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A novel automated image analysis 
system using deep convolutional 
neural networks can assist to 
differentiate MDS and AA
Konobu Kimura   1,2, Yoko Tabe   1,3, Tomohiko Ai3, Ikki Takehara2, Hiroshi Fukuda4, 
Hiromizu Takahashi4, Toshio Naito4, Norio Komatsu5, Kinya Uchihashi2 & Akimichi Ohsaka1,6

Detection of dysmorphic cells in peripheral blood (PB) smears is essential in diagnostic screening of 
hematological diseases. Myelodysplastic syndromes (MDS) are hematopoietic neoplasms characterized 
by dysplastic and ineffective hematopoiesis, which diagnosis is mainly based on morphological findings 
of PB and bone marrow. We developed an automated diagnostic support system of MDS by combining 
an automated blood cell image-recognition system using a deep learning system (DLS) powered by 
convolutional neural networks (CNNs) with a decision-making system using extreme gradient boosting 
(XGBoost). The DLS of blood cell image-recognition has been trained using datasets consisting of 
695,030 blood cell images taken from 3,261 PB smears including hematopoietic malignancies. The DLS 
simultaneously classified 17 blood cell types and 97 morphological features of such cells with >93.5% 
sensitivity and >96.0% specificity. The automated MDS diagnostic system successfully differentiated 
MDS from aplastic anemia (AA) with high accuracy; 96.2% of sensitivity and 100% of specificity (AUC 
0.990). This is the first CNN-based automated initial diagnostic system for MDS using PB smears, which 
is applicable to develop new automated diagnostic systems for various hematological disorders.

Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic stem cell disorders characterized by 
ineffective and neoplastic hematopoiesis and dysplasia of one or more of the major hematopoietic lineages associ-
ated with a variable risk of later acute leukemia1–3. Although several susceptibility genes have recently been iden-
tified (e.g., DNMT3A, TET2, ASXL1, TP53, and RUNX1), the pathogenesis is not yet completely understood4,5. 
Therefore, diagnostic workup relies on conventional tests including a complete blood count (CBC), morphologi-
cal examinations of PB smear and bone marrow (BM) aspiration and biopsy, and flow cytometry6,7. The first two 
tests are valuable initial diagnostic steps, being much less invasive and costly than the other examinations.

Currently, normal leukocytes can be differentiated using automated hematology analyzers equipped with opti-
cal sensors and mathematical computer-based algorithms (e.g., the Sysmex XN series)8,9. However, because the 
morphology of dysplastic blood cells in patients with hematological disorders is much more elaborate than that 
of normal cells, manual microscopic examinations remain the mainstay of diagnosis, which are time-consuming, 
demanding, and subjective. Thus, many industrial and academic researchers have sought to develop efficient 
and accurate automated diagnostic systems. Current advances in computer technology have been used to derive 
automated diagnostic systems for leukemia. Over the past decade, more than 20 studies have attempted to diag-
nose of hematological malignancies mainly acute lymphoblastic leukemia (ALL) using various mathematical 
algorithms to recognize and classify cell images10–12. This process requires several complex steps such as preproc-
essing, segmentation, feature extraction, and classification13. Recently, convolutional neural networks (CNNs), 
advanced forms of deep learning, have been used to optimize the parameters automatically, without the need 
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for mathematical algorithms14. CNNs classify cell images more accurately than conventional neural networks or 
machine-learning systems14.

In this study, we first developed an automated blood cell image-recognition system using a deep learning 
system (DLS) powered by CNNs that simultaneously classifies 17 blood cell types and 97 morphological features 
of such cells. Second, we created an automated MDS diagnostic support system by combining the CNN-based 
image-recognition system with a form of extreme gradient boosting (XGBoost). Then, we evaluated the diag-
nostic system using the PB smear samples obtained from patients with MDS or aplastic anemia (AA). We chose 
AA for the comparison because dysmorphic cells are not often evident in PB samples of AA compared to MDS 
although both diseases are characterized by reticulocytopenic anemia, variable neutropenia and thrombocyto-
penia due to BM failure15. Our diagnostic system successfully differentiated MDS from AA with high accuracy 
compared to human diagnoses. Here, we described the details of how we developed this new diagnostic system 
of MDS.

Results
Performance of the DLS in terms of morphological classification of blood cell types.  The DLS 
performance in terms of morphological classification of blood cell types was validated using the validation data-
sets generated as described in Material and Method (Table 1). Table 2 shows that the DLS cell differentiation 
sensitivity ranged from 93.9 to 99.8%, and the specificity from 96.0 to 100%. We compared the DLS performance 
with that of the DI-60, a conventional computer-based image-recognition system of automated hematology ana-
lyzer (Sysmex), and observed that the DLS was more sensitive and specific (Supplemental Table S1). Figure 1 
shows the DLS confusion matrix for the 17 blood cell types, compared to the reference classification of validation 
dataset. The DLS tended to misclassify segmented neutrophils as band neutrophils, lymphocytes as variant lym-
phocytes, band neutrophils as meta-myelocytes, meta-myelocytes as myelocytes, promyelocytes as myelocytes, 
and large platelets as thrombocyte aggregations.

To dissect such misclassifications in the confusion matrixes, we examined the internal features learned by the 
DLS using t-distributed Stochastic Neighbor Embedding (t-SNE)16. Figure 2 shows cell images projected from 
the 2,048-dimensional output of the last hidden layer of the DLS onto two dimensions. Blasts (red dots) remain 
in the center of the field. Three types of cells (granulocytes, lymphocytes, and monocytes) surround the blasts. 
Granulocytes are distributed to the left of the blasts all the way from the most differentiated segmented neutro-
phils (top) to the most premature promyelocytes (bottom). On the contrary, lymphocytes are located to the right 
of the blasts, and are distributed from premature variant lymphocytes (top) to mature lymphocytes (bottom). 
Eosinophils, basophils, and monocytes are found in relatively discrete locations. Some band neutrophils lie within 
metamyelocytes. The DLS may thus be unable to differentiate these two cell types. Megakaryocytes lie adjacent to 
blasts, which might compromise the accuracy of image recognition. Large platelets and platelet aggregations lie 
at the extreme right of the field.

DLS performance in terms of recognizing morphological abnormalities.  Next, we explored how 
accurately the DLS automatically detected dysmorphic features of peripheral blood cells of each hematopoietic 
lineage in the validation datasets generated as described in Material and Method. Table 3 shows the sensitivity, 
specificity, and area under the curve (AUC) calculated from the Receiver Operatorating Characteristic (ROC) 
curve. The sensitivity was high (80 to 98%) except for detection of giant platelets. Representative images of dys-
morphic peripheral blood cells in the validation datasets are shown in Supplementary Fig. 1.

Cell type
images for 
training

images for 
validation

Segmented Neutrophil 315,777 1,432

Band Neutrophil 19,191 896

Metamyelocyte 2,235 196

Myelocyte 4,596 418

Promyelocyte 699 70

Blast 11,237 790

Lymphocyte 149,524 1,177

Variant Lymphocyte 4,521 262

Monocyte 36,734 641

Eosinophil 16,186 705

Basophil 2,808 205

Large Platelet 62,985 631

Megakaryocyte 453 31

Platelet Aggregation 2,541 208

Erythroblast 4,823 409

Smudge 54,027 391

Artifact 6,693 478

Table 1.  Images in the datasets.
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DLS performance in terms of the differential diagnosis of MDS and AA.  Although both MDS and 
AA can trigger pancytopenia, dysmorphic blood cells are not often evident in AA in contrast to MDS17. In MDS, 
neutrophils undergo degranulation or abnormal granulation and may exhibit the pseudo-Pelger-Huet anomaly 
and/or hypo- or hyper-segmentation; giant neutrophils and platelets are evident17,18. To allow automated diag-
nosis of MDS, 114 image-pattern parameters from smears of MDS and AA patients were fed to XGBoost, which 
automatically analyzed the extent and nature of normal and dysmorphic images, and then diagnosed MDS or 
non-MDS using the test datasets.

Figure 3 shows a heat map of dysmorphic cell features based on the SHapley Additive exPlanations (SHAP) 
values analyzed by our system for each case (MDS: 1–26; AA: 1–11 cases). The darker the color, the more 
dysmorphic the cells. The rates of detection in MDS samples of abnormal neutrophil degranulation and the 
pseudo-Pelger-Huet anomaly, and giant platelets, were significantly higher than in AA samples. However, dys-
morphic features of lymphocytes, basophils, eosinophils, and promyelocytes did not assist differentiation of MDS 
from AA, consistent with the diagnostic features of MDS evident in BM aspirates15.

The sensitivity and specificity of the DLS performance in terms of the differential diagnosis of MDS and AA 
were 96.2 and 100%, respectively. The AUC of the ROC curve was 0.990 (Fig. 4).

Discussion
We developed a novel MDS diagnostic support system using PB smears. The system featured a CNN-based image 
recognition DLS and an EGB-based decision-making algorithm, XGBoost.

The conventional computer running image-recognition system engage in algorithms for preprocessing, seg-
mentation, feature extraction, and classification, which are similar to how images are recognized by the human 

Cell type Sensitivity (%) Specificity (%)

Segmented Neutrophil 98.0 97.7

Band Neutrophil 98.0 97.0

Metamyelocyte 93.9 96.0

Myelocyte 98.1 96.9

Promyelocyte 98.6 97.6

Blast 97.2 98.7

Lymphocyte 99.3 96.5

Variant Lymphocyte 95.0 98.2

Monocyte 99.5 99.1

Eosinophil 99.6 100.0

Basophil 98.5 99.5

Large Platelet 99.7 99.4

Megakaryocyte 93.5 99.6

Platelet Aggregation 95.7 99.3

Erythroblast 99.8 99.4

Smudge 95.4 98.0

Artifact 99.0 98.7

Table 2.  Cell classification performance of the DLS.

Figure 1.  Confusion matrix for the 17 types of differentiated blood cells. The 17 blood cell types differentiations 
by DLS are compared to the reference classification of validation dataset. SNE, segmented neutrophil; LY, 
lymphocyte; MO, Monocyte; BNE, band neutrophil; EO, eosinophil; BA, basophil; MY, myelocye; MMY, 
Metamyelocyte; ERB, erythroblast; BL, blast; PMY, promyelocyte; LP, large platelet; ART, artifact; SMU, smudge; 
TAG, thrombocyte aggregation; VLY, variant lymphocyte; MEK, megakaryocyte.
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eye. In these systems, many mathematical algorithms are used: (1) histogram equalization, Gaussian filtering, or 
median filtering for preprocessing; (2) K-means clustering or calculation of Fuzzy C-means for segmentation; (3) 
geometrical or shape features for feature extraction; and (4) support vector machines (SVMs), artificial neural 
networks, or random forests (RFs)13 for classification. However, optimization of these parameters are not straight-
forward because the variety of format, scaling and bit-size of algorithms and the difficulties of parameter tuning, 
which trigger communication mismatches between algorithms. On the contrary, neural networks perform all of 

Figure 2.  t-SNE visualization of the “DLS last hidden layer” representations of 17 blood cell types. The 17 types 
of cell clusters are colored and labeled with abbreviations of the cell types (inset).

Cell type Sensitivity (%) Specificity (%) AUC
images for 
validation*

Blast

abnormal shape of nuclei 95.3 94.4 0.975 107

abnormal granulation 85.5 95.4 0.926 62

vacuoles 92 94.5 0.950 112

Neutrophil

Pelger-Huet anomaly 93.4 95.9 0.960 61

spherical /ovoid nucleus 96.2 97.4 0.978 53

hypersegmentation 81.3 97.5 0.904 64

degranulation 86.2 92.6 0.955 130

abnormal granulation 98.3 92.2 0.986 173

giant 91.8 93.9 0.977 233

vacuoles 81.9 93.8 0.931 105

toxic granulations 95.9 97.3 0.992 244

Döhle body 90.5 86.6 0.947 84

Lymphocyte

cleaved nuclei 93.5 95.2 0.969 139

increased N:C ratio 94.7 95 0.966 75

abnormal chromatin 92.2 94.7 0.958 90

abnormal shape of nuclei 92.9 92.8 0.953 113

granular lymphocyte 82.5 94.5 0.903 154

vacuoles 81.8 92.5 0.893 110

Erythroblast

irregular shape 80 59.9 0.878 55

Large platelet

giant platelet 61.5 97.5 0.801 174

Table 3.  Classification performance of our system in terms of dysmorphic blood cells. *dysmorphic cell types 
with more than 30 images for validation were shown.
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these complicated tasks simultaneously, and there is no explicit need for complex mathematical models. Neural 
networks consist of piles of layers. Each layer is analogous to a neuron of the brain.

Recently, deep CNNs featured five convolutional layers were employed to detect ALL cells and to classify 
into three morphological subtypes (i.e., L1, L2, and L3, French-American-British Classification), and achieved 
95–99% of sensitivity and specificity10. The performance of this CNN was superior than the ones of previous 
studies using mathematical algorithms such as support vector machines, the K nearest-neighbor approach, and 
hybrid hierarchial classifiers12,19.

Detection and classification of myeloid malignant cells including MDS requires capability to differentiate 
normal and abnormal morphological features in three hematopoietic lineages including myeloid cells, erythro-
blasts and platelets in PB smears. Therefore our CNN-based image recognition DLS featured eight convolutional 
layers in total to detect and classify more complicated images than the ones of ALL. Finally, our system recog-
nized over 100 patterns in cell size and cytoplasmic morphological features, and achieved >90% sensitivity and 
specificity in the diagnosis of MDS compared to the human eye. But why not 100%? As shown in the t-SNE plots 
(Fig. 2), it might be very difficult to differentiate the cells that are continuously differentiating in a same lineage. 
For example, even by human eyes, it is difficult to distinctly differentiate band neutrophils from less matured 

Figure 3.  A heat map indicating the extent of blood cell dysmorphic features. Each row indicates the 
dysmorphic features of cells of a single case (MDS cases 1–26 and AA cases 1–11). SHAP values were calculated 
and used to generate the heat map. GN, neutrophils; LY, lymphocytes; EO, eosinophils; BA, basophils; MY, 
myelocytes; MMY, metamyelocytes; EB, erythroblasts; BL, blasts; PMY, promyelocytes; PLT, large platelets; VLY, 
variant lymphocytes; MK, megakaryocytes.
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metamyelocytes. However, further training may improve the DLS accuracy more effectively than human eyes 
with higher reproducibility.

We, then, created an MDS diagnostic support system featuring a highly trained cell image-recognition system 
combined with a decision-making algorithm based on XGBoost, which afforded 96% sensitivity and 100% speci-
ficity in terms of differential diagnosis of MDS and AA. These results were consistent with the recently developed 
automated diagnostic system of dermatological disease based on well-trained CNNs which demonstrated the 
comparable performance to human diagnosis20.

It is often difficult to distinguish the hypoplastic form of MDS (hMDS) from AA because both present with 
hypocellular BM. However, the risk of progression to acute leukemia is greater in hMDS, and differential diagno-
sis is important21. Although BM aspiration and biopsy examinations are essential to definite diagnosis, quantita-
tive estimation of peripheral blood polymorphs including dysplastic features of granulocytes has been reported 
as a simple and valuable diagnostic tool in MDS22. Dysmorphic WBCs such as hypogranular neutrophils or 
pseudo-Pelger-Huet cells found in the PB are suggestive to differentiate hMDS from AA23,24.

Our work has several limitations: (1) although the accuracy of automated MDS diagnosis was over 90%, our 
system remains to be adjunctive in its nature since BM examination, clinical information, flow cytometric data, 
and genetic tests are essential for definite diagnoses of MDS7; (2) this was a single-center study with a relatively 
small number of samples, and the training sample patterns may have been incomplete; (3) we only used one 
combination of DLSs, CNNs, and XGBoost; and (4) while the infectious diseases were not studied in this study, 
it is important to distinguish MDS from AA with infection that can be accompanied with dysmorphic WBCs 
including toxic granulation, Döhle bodies and toxic vacuolation. In addition, other inflammation markers such 
as CRP are important to diagnose infectious diseases. Therefore, as a next step, we are planning to construct an 
advanced DLS trained with the extended data of serum biochemistry. It is indispensable to train this DLS with 
increased number of cases to cover various morphological changes of blood cells and to improve accuracy. Also, 
we are planning to develope a DLS to analyze images of BM samples.

The morphological approach continues to be fundamental at the beginning of the diagnostic algorithm, even 
the new molecular technologies including gene mutation and gene expression profiling are integrated with mor-
phological examination in future4,5. Our approach might be applicable to develop new automated diagnostic 
systems for various hematological disorders.

Materials and Methods
Sample selection.  The study has been approved by the the Juntendo University Hospital Medical Ethics 
Committee (Tokyo, Japan). As part of the approval, the ethics committee explicitly waived the need for informed 
consents from individual patients because all samples were de-identified in line with the Declaration of Helsinki. 
A total of 3,261 peripheral blood (PB) smears, including 1,165 from patients with hematological disorders, were 
prepared at Juntendo University Hospital (Tokyo, Japan) from 2017 to 2018. The slides were stained with May 
Grunwald-Giemsa using an SP-10 device (a fully automated slide-maker; Sysmex, Kobe, Japan). A total of 703,970 
digitalized (preprocessed) cell images were collected with DI-60 automated digital cell image analyzer (Sysmex). 
The hematological disorders included MDS (n = 94), myeloproliferative neoplasms (n = 127), acute myeloid leu-
kemia (n = 38), acute lymphoblastic leukemia (ALL, n = 27), malignant lymphoma (n = 324), multiple myeloma 
(n = 82) and AA (n = 42). Of all images, 695,030 were used to train the CNN-based image-recognition system, 

Figure 4.  Differential diagnostic performance of the DLS. The AUC was used to measure performance; the 
maximum value is 1.
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and 8,940 were used for validation. To develop an automated diagnostic system for MDS, 75 MDS and 36 AA 
cases were used for training. The gold standard of this study is the diagnosis by the hematopathologists in accord-
ance with the latest guidelines17. All diagnoses were confirmed by independent hematopathologists based on 
clinical information, laboratory, flow cytometric, and genetic data, and BM aspiration and biopsy findings25.

Data preparation.  The training datasets were prepared for the recognition of image patterns by the deep 
learning system (DLS). The datasets were classified into 17 cell types and 97 abnormal morphological features by 
two laboratory technologists board-certified in hematology and one senior hematopathologist using the morpho-
logical criteria of the Clinical and Laboratory Standards Institute (CLSI) H20-A2 guideline and the 2016 revised 
WHO classification of myeloid neoplasms and acute leukemia18. After accumulating the image patterns using the 
training datasets, the performance of the DLS was evaluated using the validation datasets that were generated for 
testing the DLS by two laboratory technologists board-certified in hematology and one senior hematopathologist 
who are different from the ones worked on the training datasets. Table 1 summarizes the types and numbers of 
cell images used for training and testing.

The deep convolutional neural network and training using individual cell images.  To classify 
cells and identify morphological abnormalities simultaneously, we created a DLS-based cell image-recognition 
system composed of a CNN module that extracted features of preprocessed images and a classification module 
analyzing such features and classifying cell images into 17 cell types exhibiting some of 97 abnormal morphologi-
cal characteristics (cell and nuclear size and shape, and cytoplasmic patterns). Figure 5 shows the overall structure 
of our image-recognition system. The “feature extraction module” is composed of two submodules. The first 
(upstream) submodule has three consecutive blocks, and each block follows two parallel pathways consisting of 
several convolutional network layers. These layer stacks optimize feature extraction from image data and output 
parameters to the next block. The second (downstream) submodule has eight consecutive blocks, each of which 
follows parallel pathways, one of which consists of a series of convolutional layers, whereas the other lacks convo-
lutional components and is termed a residual network that functions as a buffer to avoid saturation of the system.

Each layer plays a different role: Separable Convolution (a specific type of convolutional layer; Conv 2D), 
Batch Normalization (BN), and Activation (ACT). Separable Convolution is a variant of regular convolution, 
in that spatial convolution is performed independently by each channel26. Conv 2D is a key component of neu-
ral networks that optimize parameters used to extract features and then processes the images to form “feature 
maps”27,28. BN normalizes input data distribution29. ACT follows, using a Rectified Linear Unit (ReLU)30. The first 
submodule was connected to the second to create feature maps. Conv 2D was bypassed in the second module to 
avoid unwanted deep layer saturation; this effectively calculates weights via back-propagation. The architecture 
was implemented using Keras31 and Tensorflow32.

Extreme Gradient Boosting (EGB) to create a diagnostic algorithm for MDS.  Next, we devel-
oped a system differentiating MDS from AA using cell image features extracted by the CNNs. To this end, we 
employed a XGBoost that uses a large ensemble of weak predictive models (such as decision trees) to recognize 
and classify the dysmorphic features/patterns of various blood cells33. XGBoost is one of the fastest and most 
efficient algorithms identifying optimal decision-making parameters34. First, we fed XGBoost with various cell 
image parameters, including the 17 cell classifications and 97 dysmorphic features identified by the CNN-based 
image-recognition algorithm. Then, we trained XGBoost using smears from the 75 MDS and 36 AA patients; 
XGBoost analyzed and remembered diagnostic cell patterns and dysmorphic features. Next, we used the 26 MDS 
and 11 AA samples to test the system. To determine how XGBoost made diagnostic decisions, the SHAP value of 
dysmorphic extents of various cell types were plotted on heat maps35.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Figure 5.  Schematic of the cell image-recognition system featuring convolutional neural networks. The deep 
learning system consists of three principal blocks, each of which contains piles of CNNs. The colors indicate 
different components of the CNNs.
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