
antioxidants

Review

Oxidative Stress and Antioxidant Treatments in
Cardiovascular Diseases

Wenjun Wang 1,2 and Peter M. Kang 1,*
1 Beth Israel Deaconess Medical Center, Harvard Medical School, Cardiovascular Institute,

Boston, MA 02215, USA; wwang4@bidmc.harvard.edu
2 Department of Emergency, Qilu Hospital, Shandong University, Jinan 250012, China
* Correspondence: pkang@bidmc.harvard.edu; Tel.: +1-(617)-735-4290; Fax: +1-(617)-735-4207

Received: 31 October 2020; Accepted: 10 December 2020; Published: 17 December 2020
����������
�������

Abstract: Oxidative stress plays a key role in many physiological and pathological conditions.
The intracellular oxidative homeostasis is tightly regulated by the reactive oxygen species production
and the intracellular defense mechanisms. Increased oxidative stress could alter lipid, DNA,
and protein, resulting in cellular inflammation and programmed cell death. Evidences show that
oxidative stress plays an important role in the progression of various cardiovascular diseases, such as
atherosclerosis, heart failure, cardiac arrhythmia, and ischemia-reperfusion injury. There are a number
of therapeutic options to treat oxidative stress-associated cardiovascular diseases. Well known
antioxidants, such as nutritional supplements, as well as more novel antioxidants have been studied.
In addition, novel therapeutic strategies using miRNA and nanomedicine are also being developed to
treat various cardiovascular diseases. In this article, we provide a detailed description of oxidative
stress. Then, we will introduce the relationship between oxidative stress and several cardiovascular
diseases. Finally, we will focus on the clinical implications of oxidative stress in cardiovascular diseases.

Keywords: oxidative stress; reactive oxygen species; cardiovascular diseases; antioxidant defense
enzymes; antioxidant molecules; microRNAs; nanoparticles

1. Introduction

Mounting evidences show that oxidative stress has an irreplaceable role in the development and
pathology of various diseases [1–3]. It is caused by the overproduction of reactive oxygen species (ROS),
which include both the free radicals and their non-radical intermediates, such as superoxide anion
(O2•−), hydroxyl ion (OH•), hydrogen peroxide (H2O2), and peroxyl radicals (ROO•), alkoxyl (RO•),
singlet oxygen (1O2), and ozone (O3) [4]. The burst of ROS is associated with an imbalance between
the generated ROS and the antioxidant defense systems. Overproduction of ROS has a detrimental
role in biological system by not only targeting biological molecules, such as lipid, protein, and DNA,
but also by acting as a second messenger in cellular signaling. Through targeting regulatory pathways,
ROS results in cell inflammatory signals activation or programmed cell death.

Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Evidences
show that oxidative stress plays an important role in the progression of various cardiovascular diseases,
such as atherosclerosis, heart failure (HF), cardiac arrhythmia, and myocardial ischemia-reperfusion
(I/R) injury [5,6]. A lot of work has been devoted to the studies of antioxidants therapies in prevention
and treatment of these cardiovascular disease. Small molecules, such as astaxanthin and omega-3,
have shown to have a beneficial role in cardiovascular diseases. While some clinical trials have shown
positive results, others are controversial. The impaired function of ROS-clearance enzymes, such as
superoxide dismutase (SOD), leads to high baseline levels of oxidative stress [7]. Moreover, there are
new antioxidants that are being explored, and novel strategies to specifically deliver antioxidant drugs
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to the area of ROS overproduction [8]. In this review, we will discuss the mechanisms of oxidative
stress and their therapeutic implications in cardiovascular diseases.

2. Methods

The literature search was performed using search terms “oxidative stress”, “cardiovascular
diseases”, “antioxidants”, “myocardial I/R injury”, “HF”, “atherosclerosis”, “atrial fibrillation”,
“hypertension”, “nutritional supplements”, “miRNA”, “nanoparticles”, alone or in combination.
Both clinical and animal studies were included. Furthermore, publications that addressed the basic
mechanisms and pathophysiology were considered. All articles included were from peer-reviewed
journal in English.

3. Oxidative Stress

3.1. Generation of ROS

Mitochondria are regarded as the primary source of endogenous ROS generation through
the by-products of electron transport chain (ETC) and oxidative phosphorylation [9] (Figure 1).
Mitochondria, composed of the outer and the inner mitochondrial membranes and the matrix, are the
major sites of adenosine triphosphate (ATP) production. Acetyl-CoA produced during tricarboxylic
acid cycle is transported into the mitochondria and passed down from the complexes I, III to the
complexes IV, ultimately ending up with ATP synthesis at the complex V. However, during certain
pathological conditions, the mitochondrial respiratory chain is disrupted and the electron is leaked to
oxygen to produce superoxide [10]. Complex I and III are regarded as the major sites of ROS production
in mitochondria. There are more than 10 other enzymes that also contribute to ROS production [11].
Excessive ROS production at the mitochondria can trigger the mitochondrial permeability transition
pore (mPTP) opening and disrupt mitochondrial membrane stability, which facilitates the release of
ROS from the mitochondrial matrix into the cytosol [12].

Number of enzymes outside mitochondria are known to play a role in the ROS production,
such as xanthine oxidase (Xo), myeloperoxidase (MPO), lipoxygenase, uncoupled nitric oxide synthase
(NOS), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) [13] (Figure 1).
Among them, NOX is regarded as an important source of ROS [14]. There are more than 7 members
of NOX family. NOX1, NOX2, NOX4, and NOX5 are expressed in cardiovascular system [15].
The regulation of NOX2, also known as gp91phox, is the most well-studied. The activation of NOX2
depends on the other subunits of NOX family including p22phox, p67phox, p40phox, and p47phox.
The phosphorylation at Ser303, 304, and 328 leads to the activation of p47phox [16]. Then, the activated
p47phox binds with p22phox, which makes p40phox and p67phox accessible to Nox2, resulting in the
activation of Nox2 [17]. Once Nox2 is activated, NADPH can bind with intracellular C-terminus and
transfer electrons from NADPH to oxygen to produce ROS on the other side of the membrane [18].
Additionally, Nox-derived ROS induce the activation of secondary oxidase systems including NOS
uncoupling, mitochondrial dysfunction and Xo activation [19].

In addition to ROS that are produced endogenously, environmental factors could regulate
exogenous ROS production. Smoking, environment pollutants, ultraviolet (UV) radiation, xenobiotics,
and alcohol are the examples of exogenous sources of ROS [20]. These exogenous sources of ROS
enhance ROS production through interaction with endogenous substances or enzymes. Cigarette
smoke is able to activate NOX and stimulate the ROS production. UV radiation mediates the ROS
production by interacting with water to produce ROS. Meanwhile, alcohol has potential to inhibit the
expression of antioxidants and cytoprotective enzymes.
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Figure 1. Diagrams of oxidative stress production pathways. 
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Redox homeostasis is tightly regulated by the antioxidant enzymes in the cell. Antioxidant 
enzymes include SOD, catalase, glutathione peroxidase (GPX), peroxiredoxin (PRX), and 
thioredoxin (Trx). They have an important role in defending oxidative stress by decomposing ROS 
[21] (Table 1).  

SOD is the only enzyme that can catalyze superoxide anion into oxygen and hydrogen peroxide 
[22]. Three isoforms have been identified: manganese SOD (MnSOD) located at the mitochondria 
matrix [23], copper-zinc SOD (Cu/ZnSOD) located at the cytoplasm and the nucleus, and 
extracellular SOD (ECSOD) located in the extracellular fluids [24]. Catalase can catalyze hydrogen 
peroxide to water. It is extensively expressed and located in peroxisomes of all types of mammalian 
cells except for erythrocytes and human vascular cells [25]. GPX can catalyze peroxides or organic 
hydroperoxides to water and oxygen, or the corresponding alcohol by glutathione [26]. Eight 
isoforms of GPX have been identified. GPX1 is the most ubiquitous isoform distributed in the cytosol, 
the nucleus and the mitochondria. GPX2 is present in the cytosol and the nucleus. GPX3 is mostly 
found in the cytosol. GPX4 is located at the membrane in addition to the nucleus, the cytosol, and the 
mitochondria [27].  
  

Figure 1. Diagrams of oxidative stress production pathways.

3.2. Antioxidant Defense Enzymes

Redox homeostasis is tightly regulated by the antioxidant enzymes in the cell. Antioxidant
enzymes include SOD, catalase, glutathione peroxidase (GPX), peroxiredoxin (PRX), and thioredoxin
(Trx). They have an important role in defending oxidative stress by decomposing ROS [21] (Table 1).

SOD is the only enzyme that can catalyze superoxide anion into oxygen and hydrogen peroxide [22].
Three isoforms have been identified: manganese SOD (MnSOD) located at the mitochondria matrix [23],
copper-zinc SOD (Cu/ZnSOD) located at the cytoplasm and the nucleus, and extracellular SOD (ECSOD)
located in the extracellular fluids [24]. Catalase can catalyze hydrogen peroxide to water. It is extensively
expressed and located in peroxisomes of all types of mammalian cells except for erythrocytes and
human vascular cells [25]. GPX can catalyze peroxides or organic hydroperoxides to water and oxygen,
or the corresponding alcohol by glutathione [26]. Eight isoforms of GPX have been identified. GPX1 is
the most ubiquitous isoform distributed in the cytosol, the nucleus and the mitochondria. GPX2 is
present in the cytosol and the nucleus. GPX3 is mostly found in the cytosol. GPX4 is located at the
membrane in addition to the nucleus, the cytosol, and the mitochondria [27].
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Table 1. Description of antioxidant defense enzymes.

Compound:
Isoforms Effects Research Type:

Subjects Main Findings Ref

SOD: Cu/ZnSOD,
MnSOD, ECSOD

Accelerates the reaction of
superoxide anion to form

H2O2 and oxide.

Preclinical: mice

Cu/ZnSOD-deficiency resulted
in altered responsiveness in

both large arteries and
microvessels.

[22,28]

Preclinical: Rabbits Gene transfer of ECSOD
reduced infarct size. [29]

Clinical:
HTN patients

Serum levels of SOD were
associated with alterations in

vascular structure
and function.

[30]

Catalase

Lower H2O2 concentration:
accelerate the reaction of

H2O2 with hydrogen donors
to produce water

Preclinical: mice Overexpression of catalase
prevented HTN. [25,31]

GPx: GPx 1–8
Catalyze H2O2 or organic

hydroperoxides to water or
corresponding alcohols.

Preclinical: mice GPX knockout mice were
more susceptible to I/R injury. [27,32]

Preclinical: mice
Deficiency of GPX accelerated

atherosclerotic
lesion progression.

[33]

Clinical:
CAD patients

GPX-1 Pro198Leu
polymorphism was higher in

patients with CAD.
[34]

GR
Clear the oxidized dimer form

of glutathione to reduced
glutathione.

Clinical:
CAD patients

Highest GR activity was
associated with

myocardial infarction.
[35,36]

Prx: 2-Cys, atypical
2-Cys,

and 1-Cys Prx

Catalyze H2O2 or organic
hydroperoxides to water or

corresponding alcohols.

Preclinical: mice

Overexpression of Prx-3
inhibited left ventricular
remodeling and HF after

myocardial infarction.

[37,38]

Preclinical: mice
Prx1 protected against
excessive endothelial

activation and atherosclerosis.
[39]

Clinical:
HF patients

Plasma PRX was higher in
HF patients. [40]

MSR: (1) MSRA
and MSRB (2)

fRMSR and MSRP
(3) MPT/WPT
OR enzymes

Reduce methionine sulfoxide
residues in oxidatively
damaged proteins to
methionine residues.

Preclinical: mice
Hepatic overexpression of

MSRA reduced dyslipidemia
and atherosclerosis.

[41,42]

Preclinical: mice Cytosolic MsrA protected the
heart from I/R injury. [43]

Clinical:
CAD patients

MSR was associated with
etiology of CAD. [44]

Trx
Transfer electrons to Prxs,

MSRs, other redox-sensitive
transcription factors.

Preclinical: mice Overexpression of Trx
reversed aged-related HTN. [45,46]

Preclinical: mice
Inhibition of endogenous
cardiac Trx1 stimulated

hypertrophy.
[47]

Clinical: General
population

Trx80 increased in
aged people. [48]

Grx: Grx 1–5

Catalyze the reduction of
protein disulfides or mixed
disulfides, and maintain the

intracellular redox status.

Preclinical: mice
Grx-1 diminished ventricular

remodeling in chronic
myocardial infarction

[49,50]

SOD, superoxide dismutase; Cu/ZnSOD, copper-zinc SOD; MnSOD, manganese SOD; ECSOD, extracellular
SOD; HTN, hypertension; GPx, glutathione peroxidase; I/R, ischemia-reperfusion; CAD, coronary artery disease;
GR, glutathione reductase; Prx, peroxiredoxin; HF, heart failure; MSR, methionine sulfoxide reductases; MPT,
molybdopterin; WPT, tungstopterin; OR, oxidoreductase; Trx, thioredoxin; Grx, glutaredoxin.
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PRX has peroxidase activity, which can catalyze superoxide peroxides, organic hydroperoxides,
and peroxynitrite utilizing NADPH [37]. PRX family includes 6 isoforms containing the cysteine
residues. PRX1-4 has typical 2-Cys, PRX5 has atypical 2-Cys, and PRX6 has 1-Cys [51]. Trx antioxidant
family, such as Trx and thioredoxin reductase (TrxR), plays an important role in protecting cells
from the oxidative stress. It is able to decrease ribonucleotide reductase and regulate the activity
of redox-sensitive transcription factor resulting in DNA and protein repairing. TrxR, coupled with
NADPH, could keep Trx in a reduced state [45].

3.3. Molecular Effects of Oxidative Stress

3.3.1. Oxidative Stress and Lipids, Protein, DNA Damage

Intracellular ROS are highly active and unstable. They could cause modifications of protein, lipid,
and nucleus, and modify the regulation of protein function and signal pathways. Lipids, particularly
polyunsaturated fatty acids (PUFAs) and cholesterol, are considered important target substrates of
oxidative stress because cell membranes are made up of lipids. In addition, the lipids are important
metabolites in the cell [52]. Lipid oxidation can be divided into three steps: initiation, propagation,
and termination. The initiation starts with the formation of free radicals by the unsaturated lipid
molecule losing a hydrogen atom. During the propagation process, peroxyl radicals are formed by the
reaction between lipid radicals and oxygen. The produced peroxyl radicals then attack the other lipids
to form more lipid peroxyl radicals. When hydrogen source is all used up, a lot of non-radical products
are produced [53]. Active aldehydes, such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA),
are important products of lipid peroxidation that have an important role in the pathogenesis of many
diseases. The levels of active aldehydes in the blood are predictive of the disease progression [54,55].

ROS and ROS-derived lipid peroxidation are able to attack protein, a process called protein
carbonylation [56]. It is caused by the combination of nucleophilic amino acids, such as cysteine,
histidine, and lysine, with ROS through Michael addition process [57]. Many studies have shown that
protein carbonylation is attributed to the enzyme inactivation, the degradation of proteins, and the
elevated production of ROS [58].

ROS can combine with the double bonds of nucleoside bases, resulting in the formation of
8-oxo-deoxyguanosine, thymine glycol, 5-hydroxymethyluracil, 6-hydroxy-5, 6-dihydrocytosine,
and 5-hydroxyuracil. Among them, 8-oxo-deoxyguanosine is the most well studied and has the
potential to induce G-T transversions [59]. Furthermore, oxidative stress can regulate DNA and histone
methylation to change the chromatin structure and the function of the genome [39]. Lipid peroxidation
can also directly modify DNA. The damages of DNA can be repaired by nucleotide excision repair,
homologous recombination, or translesion synthesis [60]. The imbalance between the damaged and
the repaired DNA may lead to the transcription and translation mistakes. Evidences show that
mitochondrial DNA is another important target of ROS [10]. Mitochondrial DNA is a closed-circular
double-stranded DNA controlling the function of mitochondria. The attacking of mitochondrial DNA
by ROS may result in the decreased mitochondrial copy and transcript numbers as well as the release
of mitochondrial DNA and pro-apoptotic factors [61].

3.3.2. Oxidative Stress and Inflammation

Inflammation is involved in the pathogenesis of many common diseases. Oxidative stress is
regarded as the initiator of inflammation as well as the consequence of inflammatory responses [62].
Inflammation is also regulated by oxidative stress. Nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) proteins are transcription factors that play a key role in the regulation of
inflammation and immunity [63]. Oxidative stress can regulate the activation of NF-κB by targeting
pro-inflammatory protein IκB-kinase (IKK) [64]. In addition, oxidative stress can modulate the T helper
cell differentiation by interacting with T cell receptor (TCR) signaling pathways [65]. The induction
of cyclooxygenase-2, NOS, and alterations in microRNAs (miRNAs) are also critical in the oxidative
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stress-induced inflammation [62,66]. Additionally, inflammation can enhance oxidative stress reactions.
Immune cells are recruited to the damaged site resulting in “respiratory burst” and the increased
release and accumulation of ROS [67].

3.3.3. Oxidative Stress and Programmed Cell Death

Accumulative studies show that programmed cell death is a ubiquitous phenomenon in all life
forms, and has a key role in various physiological and pathological processes [68]. Up to now, there are a
number of well characterized forms of programmed cell death processes, such as apoptosis, autophagy,
necroptosis, pyroptosis, and ferroptosis [69]. Oxidative stress plays multiple roles in regulating
various kinds of programmed cell deaths. The relationship between oxidative stress and apoptosis or
autophagy in the cell has been well-described [70,71]. However, the interaction between oxidative
stress and necroptosis, a form of regulated necrosis, is controversial [72]. Some studies showed that
ROS is the critical mediator of necroptosis [73], but other studies showed that ROS scavengers failed to
prevent necroptosis in certain cell types [74]. In pyroptosis, the release of pro-inflammatory contents
is initiated by the formation of inflammasome. ROS can activate inflammasome by sensitizing the
NF-κB-pathways [75]. Oxidative stress is most closely associated with ferroptosis [76]. Ferroptosis is
characterized by the increased accumulation of oxidative stress that leads to cell death. The increased
oxidative stress induces the release of Fe(II) from iron compounds. The up-regulated availability of
iron leads to the lipid peroxidation that culminates in ferroptosis [77].

4. Oxidative Stress and Cardiovascular Disease

The relationship between oxidative stress and cardiovascular diseases is shown in Figure 2.Antioxidants 2020, 9, x FOR PEER REVIEW 7 of 27 
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Figure 2. The relationship between oxidative stress and cardiovascular diseases. Various cardiovascular
diseases enhance the oxidative production and at the same time, oxidative stress mediates progress of
diseases. I/R, ischemia-reperfusion.

4.1. Oxidative Stress and Myocardial Ischemia-Reperfusion (I/R) Injury

Myocardial I/R injury is characterized by restoration of blood flow to the oxygen-deprived organs.
The rapid re-establishment of blood flow leads to the oxygen burst and the ROS overproduction [78].
It is one of the most important pathogenic mechanism in acute coronary syndrome, myocardial
infarction, surgical coronary bypass surgery, coronary revascularization intervention, circulatory shock,
or organ transplantation [79]. Myocardial I/R injury accounts for approximately 25% of cell deaths
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during myocardium infarction [80]. The reperfusion injury can cause the “no-reflow” phenomenon,
myocardial stunning, reperfusion arrhythmias, and reperfusion injury [81].

During reperfusion, the sources of ROS overproduction are mitochondria [82], NOX family [83],
Xo [84], and uncoupled NOS [85]. Complex I and III are the major sites for ROS overproduction in
myocardial I/R injury. In addition, mPTP participates in the regulation of ROS overproduction in
mitochondria. Braunersreuther et al. showed that the infarcted myocardium was reduced in the
NOX1 and the NOX2 deficient mice compared with the wild-type mice, while NOX4 deficient mice
had no obvious phenotype [86]. At the same time, redox signaling, including the hypoxia-inducible
factor (HIF) pathway [87] and Nuclear factor E2-associated factor 2 (Nrf2) [88] pathway, is also
activated to antagonize the ROS burst. HIF is an oxygen sensitive transcription factor which is also
regulated by NOX-related ROS production. HIF-1α attenuates I/R injury through the regulation of
inducible NOS, heme oyxgenase-1, cyclooxygenase-2, and antioxidant enzymes. Studies by Li et al.
showed that HIF also directly targets mitochondria and have a protective role [89]. Nrf2 is a family of
transcription factors. It is located in the cytosol under normal conditions. During the oxidative stress,
it is translocated into the nucleus to regulate the expression of antioxidant and anti-inflammatory
factors [90].

Increased ROS is associated with cardiomyocyte mitochondria damage, DNA damage, and protein
degradation, which all lead to irreversible cell death [91]. Mitochondria damages are considered as
the central process of oxidative stress-mediated myocardial I/R injury. Lochner et al. showed that
mitochondrial depolarization resulted in mitophagy. However, the repressed mitophagy triggered the
impairment of ATP production and Ca2+ overload [92]. Myocardial I/R injury is also associated with
abnormal opening of mPTP, which could lead to apoptosis or necrosis. Cyclophilin D (CyPD) resides
in the mitochondrial matrix working as a scaffold to control mPTP. Evidences show that S-nitrosylation
modifications of CyPD is regulated by oxidative stress; CyPD knock-in mice show less I/R injury [93].

Endoplasmic reticulum stress is also regulated by oxidative stress and plays an important role
in myocardial I/R injury [94]. Oxidative stress modifies amino acid residues to regulate protein
activities and disturb intracellular Ca2+-homeostasis. In addition, inflammation is of great importance
in myocardial I/R injury process. After myocardial I/R injury, cytokine cascades, such as tumor
necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), are activated. The activated cytokines will induce
inflammation in these cells. Among them, neutrophils are the predominant early responder [95].
Neutrophils recruited to the infarct zone contain high levels of NOX2 and MPO, which facility the
production of ROS. Furthermore, cytokine cascade has been shown to suppress cardiac contractility
and decrease collagen synthesis [96].

A clinical study in patients undergoing the primary percutaneous coronary intervention showed
plasma 8-iso-prostaglandin F2alpha, which is used as an indicator of oxidative stress, was increased
after the procedure. However, there was no relationship between 8-iso-prostaglandin F2alpha and
troponin T [97]. In patients undergoing coronary artery bypass surgery, thiobarbituric acid reactive
substances (TBARS) was measured to indicate the oxidative stress status. The results showed that the
oxidative stress was increased after surgery and the peak increase was seen 1 h after the reperfusion [98].

4.2. Oxidative Stress and Heart Failure (HF)

HF is characterized by the inadequate cardiac output to meet the bodily demands. Clinically,
it is manifested by shortness of breath and/or chest tightness [99]. Studies showed that ROS are
overproduced in all stages of HF [100]. Interestingly, the main source of ROS is different in HF patients
with or without reduced ejection fraction. HF with reduced ejection fraction (HFrEF) is characterized by
a reduced ejection fraction and is commonly due to coronary artery disease (CAD). In HFrEF, the injured
cardiomyocytes produce ROS which leads to the maladaptive remodeling through programmed cell
death and fibrosis [101]. In contrast, HF with preserved ejection fraction (HFpEF) is usually caused by
hypertension, diabetes or genetics (e.g., hypertrophic cardiomyopathy). In HFpEF, the endothelial cells
are the major sites of ROS overproduction [101,102]. The risk factors associated with HFpEF result
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in elevated plasma proinflammatory factors, such as IL-6, soluble ST2, and TNF-α. These factors act
on the endothelial cells to induce ROS production, which upregulate the protein kinase G signaling
in cardiomyocytes.

Mitochondria are major sites of ROS production in failing hearts while NOX and Xo activities
are also increased [103,104]. The overproduction of ROS in HF patients causes mitochondria damage,
which gives feedback to produce more ROS [105]. At the same time, ROS accelerates myocardial
remodeling by activating variety of hypertrophic signaling kinases and transcription factors, such as
tyrosine kinase Src, GTP-binding protein Ras, and mitogen-activated protein kinases (MAPKs) [106,107].
In addition, matrix metalloproteinases, important factors for myocardial structure, are also activated
by ROS [108].

It is worth noting that the chemotherapy associated cardiomyopathy is a special kind of HF. It is
relatively common and serious complication of chemotherapy [109]. Many classes of chemotherapeutic
agents that are widely used in the clinics are identified to have cardiac toxicity, such as anthracyclines
and alkylating agents [110]. These agents cause the increase in ROS generation and enhance the
oxidative stress in the cell, which then leads to cardiomyocyte death [111]. Doxorubicin (DOX), a widely
used anthracycline chemotherapeutic drug, directly modifies the mitochondrial DNA and disturbs the
mitochondrial function, the protein expression, and the lipid peroxidation [111]. DOX combines with
free iron to form iron-Dox complex, then reacts with oxygen and facilitates ROS production [112].

Clinical study by Tedgui showed that pericardial levels of 8-iso-prostaglandin F2alpha was
associated with severity of HF [113]. The study by Chopra et al. investigated plasma lipid peroxides
(MDA) in congestive HF patients and found an inverse correlation between MDA and left ventricular
ejection fraction [114].

4.3. Oxidative Stress and Atherosclerosis

Atherosclerosis is the underlying pathology of ischemia heart diseases, stroke and peripheral artery
diseases. Oxidative stress is essential for the pathological progress of atherosclerosis. Development
of atherosclerotic plaques will decrease the oxygen supply which is the basis of many kinds of
cardiovascular diseases [115]. Atherosclerosis is initiated by the injury of endothelial cells, followed
by the infiltration and accumulation of oxidized low-density lipoprotein (ox-LDL) cholesterol to
the subendothelial space. At the same time, leukocytes migrate to the subendothelial space.
Monocytes-originated macrophages engulf ox-LDL to form foam cells [116]. NOX, Xo, mitochondrial
enzymes are mainly responsible for the production of ROS in atherosclerosis [117]. NOX1 [118] and
NOX4 [119] are detected in vascular smooth muscle cells (VSMCs). In comparison, NOX2 [120],
NOX4 [121], and Xo [122] are found in endothelial cells.

Oxidative stress regulates the pathophysiology of atherosclerosis at all stages. First, oxidative
stress causes endothelial dysfunction by altering endothelial signal transduction and redox-regulated
transcription factors, which increase vascular endothelial permeability and catalyze leukocyte adhesion.
This is considered as the initiation of plaque formation. Then, plasma LDL is recruited to the arterial
wall where it is modified by oxidative stress to form ox-LDL. Ox-LDL can be taken up by macrophage
to form foam cells. In addition, oxidative stress alters the expression of adhesion molecules, such as a
vascular cell adhesion molecule-1, to regulate adhesion of monocytes. At the same time, increased
ROS stimulate the development of the plaque by enhancing VSMCs migration and collagen deposition.
Finally, oxidative stress exacerbates the stability of the plaque by releasing matrix metalloproteinase to
degrade the fibrous wall [123,124].

Channon et al. showed the association between endothelial dysfunction and increased vascular
superoxide production in human atherosclerosis [125]. Other study demonstrating the increase
in erythrocyte TBARS with the severity of obstruction of the artery supports the potential causal
relationship between oxidative stress and atherosclerosis [126].
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4.4. Oxidative Stress and Atrial Fibrillation (AF)

AF is the most common arrhythmia in clinical practice with symptoms of irregular and rapid
heart rate [127]. In rats, decreased plasma antioxidant capacity was associated with increased risk
of AF [128]. Quyyumi et al. showed that there were elevated cystine level, cystine/glutathione ratio,
and redox potential of glutathione (all indictive of increased oxidative stress) in AF patients [129].
The sources of ROS include NOX2/4 enzymes, which is upregulated in fibrillating area, and Xo [130].

There may be multiple mechanisms for how ROS causes AF. First, the increase in ROS regulates
ionic leaks in cardiomyocytes. It increases Na+ current [131], L-type Ca2+ current [132], and Ca2+ leak
from the sarcoplasmic reticulum (SR) [133]. All these result in prolonged action potential duration
and reduced conduction velocity [134]. Furthermore, oxidative stress promotes myocardial fibrosis
by facilitating the deposition of collagen [135]. The myocardial fibrosis interferes with the electrical
coupling of myocytes [136]. Finally, oxidative stress may cause AF by regulating iron current associated
proteins, DNA and post-translational modifications. Angiotensin II and hypoxia result in Na+ current
abnormality by regulating Na+ voltage-gated channel alpha subunit 5 (SCN5A) splicing mRNA.
Ca2+/CaM-dependent kinase II (CaMKII) is oxidized by ROS and has potential to regulate Na+ current
by ryanodine receptor, an important Ca2+ control protein located in the SR [137,138].

4.5. Oxidative Stress and Hypertension

Hypertension is regarded as the major risk factor for cardiovascular diseases. It is a pathologic
blood pressure increase resulting from the abnormal vasorelaxation factor levels. Furthermore,
laboratory studies showed that oxidative stress levels in hypertension models differ from control
group [139,140]. Similar to atherosclerosis, NOX families are regarded as a major source of ROS
while Xo, NOS, mitochondria also have important roles in ROS increase [62,124]. Oxidative stress
regulates hypertension by targeting endothelial cells. Vascular tonicity is regulated by the balance
of endothelium-derived relaxing (EDRFs) factors and endothelium-derived hyperpolarizing factors
(EDHFs). ROS is known as a member of EDHFs, whereas nitric oxide (NO) is a member of EDRFs [141].
ROS is able to decrease the bioavailability of NO and increase the amount of endogenous endothelial
NOS antagonist, such as asymmetric dimethylarginine (ADMA). Additionally, endothelial function is
regulated by cell phosphorylation pathways, such as tyrosine kinases, phosphoinositol-3-kinase/Akt
kinase (PI3K/Akt) and the MAPKs, and the gene expression factors, such as p53 and activated protein-1
(AP-1). All these pathways and gene expression factors can be initiated and controlled by oxidative
stress [123,142].

Chayama et al. measured urinary excretion of 8-hydroxy-2′-deoxyguanosine and serum
MDA-modified LDL as the indicator of oxidative stress in patients with renovascular hypertension.
They showed that there was an increase in oxidative stress indicators in these hypertensive patient
compared to the control group without hypertension [143]. Another study by Beevers also showed
that the lipid hydroperoxides were upregulated in hypertension patients [144].

5. Therapies for Oxidative Stress-Associated Cardiovascular Diseases

5.1. Antioxidant Molecules

5.1.1. Nutritional Supplements

Accumulating evidences demonstrate that many nutritional supplements have antioxidant
properties [145]. Vitamin A is a series of unsaturated nutritional organic compounds and can react
with oxidative species [146]. Vitamin A has shown to modify the effect of apolipoproteins on the risk
of myocardial infarction [147]. It is important to note that carotenoids are the precursors of vitamin
A, and astaxanthin, one of the most notable carotenoids, is regarded as a ROS scavenger. Preclinical
studies of astaxanthin demonstrated the protective effect in I/R injury and thrombotic diseases in animal
models [148]. Moreover, astaxanthin has been shown to decrease blood pressure in spontaneously
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hypertensive rats [149]. In a randomized double-blinded clinical trial, the intake of astaxanthin reduced
the serum lipid peroxidation biomarker levels while increasing the SOD level [150].

Vitamin C can detoxify exogenous and endogenous ROS as well as the modified proteins and
lipids that were modified by the ROS. Studies have shown that vitamin C could control endothelial
cell proliferation and apoptosis and smooth muscle-mediated vasodilation, which are both important
in the pathogenesis of cardiovascular diseases [151]. Vitamin E inhibits superoxide production by
impairing assembly of NOX enzymes. Experimental studies have shown that vitamin E can reduced
the risk of coronary heart disease and decreased the cardiovascular complications. A meta-analysis
of 400,000 patients reported that the rate of coronary heart disease was decreased by vitamin E and
vitamin C intake [152].

Omega-3 represents an attractive strategy to reduce the susceptibility to oxidative stress injury
in myocardial cells by modulating redox pathways. In a rat model of myocardial infarction, rats
supplemented with omega-3 showed lower infarct size [153]. Flavanols, such as quercetin, are reported
to decrease oxidative stress markers and improve cardiac function in both animal models and patients
with cardiovascular diseases [154]. A clinical trial with 805 elderly people reported that the mortality
from coronary heart disease was decreased by high flavonoid intake [152].

On the other hand, a meta-analysis (includes 66 randomized trials) examining the effect of
nutritional compounds to treat cancer or cardiovascular diseases showed mixed results. Out of
66 trials examined, 24 showed a positive outcome, 39 showed a negative outcome, and 3 showed a
neutral outcome [7]. The positive outcome was mostly observed in participants who were regarded as
malnutrition. These findings suggest that the status of nutrition of patients will affect the efficacy of
antioxidant supplementation. It is effective for those patients who lack certain nutrients that contribute
to the antioxidant defense network. Whether the additional intake will have beneficial effects in those
patients who are not deficient in these nutrients are unclear at this time.

5.1.2. Novel Experimental Antioxidant-Based Therapies

There are novel antioxidants that can be divided into following three categories: the activators
of endogenous antioxidant defense systems, the inhibitors of oxidative stress formation, and the
compounds that allow functional repair of ROS-induced damage. NRF2 activators is an example
of the activators of endogenous antioxidant defense systems. NRF2 is a basic transcription factor
that recognizes the enhancer called Antioxidant Response Element. The individuals with decreased
NRF2 expression and activity are more likely to develop atherosclerosis or hypertension [155]. In Nrf2
KO mice, the cardiac structure and function were impaired, and these mice were more susceptible
to develop HF [155]. The most well-studied drug that targets NRF2 is dimethyl fumarate (DMF).
It is already in clinical use for the treatment of multiple sclerosis. In vivo experiments showed
that DMF reduced infarction size after I/R injury [156]. In vitro experiments have also indicated
its protective role in cardiomyocytes after I/R injury [157]. Additionally, in the apolipoprotein
E (apo-E)-deficient mouse model with streptozotocin-induced hyperglycemia, DMF reduced the
development of atherosclerosis [158].

The second category of compounds are the inhibitors of oxidative stress formation include drugs
targeting Xo, NOX, and MPO. Xo inhibitor, allopurinol, is a promising therapeutic agent. Although
large-scale prospective studies evaluating allopurinol in cardiovascular diseases are still lacking,
small clinical studies have indicated a beneficial effect of allopurinol in hypertension, I/R injury and
HF by limiting the oxidative stress in endothelial cells [159]. A meta-analysis including 10 clinical
studies evaluating the effect of allopurinol on blood pressure also showed a modest reduction of blood
pressure [160]. In addition, the studies evaluating allopurinol in patients undergoing coronary artery
bypass grafting or primary percutaneous coronary intervention showed a reduced in-hospital mortality
and cardiac complications [159]. As for NOX inhibitor, GKT137831 is the first NOX inhibitor in clinical
development [161]. The treatment using GKT137831 resulted in a profound anti-atherosclerotic effect
in apo-E KO mice [161]. GKT137831 also rescued cardiac function after I/R injury in mice [162]. In mice
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model of atherosclerosis, MPO inhibitors were able to alter the atherosclerotic lesion composition and
cardiac remodeling [163].

The last group is the compounds that allow functional repair of ROS-induced damage,
which mainly focuses on nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling. ROS
can interfere with NO-cGMP signaling through uncoupling NOS, chemically scavenging NO, or
oxidatively damaging the NO receptor (soluble guanylyl cyclase, sGC). The drugs in this group include
HNO donors, such as CXL-1427, which is the second generation of HNO donor compounds. A Phase
2a dose-escalation study showed a favorable safety profile and hemodynamic effects in hospitalized
patients with HFrEF [164]. L-citrulline and L-arginine are also included in this group since they are
able to recouple the NOS [165]. A meta-analysis of 11 randomized, double-blinded, placebo-controlled
trials showed that oral administration of L-arginine was able to lower the systolic blood pressure
by 5.39 mmHg and the diastolic blood pressure by 2.66 mmHg. Meta-analysis of 15 randomized
controlled trials with 424 participants showed that L-citrulline administration resulted in 7.54 mmHg
reduction in the systolic blood pressure and 3.77 mmHg reduction in the diastolic blood pressure [166].

5.1.3. Antioxidant Role of Clinical Drugs

There are drugs that are currently being used in a clinical setting that are known to have
antioxidants effects, such as melatonin, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor,
carvedilol, and metformin. Melatonin is a potent free radical scavenger because of its antioxidant
properties [167] and has shown to have a protective role in myocardial I/R injury, HF, and atherosclerosis
via targeting oxidative stress in animal studies [168]. PCSK9 inhibition decreases the ROS production
in endothelial cells and smooth muscle cells by inhibiting lectin-like oxidized low-density lipoprotein
receptor-1 (LOX-1) expression in mice atherosclerosis models [169]. Carvedilol is a combined β1-,
β2-, and α1-adrenergic blocking agent that has antioxidant properties [170]. It is important in the
treatment of HF [171]. Metformin reduces ROS production by inhibiting NOX pathway and increasing
antioxidant genes. Furthermore, because metformin is a structural analog of ADMA (Figure 3), it can
help regulate the balance between NO and ADMA [172]. Both the animal studies and the clinicals
trials showed protective role in CAD and HF [173]. Molecular structures of some of these clinical drugs
are shown in Figure 3.
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5.2. miRNAs

miRNAs are series of small noncoding RNAs ascribed to regulate gene expression by targeting
messenger RNAs. Accumulating evidence shows that miRNAs are involved in oxidative stress
response and are critical in regulating oxidative stress. miRNA-210 is a well-known hypoxia-induced
RNA which is significantly upregulated during hypoxia [174]. miRNA-210 is considered as the most
significant anoxic-related miRNA in the body; it improves cardiac function by inhibiting apoptosis and
promoting angiogenesis [175]. The expression of miRNA-210 is mainly induced by HIF-1α [176]. In the
HIF-1α knockout mice, the miRNA-210 level was decreased compared to the wild-type mice [177].
In the infarcted myocardial tissues of patients who died from acute myocardial infarction, miRNA-210
level was increased compared with the heart tissues from the control group [178]. In animal model
of myocardial infarction, the cardiac function was improved by a direct myocardial injection of
miRNA-210 [179]. In addition, circulating miRNA-210 level showed significant association with
cardiovascular-related mortality in patients presenting with acute coronary syndrome [180].

miRNA-1 is the most abundant miRNA expressed in cardiac muscles and plays a key role
in differentiation and proliferation of muscle cells. H2O2 was found to increase miRNA-1 in rat
cardiomyocytes [181]. Overexpression of miRNA-1 resulted in increased ROS and decreased production
of SOD [181]. In a rat model of myocardial infarction, the amount of miRNA-1 was positively associated
with infarct size [182]. In addition, administration of miRNA-1 after myocardial infarction improved
cardiac function in mice [183]. In addition, serum levels of miRNA-1 in patients with acute coronary
syndrome correlated with the circulating troponin T [184]. Other miRNAs, such as miRNA-132,
miRNA-21, and miRNA-17, are also shown to be upregulated during hypoxia [185–187].

Additionally, many miRNAs are important in the regulation of atherosclerotic plaque
formation [188]. The cross-sectional observational study with 100 subjects showed an increase
in miRNA-133 level in the patients with CAD compared with the control group [189], and the
miRNA-133 level was increased in symptomatic plaques [190]. In addition, inhibition of miRNA-133
can target NOS to prevent endothelial dysfunction [191]. miRNA-92a can regulate the expression
of endothelial NOS to affect endothelial cells [192]. miRNA-92a has been shown to reduce plaque
inflammation and increased the plaque stability by promoting endothelial cell proliferation and
angiogenesis [193]. However, because of low stability and bioavailability, a lot of work are still needed
to make miRNAs a feasible therapeutic option. For future clinical application, multiple strategies
based on inducing or repressing miRNA expression, such as the use of miRNA antagonists or mimics,
are also being examined.

5.3. Nanoparticles

Nanomedicine is a field of science that uses nanomaterials for the diagnosis and treatment of
human disease [194]. Nanoparticles are attractive because of their size and their properties that allow
easy modification [8]. Our group developed novel H2O2-responsive nanoparticles that could specifically
target the site of I/R injury, where H2O2 is the dominant oxidative species [195]. These nanoparticles are
generated from co-polyoxalate and vanillyl alcohol (VA), an antioxidant extracted from natural herb.
They contain H2O2-responsive peroxalate ester linkage that rapidly degrade at the site of high H2O2

concentration, and releases VA that exerts anti-inflammatory and anti-apoptotic activities. In various
animal models of acute I/R injury, these nanoparticles demonstrated potent anti-inflammatory and
anti-apoptotic activities resulting in reduced organ damages [195,196]. These nanoparticles also
effectively reduced DOX-induced cardio and hepato-toxicities in vivo, which resulted in significant
increase in survival outcome [197].

Other studies used nanoparticles to decrease oxidative stress by targeting oxidative stress
production or clearance system. Somasuntharam et al. used nanoparticles coated with NOX2 small
interfering RNA (siRNA) and injected directly into the myocardium in mice after an experimental
myocardium infarction. They observed improved cardiac function 3 days after the surgery [198].
Since SOD has a protective role, nanoparticles designed to carry SOD1 were also injected at the
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ischemic zone in a rat I/R injury model. This therapy resulted in decreased myocyte apoptosis and
improved cardiac function [199]. Therapy with the nanoparticles designed to carry N-acetylcysteine
also showed effective attenuation of cardiac fibrosis in a rat I/R model [200]. In addition, studies using
nanoparticle-based delivery of selenium, a metal oxide that has ROS-quenching properties, showed
improved biological effect in ischemic cardiomyocytes [201]. However, although promising, the clinical
application of nanomedicine in cardiovascular diseases is still in infancy. All of the therapies targeting
oxidative stress are summarized in Table 2.

Table 2. Description of antioxidant therapies.

Compound Research Type:
Subjects Main Finding Ref

Nutritional Supplements

Vitamin A Clinical: Stable
angina patients

Modified the effect of apolipoproteins on
the risk of MI [147]

Astaxanthin

Preclinical: Dogs Astaxanthin protected from MI [202]

Preclinical: Rats Astaxanthin reduced HTN in
spontaneously hypertensive rats [149]

Clinical:
Obese adults

The supplemental of astaxanthin
decreased oxidative stress [150]

Vitamin C Clinical:
CHF patients

Vitamin C inhibited endothelial cells
apoptosis in CHF patients [203]

Vitamin E Clinical:
General population

The intake of vitamin E reduced risk of
coronary heart disease [204]

Vitamin C+ vitamin E Meta-analysis:
general population

Vitamin E and vitamin c combination
inhibited the rate of coronary

heart disease.
[152]

Omega-3 Preclinical: Rats The supplement of omega-3 was
associated with lower infarct size [153]

Flavanols

Preclinical: Rats Flavanols reduced the MI size and
fat peroxidation [205]

Clinical:
HTN patients

Flavanols reduced the mean blood
pressure in HTN patients [154]

Clinical:
CVD patients

Flavonoid reduced coronary heart
disease mortality. [152]

Multiple supplements
Meta-analysis:

Cancer or
CVD patients

Nutritional supplements showed
protective in malnutrition patients. [7]

Novel Experimental Antioxidant-Based Therapies

NRF2 activators Preclinical:
Knockout mice

In Nrf2 knockout mice, cardiac structure
and function were impaired. [155]

DMF

Preclinical: Rats DMF reduced MI size. [156]

Preclinical: Mice DMF reduced development of
atherosclerosis in diabetes mice model [158]

Allopurinol

Meta-analysis:
HTN patients

Allopurinol showed a modest reduction
of blood pressure [160]

Clinical:
CABG patients

Allopurinol showed reduced in-hospital
mortality and cardiac complications [159]
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Table 2. Cont.

Compound Research Type:
Subjects Main Finding Ref

GKT137831
Preclinical: Mice GKT137831 resulted in

anti-atherosclerotic effect [161]

Preclinical: Mice GKT137831 rescued cardiac function after
I/R injury [162]

MPO inhibitors Preclinical: Mice MPO inhibitors showed utility to stabilize
atherosclerotic lesion [163]

CXL-1427 Clinical:
HF patients

CXL-1427 showed a favorable safety and
hemodynamic effect [164]

L-citrulline Meta-analysis:
HTN patients

Administration of L-citrulline lowered
blood pressure [166]

L-arginine Meta-analysis:
HTN patients

Administration of L-arginine lowered
blood pressure [166]

Clinical Drugs

Melatonin Clinical:
CAD patients

Melatonin decreased CK-MB in patients
undergoing primary

percutaneous procedure
[168]

PCSK9 inhibitor Preclinical: Mice PCSK9 inhibition decreased ROS [169]

Carvedilol Clinical: General
population

Carvedilol significantly inhibited
ROS generation [171]

Metformin Preclinical: Rats
Metformin showed antihypertensive

effect in spontaneously hypertensive rats
by restoring ADMA-NO balance

[172]

miRNAs

miRNA-210

Preclinical:
Knockout mice

miRNA-210 was decreased by
HIF-1α knockout [177]

Preclinical: Mice
The intramyocardial injection of

miRNA-210 improved cardiac function
after MI

[179]

Clinical: Acute
MI patients

miRNA-210 level was increased patients
with MI [178]

Clinical:
ACS patients

miRNA-210 level was associated with
cardiovascular-related mortality [180]

miRNA-1

Preclinical:
Transgenic mice

miRNA increased ROS and decreased
production of SOD [181]

Preclinical: Rat miRNA-1 was associated with MI size [182]

Preclinical: Mice The post-infarction transplantation of
miRNA-1 improved cardiac function [183]

Clinical:
MI patients

Serum levels of miRNA-1 in patients with
acute coronary syndrome correlated with

the circulating troponin T
[184]

miRNA-133

Preclinical: Mice Inhibition of miRNA-133 prevented
endothelial dysfunction [191]

Clinical:
CAD patients miRNA-133 was higher in CAD patients [189]

Clinical: Patients
undergoing carotid

endarterectomy

miRNA-133 level was increased in
symptomatic plaques [206]
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Table 2. Cont.

Compound Research Type:
Subjects Main Finding Ref

Nanoparticles

H2O2-responsive
nanoparticles

Preclinical: Mice
H2O2-responsive nanoparticles showed
anti-apoptotic role in hind-limb I/R and

liver I/R models
[195]

Preclinical: Mice H2O2-responsive nanoparticles showed
protective role in myocardial I/R injury [196]

Preclinical: Mice
H2O2-responsive nanoparticles showed
protective role in doxorubicin-induced

cardiomyopathy
[197]

Nanoparticles/NOX2
siRNA Preclinical: Mice

Nanoparticles coated with NOX2 siRNA
improved cardiac function 3 days

after surgery
[198]

Nanoparticles/SOD1 Preclinical: Rat
Nanoparticles carrying SOD1 decreased

myocyte apoptosis and improved
cardiac function

[199]

Nanoparticles/
N-acetylcysteine Preclinical: Rat Nanoparticles carrying N-acetylcysteine

attenuated cardiac fibrosis after I/R injury [200]

MI, myocardial infarction; HTN, hypertension; CHF, chronic heart failure; CVD. Cardiovascular disease; NRF2,
nuclear factor E2-associated factor 2; DMF, dimethyl fumarate; CABG, coronary artery bypass grafting; I/R,
ischemia-reperfusion; MPO, myeloperoxidase; CAD, coronary artery disease; PCSK9, proprotein convertase
subtilisin/kexin type 9; ROS, reactive oxygen species; ADMA, asymmetric dimethylarginine; HIF, hypoxia-inducible
factor; SOD, superoxide dismutase; NOX2, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2.

5.4. Limitation

Although oxidative stress plays an important role in various cardiovascular diseases, application
of antioxidant therapy so far has been limited in the clinical settings. First, although suppression of
oxidative stress using antioxidants has been shown to beneficial in many animal models, the beneficial
effects of these antioxidant therapies in human clinical studies have been controversial. One of the
reasons may be due to non-specific suppression of ROS, which may not be desirable or effective because
it could disrupt important ROS-mediated cellular signaling. Therefore, targeted suppression at the site
of ROS overproduction, (e.g., in heart for myocardial infarction), such as using targeted nanoparticles,
may offer more effective antioxidant therapy [195].

In addition, the dynamic character of the disease makes it important to choose an appropriate time
to use the antioxidants. At different stages of diseases, oxidative stress may have different roles. Thus,
it is crucial to give the antioxidative treatments at the appropriate time. Finally, for novel compounds,
most of the studies are based on the laboratory experiments. More large-scale clinical trials with
various cardiovascular patients are needed at this time [207,208].

5.5. Novelty

This article focuses on the relationship between oxidative stress and cardiovascular diseases,
and discusses the current status of different antioxidant drugs that are being used or being studied for
cardiovascular diseases. Furthermore, we included novel strategies that have potential to be used in
future therapies.

6. Conclusions

Oxidative stress plays an important role in the development and the evolution of cardiovascular
diseases. Various therapeutic strategies targeting oxidative stress have been developed. Although
animal studies have shown beneficial effects of antioxidant therapy in various cardiovascular diseases,
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the clinical outcomes vary in human trials. The deeper understanding of oxidative stress in the
cardiovascular diseases and development of better antioxidants therapies are needed to have more
effective treatments of cardiovascular diseases.
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