer study with COSMIC signature profiles. For each column,

the largest cosine similarity is highlighted in red if it is larger than 0.8 or in blue otherwise, cor-

responding to the COSMIC signature most similar to a given PCAWG or Sanger signature.

Table N in S1 Table: The cosine similarity between de novo signatures discovered by SigProfi-

lerExtractor in PCAWG breast cancer study and in Sanger breast cancer study with COSMIC

signature profiles. For each column, the largest cosine similarity is highlighted in red if it is

larger than 0.8 or in blue otherwise, corresponding to the COSMIC signature most similar to a

given PCAWG or Sanger signature. Table O in S1 Table: The cosine similarity between de
novo signatures discovered by SignatureAnalyzer in PCAWG breast cancer study and in

Sanger breast cancer study with COSMIC signature profiles. For each column, the largest

cosine similarity is highlighted in red if it is larger than 0.8 or in blue otherwise, corresponding

to the COSMIC signature most similar to a given PCAWG or Sanger signature. Table P in S1

Table: The cosine similarity between de novo signatures discovered by signeR in PCAWG

breast cancer study and in Sanger breast cancer study with COSMIC signature profiles. For

each column, the largest cosine similarity is highlighted in red if it is larger than 0.8 or in blue

otherwise, corresponding to the COSMIC signature most similar to a given PCAWG or Sanger

signature. Table Q in S1 Table: The mean and standard deviation (SD) of signature contribu-

tions by signature subtype G3 and G4. Table R in S1 Table: The clinical and pathological fac-

tors associated with the subgroups G3 and G4. a) For continuous factors; b) for discrete

factors. Table S in S1 Table: The cosine similarities between de novo INDEL signatures in

ovarian adenocarcinoma by SUITOR and COSIMC INDEL signatures. Table T in S1 Table:

The cosine similarity between de novo signatures discovered by SUITOR and the signatures

reported in the original C. elegans study (Volkova et al. 2020). COSMIC signatures and cosine

similarities are highlighted in red if it is larger than 0.8. Table U in S1 Table: The cosine simi-

larity between de novo signatures discovered by SUITOR in PCAWG colorectal, esophageal,

and head SCC cancer studies. COSMIC signatures and cosine similarities are highlighted in
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red if it is larger than 0.8. The numbers in parentheses are the number of tumors for each

study.

(XLSX)

S1 Data. Information for software and dataset webpages.

(DOCX)

S2 Data. The input and output matrices of signature profiles (W) and activities (H) for the

SUITOR as well as the benchmarking methods (SigProfilerExtractor, SignatureAnalyzer,

and signeR) as results of in vitro and the Pan-Cancer Analysis of Whole Genomes

(PCAWG) studies.

(ZIP)
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