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Abstract
Phosphorus (P) is a non-renewable resource and is on the European Union’s list
of critical raw materials. It is predicted that the P consumption peak will occur
in the next 10 to 20 years. Therefore, there is an urgent need to find accessi-
ble sources in the immediate environment, such as soil, and to use alternative
resources of P such as waste streams. While enormous progress has been made
in chemical P recovery technologies, most biological technologies for P recovery
are still in the developmental stage and are not reaching industrial application.
Nevertheless, biological P recovery could offer good solutions as these technolo-
gies can return P to the human P cycle in an environmentally friendly way. This
mini-review provides an overview of the latest approaches to make P available in
soil and to recover P from plant residues, animal and human waste streams by
exploiting the universal trait of P accumulation and P turnover in microorgan-
isms and plants.
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1 INTRODUCTION

Phosphorus (P) is an essential macronutrient for all living
beings. It is a necessary component of the energy produc-
tion machinery in cells, a component of membrane struc-
tures and of DNA and RNA. P is involved in many regula-
tory processes ofmetabolism in cells and can also be stored
in cells as an energy reserve in the form of poly-P. Due to
these essential functions, P is, next to nitrogen, the most

Abbreviations: DM, dry matter; EBPR, enhanced biological
phosphorus removal; P, phosphorus; PSM, phosphorus solubilizing
microorganisms; SSA, sewage sludge ash; WWTP, wastewater treatment
plant
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important component of fertilizers in agriculture. Here, P
cannot be replaced by other components.
At present, mankind is dependent on the naturally dis-

persed P, which is mined as P rock. Large sedimentary
deposits of P rock are found in Africa (Jordan, Morocco,
andWestern Sahara), China, the Middle East and USA [1].
P rock is only finitely available and inaccessible to many
countries, including the European Union [2], which has
therefore classified P as a critical resource [3]. Due to fast
depleting reserves, the future of P dependent industries is
uncertain. The most prominent P dependent industry is
agriculture, and food security therefore is directly linked
with P scarcity reality [2,4]. P recovery must, therefore, be
undertaken to ensure the future availability of P.
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PRACTICAL APPLICATION

Soil and human waste as a source of phospho-
rus can mediate an imminent shortage of phos-
phorus. Currently, the main methods of phospho-
rus recovery are chemical methods, which in most
cases have a significant impact on the environ-
ment. On the other hand, there are environmen-
tally friendly biological technologies for phospho-
rus recovery, but these are still at an early stage of
research and development, apart from a few tradi-
tional applications. Therefore, the practical appli-
cation of this study is to identify possible sources
of biogenic phosphorus and approaches to biolog-
ical phosphorus recovery in order to facilitate and
promote the development of novel biological phos-
phorus recovery approaches.

P is abundant in soil and human waste streams.
These include biologically unavailable P in soil, agricul-
tural runoff after over-fertilization, crop residues, animal
manure, food and food processing waste, and wastewater
and sewage sludge [1,2,4 5]. In addition to better economic
and ecological management of P dispersion, which would
conserve P resources, the P recovered from these waste
streams or made available to plants in the soil represents
an alternative to the use of P rock [6–8].
P from different wastes can be recovered with both

chemical and biological technologies. Chemical P recov-
ery technologies with already available full-scale applica-
tion focus on production of struvite from P rich liquid
waste streams or from solid wastes such as biochar, and
from incineration ashes obtained by pyrolysis or incinera-
tion processes [9]. In Christiansen et al. (2020) [6] a recent
review on the current situation of chemical P recovery
technologies is covered.
An alternative to chemical P recovery is biological P

recovery. Biological P recovery strategies focus on biomass
production that can be converted into useful products
such as fertilizers or on mobilizing P in soil, which is
otherwise unavailable. Here, the ability of both prokary-
otes and eukaryotes, such as fungi, bacteria, algae, higher
plants and animals, is used to store P in their cells. In
bacteria, fungi and algae P is stored in form of poly P
[10], in plants P is organically bound as phytate, predom-
inantly in seeds and grains [11,12], while in animals P can
be found in tissue, bones and scales. Apart from storing
P in their cells, living organisms can release P by dis-
solving poly-P or provide P by biomass degradation pro-
cesses. In this mini-review, biological P-recovery is defined

by the application of any biologically based process that
reclaims P into end products valuable to humans. Differ-
ent approaches for P recovery can range from traditional
technologies that support formation of P rich products
(fertilizer production, e.g. composting) to more unconven-
tional approaches, which are still in early stage of devel-
opment (e.g., new biosorbents for P recovery). Most tra-
ditional biological technologies that facilitate P recovery
can be find at NUTRIMAN (Nutrient Management and
Nutrient Recovery Network https://nutriman.net/farmer-
platform/technology-categories).
Here, an overview of recent and currently most promis-

ing biological P-recovery approaches will be given, focus-
ing on the source of P-containing soil andman-madewaste,
the scale of application, and the efficiency of the applied
recovery strategies (Figure 1). All P values cited in the
review were recalculated to g of elemental P per kg or per
L if respective data were available in literature.

2 AVAILABILITY OF P IN SOIL

P amount in soil ranges in a concentration of 0.4 g to 1.2 g
P kg–1 soil. The soluble P fraction, which can be taken up
by plants is less than 1% of these values [13,14]. Further-
more, due to the presence of iron, aluminum and calcium
in the soil, about 75% to 90% of the added fertilizer is pre-
cipitated by complexation with metal cations and there-
fore no longer available [15]. Making most of the unavail-
able organic and inorganic P in soil available for agricul-
ture could greatly reduce the use of industrially produced
fertilizers [14,16]. Insoluble organic and inorganic P can
be solubilized by P solubilizing microorganisms (PSM),
which comprise bacteria, fungi, and cyanobacteria [16–19].
PSMs solubilize insoluble phosphates in the soil by acidi-
fication, chelation, mineralization and ion exchange reac-
tions [15,20].
Potential PS bacteria such as the genera Bacillus, Pseu-

domonas, Burkholderia, Serratia, Achromobacter, Agrobac-
terium, Micrococcus, Aerobacter, Flavobacterium, Acineto-
bacter, and Pantoea were reported by Alori et al. (2017)
[19], Kalayu (2019) [15], and Aliyat et al. (2020) [21].
Most promising PS fungi genera were Penicillium and
Aspergillus [15,22], which potentially are even superior
to bacteria [23]. The arbuscular mycorrhizal symbiosis
between plants and fungi is anothermicroorganism-driven
process that increases phosphate availability [24]. Also,
cyanobacterial genera, such as Calothrix, Anabaena and
Nostoc, have been reported to contribute to P solubiliza-
tion in the soil [15,25]. Furthermore, there are approaches
to isolate and identify new PSM from desert soils [26], sub-
tropical soils [27] or—interestingly—fromphosphatemine
sites [21,28], which showed a potential for P solubilization.

https://nutriman.net/farmer-platform/technology-categories
https://nutriman.net/farmer-platform/technology-categories
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F IGURE 1 Overview of P-rich human waste streams together with possible biological P recovery approaches, application scales and
P concentration work range. DM, dry matter; DS, demonstrator-scale; ERPB-r, enhanced biological phosphorus removal and recovery; FS,
full-scale; LS, lab-scale; SNDPR, simultaneous nitrification, denitrification and P removal; U-Power, urine powered microbial electrochemical
system

PSMwere shown to improve plant resistance to pathogens,
increase biomass yield and lower the need for industri-
ally produced fertilizers [14]. The application of PSM has
moved from lab-scale to greenhouses and fields with dif-
ferent crops [14] togetherwith products based on PSM [29],
which showed high crop growth promotion. Therefore, the
supportive effect of PSM via the mobilization of unavail-
able P in soil must be considered as a valuable method for
P recovery.

3 P IN AGRICULTURAL RUNOFFS
AND CROP RESIDUES

Agricultural runoff is defined as P leaching from farmlands
through extensive fertilizer application [4], where the P
concentration of 0.0001 g L–1 is considered high enough
to cause eutrophication [30]. P loss in agricultural run-
off is estimated to be around 8 Mt a–1 worldwide [31]. It
causes eutrophication ofwater bodies evident in toxic algae
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growth [2,32] up until to the development of death zones
in lakes and oceans due to low or no oxygen availabil-
ity [33]. P enriched waters have been shown to be treat-
able with bacteria, algae or plants. Rueda et al. (2020)
[34] demonstrated high P removal efficiencies (99% out of
0.00042 g P L–1) from eutrophic water using microalgae
and cyanobacteria in photobioreactors. Chlorella vulgaris
was shown to remove P with an efficiency of 97% of ini-
tial 0.00063 g P L–1 on lab-scale [35]. A demonstrator-scale
microalgae-bacteria photobioreactor (Chlorella sp., Stigeo-
clonium sp.) investigated seasonal impacts on the P recov-
ery efficiencies showing underusage of P in summer and
limited uptake in winter [36]. Here, the algae harvest can
be supported in open pondswith algae scrubbers [37]. Gen-
erally, algae biomass can be used to obtain bioproducts
such as biopolymers, pigments, food additives [34], phar-
maceuticals, fertilizers [10] and bioenergy [36].
A valuable approach for the treatment of eutrophic

waters seems to be biological composite material consist-
ing of thermally treated marine mussel shells in combina-
tion with Al, La and Fe [30]. On lab-scale, P adsorption
was up to 80% of the initial 0.005 g P L–1 from synthetic
eutrophic water without any desorption being detected. A
comprehensive overview of recent progress and current
and future practice in agricultural run-off control can be
found in Xia et al. (2020) [38].
New developments emerged in the context of applying

plants either for the purification of run-off waters, for
the storage of P in biomass and for the use of harvest
residues as P source as well as new composite materials
for P adsorption. On lab-scale the treatment of agricultural
run-off using floating wetlands with suspended wetland
plants is reported by Spangler et al. (2019) [39]. Wetland
plant Pontederia cordata has removed 90% of P from an
initial concentration of 0.00261 g L–1. Macrophytes such as
duckweeds (Lemna minor, Landolita punctata, Spirodela
polyrrhiza, Spirodela oligorrhiza) and water hyacinths
are other typical plants used in such applications [40,41].
Full-scale application of the floating wetlands is reported
by Lavrnic et al. (2020) [42] but with inconsistent P
removal efficiency due to the rain precipitation effect. A
subsequent P-recovery from biomass is a valid option. The
P content of crop residues gathered (3591Mt a–1 of drymat-
ter [DM]) from arable land is estimated to be around 4.35
Mt P a–1 with the P content range of 0.0009 to 0.0046 g kg–1
depended on the crop species [43,44]. Applied on arable
land agricultural residues increase efficiency of P fertilizer
uses and simultaneously provide P from plant biomass
[45]. Furthermore, P uptake by plants, for example, in wet-
land buffer zones, facilitates water purification and returns
the P to human processes, for example, through anaerobic
digestion of the biomass, composting or as animal feed
[46]. Bacterial and fungi activities and bacteria-earthworm

synergies in compost are well known and widely applied.
The current state of composting and vermicomposting of
harvest residues and the transformations into products,
which contain available P for plant growth was covered
by Roy (2017) [41] and Ahmed et al. (2019) [8]. Harvest
residues with a high P content can also be used as fertilizer
in form of biochar products. Widespread waste substances
such as aspen wood fibers and rice husks are further
possible raw materials for the production of biochar [47].
Corn stalks converted to biochar and then impregnated
with layered double hydroxides as P adsorbent showed
a high adsorption capacity of 152 g P kg–1 on lab-scale
[48]. Not only biochar can serve as an absorbent, but
also pure fibers (e.g. from soybeans) can be mixed with
fermentation residues, ensuring that P is first absorbed
and then slowly released [49]. Biobased absorbents are
efficient and sustainable. Perspectives, challenges and
solutions for P recovery using sorbent can be found in an
overview by Othman et al. (2018) [47].

4 P IN ANIMALMANURES

Approximately 15 Mt P a–1 is released from domestic
animal manure worldwide [31]. In average the total P
content in diary, poultry, and pig manure is 9.3 g, 18 g
and 39 g P kg–1 manure, respectively [1]. Recovering all
P from animal manure could satisfy 90% of the annual
agricultural demand worldwide [50].
Firstly, P from manure is recovered by using manure

directly as a fertilizer. However, due to high concentra-
tion of nutrients, nitrogen and phosphates can leach into
the ground water together with high contents of antibi-
otics, which causes water pollution and leads to a spread
of antibiotic resistant genes or bacteria into the environ-
ment [51–53]. Efforts to recover P from animal manures
without causing over-fertilization and negative environ-
mental effects can be made with the help of bacteria, fungi
and algae. Depending of the liquid, semi-solid or solid
states of manure, different approaches for P recovery can
be applied accordingly. Solid and semi-solid manure is fre-
quently added to large scale anaerobic digesters (AD) as
a nutrient source [40,54], however, this routine does not
recover P instantly frommanure [55]. Integrating AD with
composting plants presents attractive solutions to handle
anaerobic digestate to yield a combined P rich environ-
mentally friendly product [56] without risking the draw-
backs coming from applying anaerobic digestate directly
as a fertilizer [57]. Often unfavorable physical-chemical
characteristics such as C:N ratio, moisture contents or
pH values of manure digestate can be reduced when
mixed with other substrates such as wood chips, zeolite or
lignite [58,59]. Solid manure composting full-scale studies



VUČIĆ and MÜLLER 81

reported a low level of pathogens and the production of
high quality compost [59].
P recovery from liquid manure is facilitated with diver-

sified microorganisms. For swine manure bacteria and
microalgae (Chlorella and Coelastrella strains) have been
used [60,61]. Similarly, Lou et al. (2019) [62] reported a
lab-scale application of themicroalgaeDesmodesmus sp. in
a symbiotic interrelationship with bacteria (Pseudomonas
and Bacillus strains) in a flat plate photobioreactor, where
P was recovered with 0.007 g P L–1 d–1. However, the high
nutrient content, the dark color and the amount of sus-
pended solids of raw manure slurries often inhibit photo-
synthesis and thus algae growth [61].
Fungi can also be applied in treatment of liquid

manures. He et al. (2019) [63] used a 20 L demonstration-
scale reactor where the filamentous fungal strain Mucor
circinelloides was applied and accumulated 78% of the ini-
tial P concentration of 0.0183 g L–1. The fungal biomass
was reused in 7 batches for further P accumulation to pro-
duce a fertilizer with slow P-release. In summary, animal
manure as a source of P has a great potential to return P to
the human P cycle.

5 P IN FOOD AND FOOD PROCESSING
WASTES

Approximately 1300 Mt a–1 of food waste is generated
worldwide [64] with P content in DM ranging from 4.5
to 13.5 g kg–1[65]. P from organic food waste is frequently
made available via composting or anaerobic digestion
on full-scale. Both compost and anaerobic digestate are
applied to the fields as fertilizer, although the digestate
is questionable as an unstable and unhygienic fertilizer
source [57,66].
New approaches have been developed for foods that

are not readily biodegradable, such as egg shells [67], sea
shells, and fish scales [68] that are rich in biologically
unavailable P. PSMs, such as the bacterial strain Acidovo-
rax oryzae can be used to treat hydroxyapatite powder from
tilapia fish scales (Coptodon rendalli) where 40% of initial
0.325 g P L–1 were recovered on lab-scale [17]. Also, Bacillus
megaterium was used on lab-scale to recover P from poul-
try bones and ash after incineration [69]. The bones were
found to be the best source of P with 53.2 g of P solubi-
lized from initial 77 g of P contained in the bone sample.
Waste from fisheries such as crab shells can also be used
to produce a chitosan calcium-rich adsorbent. Pap et al.
(2020) [70] found an adsorbent capacity for P of 76.9% of
the initially provided 0.02 g P L–1 on lab-scale. This capac-
ity was even higher for modified mussel shell powder used
for microalgae immobilization with P removal rates of 88%
from initial 0.1025 g L–1 on lab-scale [71]. In summary,

classical approaches such as composting and anaerobic
digestion for biodegradable food waste are commonly uti-
lized full-scale and provide P for fertilization. However,
new technologies for use of less degradable foodwastes are
still scarcely available.

6 P INWASTEWATER AND SEWAGE
SLUDGE

Around 3 Mt P a–1 is released in human urine and feces
contained in wastewater worldwide [31]. Wastewater bio-
logical P removal is often coupled with chemical P recov-
ery strategies on P containing wastewater streams to either
reduce the P amounts in the streams or to recover it for fur-
ther use or both [72]. Current wastewater P recovery tech-
nologiesmostly rely on chemical based struvite production
[73]. Therefore, there is lot of future potential for devel-
oping and applying biological P recovery approaches for
wastewater treatment plants (WWTP) [74], and here tech-
nologies that show potential will be shown.
Wastewater is routinely treated with microbial commu-

nities to remove P, but currently there is no clear path for
purely biological P recovery. Wong et al. (2018) [75] devel-
oped an approach to improve enhanced biological phos-
phorus removal (EBPR) towards a process of enhanced
biological phosphorus removal and recovery (EPBR-r) pro-
cess on lab-scale. Amicrobial biofilm containing polyphos-
phate accumulating organisms (PAOs) was used to take up
P under aerobic conditions, which was even increased by
extending the aerobic P uptake time. At the same time the
hydraulic loadingwas increased by unchanged oxygen and
carbon availability. In a subsequent step, P was released
under anaerobic conditions and rose up to 0.09 g P L–1.
This approach improved the growth of phosphate accu-
mulation organisms (PAO). Furthermore, this technology
could be a good starting point for future full-scale EBPR-r
designs with greater P removal and recovery capabilities.
Another approach to produce P rich recovery streams was
described by Salehi et al. (2019) [76], where a simultane-
ous nitrification, denitrification and P removal (SNDPR)
process was facilitated on lab-scale by denitrifying
polyphosphate accumulating organisms (DPAO) and den-
itrifying glycogen accumulating organisms (DGAO). High
P concentrations were generated at the end of the anaer-
obic phase with 0.1 g P L–1. Yang et al. (2017) [31] provided
an overview on the main microorganisms serving as PAOs
in WWTPs. Further new developments exploit microbial
bio-electrochemical systems including microbial fuel
cells (MFC) and microbial electrolysis cells, which are
relatively new approaches for on-site energy generation
and integrated nutrient separation [72,77]. An example of
such a study demonstrates the utilization of human urine
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for nitrogen and phosphorus partitioning in a novel urine
powered microbial electrochemical system (U-Power) on
lab-scale [78]. Electrochemically active bacteria enable
urea hydrolyzation and electrical potential driven NH4

+

and PO4
3- migration to subsequent nutrient recovery solu-

tions. Bacteria responsible for this process belong to the
genera Enterococcus, Melissococcus and Tetragenococcus,
Desulfovibrio, Pelobacteraceae and Geobacter. The average
total P recovery from fresh human urine was 0.1 g L–1. A
recent extensive overview on approaches for P recovery
in wastewater using electroactive bacteria is given by Li at
al. (2020b) [79]. Another interesting approach is using the
anammox process together with phosphate precipitation
[80]. On lab-scale the precipitation was found to take place
inside of the anammox granules with 65.5 ± 6.1% of the
initial 0.013 g P L–1.
Also, fungi can be used for P recovery in wastewater.

Jack et al. (2019) [81] reported the application of magnetic
biochar produced from the fungiNeurospora crassa, which
was grown on an iron-rich wastewater stream. The iron-
richmagnetic biocharwas tested in lab-scale and showed P
adsorption capabilities of 23.9 g P kg–1. Previously covered
fungi application for wastewater P recovery can be found
in Carrillo et al. (2020) [82].
P recovery from wastewater can also be achieved with

algae by enriching biomass [55]. On lab-scale, microalgal
polycultures in ponds were used to remove 50 to 90% of
total P (out of 0.0032 ± 0.0006 g L–1) from the secondary
effluent [83]. Commonly used algae for these applications
are from the genera Chlamydomonas, Chlorella, Euglena,
and Scenedesmus [31,84,85].Microalgae can also be applied
in MFC for P recovery [86]. The harvesting of the wastew-
ater algae biomass can be supported by filamentous fungi
via a bioflocculation process [87].
The potential of biogenic materials that can be used for

P precipitation is large and more promising than the use
of, for example, magnesium, which is also on the EU list
of critical raw materials. Bivalve seashells (mussels, scal-
lops, oyster, Manila clam shell) can be used to obtain cal-
cium hydroxide, which precipitates P as hydroxyapatite
from diluted human urine with P recovery rate of 95% of
initial 0.02 g P L–1 [68]. An extensive review on technolo-
gies used for wastewater treatment including biological P
recovery is provided by Carrillo et al. (2020) [82].
The wastewater purification process leads to especially

high concentrations of P in sludges [88], which were used
directly as fertilizer for years. But this practice is no longer
accepted due to the high risks caused by pathogenic
and antibiotic resistant bacteria as well as the frequently
high concentration of heavy metals and pharmaceuticals
[10,89–91]. Sludge can be converted into biochar to mobi-
lize P by supporting soil bacteria and fungi. But in general,
new laws such as the German Sewage Sludge Ordinance

[92] require all WWTP with a size >50,000 population
equivalents to recover P from sludge within the next 12
years if the P values exceed 20 g P per kg DM of sludge.
Other European Union states such as Sweden, Austria and
Poland are also undertaking similar initiatives [93–95].

7 P IN SEWAGE SLUDGE ASH

Sewage sludge ash (SSA) is produced during the incin-
eration of sewage sludge and is rich in P making it a
promising source for P recovery. The amount of SSA pro-
duced is 1.7 Mt a–1 worldwide, with the P content of SSA
ranging from 7 to 11% which is 70 g P kgSSA - 110 g P
kgSSA [96]. The common SSA P recovery method is the
dry thermal or wet chemical method using strong acids
or bases [12,97]. The wet chemical SSA extraction method
performed with strong acids can be replaced by a P recov-
ery via bioleaching. Semerci el al. (2019) [98] used uniden-
tified sulphur oxidizing bacteria isolated from a WWTP
on an SSA suspension with elemental sulphur to lower
the pH and facilitate the leaching of the P from the SSA
mineral form to the ionic form. A bioleaching experiment
on lab-scale reached an amount of P released from SSA
that was 1.3 g of originally 1.6 g P per 20 g ash. Most
applied bioleaching microorganism are sulphur oxidizing
bacteria such asAcidithiobacillus thiooxidans, iron sulphur
oxidising bacteria Acidithiobacillus ferrooxidans, and iron-
oxidizing bacteria, Leptospirillium ferrooxidans and Lep-
tospirillum ferriphilium [99,100]. Therefore, bioleaching
can be a possible alternative for the future extraction of P
from SSA.

8 BIOTECHNOLOGICAL
APPROACHES TO ENRICH AND
DOWNSTREAM P

Future approaches for enhancing biological P recovery
include genetic engineering of microorganisms. Genetic
engineering can produce more efficient PAOs using well
characterized microbial chassis such as Pseudomonas
putida or Escherichia coli with additional enzymes to
maximize P uptake [10] for in house application. A fur-
ther promising lab-scale application is the Escherichia coli
enzyme AppA phytase, which was transferred via vector
into Pichia pastoris for overexpression and subsequently
the protein was applied to different plants pressed in cakes
to free plant bound P [11]. The highest amount of phytase-
released Pwas 9.97 g P kg–1 of pressed cake. Poly-P can also
be enriched in Saccharomyces cerevisiae after a starvation
procedure and extracted and purified as poly-P chains of
different lengths [101, 102]. For plants, a bioengineering
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approach in conventional plant breeding can be steered
into a direction where plants can produce higher amounts
of organic acids and enzymes to facilitate better soil P
immobilization and utilization [1].

9 CONCLUDING REMARKS

Human waste streams are rich in P and, if recovered,
can replace mined phosphate rock. P recovery technolo-
gies using biological processes can provide environmen-
tally friendly fertilizers, industrial chemicals, increase the
quality of the soil and even become a source of biogenic
material. A further focus on the development of biological
technologies for P-recovery can mobilize enormous valu-
able waste volumes, which are not only good for biolog-
ical P-recovery but also have positive effects on environ-
mental protection, resource management, degraded soils
and water bioremediation. Therefore, there should be an
urgent effort to guide and support current biological P-
recovery technologies from lab- and pilot-scale towards an
economically feasible P-recovery.
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