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Summary Targeted overexpression of the c-myc oncogene induces neoplastic transformation in immortalized, non-tumorigenic mouse
mammary epithelial cells (MMEC). Experiments in the present study were conducted to examine whether cellular transformation induced by
c-myc oncogene is associated with altered metabolism of 17,-oestradiol (E2). The parental, MMEC and the stable c-myc transfectant
(MMEC/myc3) cell lines were compared for major oestrogen metabolic pathways, namely E2 and E1 interconversion, and C2- and C16x-
hydroxylation by both high-pressure liquid chromatography (HPLC) analysis and the 3H release assay using specifically labelled [C2-3H]E2 or
[Cl 6ci-3H]E2. The reductive conversion of El to E2 was about 14-fold and 12-fold higher than the oxidative conversion of E2 to E1 in MMEC and
MMEC/myc3 cells respectively. However, in MMEC/myc3 cells, both reductive and oxidative reactions were decreased by about 32% and 12%
relative to those seen in the parental MMEC cells (P = 0.0028). The extent of Cl 6a-hydroxylation was increased by 164.3% (P < 0.001), with
a concomitant 48.4% decrease (P < 0.001) in C2-hydroxylation in MMEC/myc3 cells; this resulted in a fourfold increase in the C1601C2
hydroxylation ratio in this cell line. Thus, a persistent c-myc expression, leading to aberrant hyperproliferation in vitro and tumorigenesis in
vivo, is associated with an altered oestrogen metabolism. However, it remains unclear whether this represents a result of oncogene
expression/activation or is rather a consequence of phenotypic transformation of the cells.
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It is well recognized that oestrogens exert a profound influence on
mammary epithelial cell growth, differentiation and neoplastic
transformation (Fishman et al, 1980; Prudhomme et al, 1984;
Mauvais-Jarvis et al, 1986; Siiteri et al, 1986). The molecular and
biochemical mechanisms important for oestrogen responsiveness
and the influence of altered oestrogen responsiveness on
mammary cell carcinogenesis, however, are not fully understood.
Our earlier studies on immortalized, non-tumorigenic mouse
mammary epithelial cell lines have shown that transfection of the
cell line with myc or Ras oncogenes results in neoplastic transfor-
mation. Before tumorigenesis in vivo, myc as well as Ras transfec-
tants exhibit aberrant hyperproliferation in vitro (Telang et al,
1990, 1991; Suto et al, 1992). Thus, persistent oncogene expres-
sion and aberrant hyperproliferation may represent molecular and
cellular biomarkers for neoplastic transformation.

The conventionally recognized markers for oestrogen respon-
siveness include (1) functional activity of oestrogen receptor as
determined by receptor-ligand binding; (2) modulation of tran-
scriptional activity, growth and induction of progesterone receptor
(Prudhomme et al, 1984; Mauvais-Jarvis et al, 1986; Siiteri et al,
1986; Dubik and Shiu, 1992); (3) reversible suppression of growth
by hormone antagonists (Clark et al, 1977; Mauvais-Jarvis et al,
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1986; Siiteri et al, 1986; Dubik and Shiu, 1992). Our recent studies
on Ras-initiated MMEC/pHO6T cells as well as on Ras-trans-
formed Tl/Prl cells have shown that the oncogene-initiated and
tumorigenically transformed cells are responsive to E2, as also
shown by their ability to metabolize the hormone and by reversible
growth inhibition upon treatment with the non-steroidal anti-
oestrogen tamoxifen (Telang et al, 1991; Suto et al, 1992).
Mammary epithelial cells initiated independently with chemical

carcinogen 7,12-dimethylbenz(a) anthracene (DMBA) and Ras
oncogene exhibit elevated oestrogen metabolism via the formation
of C16a-hydroxylated metabolites (Telang et al, 1991, 1992; Suto
et al, 1993). In addition, it has been proposed that the oestrogen-
mediated stimulation of growth of breast tumour-derived MCF7
cells may involve transactivation in the c-mvc promoter region
(Dubik and Shiu, 1992). It is not clear whether these molecular
and metabolic alterations characterize the initiated phenotype or
represent a late-occurring, post-initiational event in a rapidly
growing tumour cell phenotype.
The experiments in the present study were designed to (1) estab-

lish the validity of oestrogen metabolism as an endocrine
biomarker for tumorigenic transformation in mnyc oncogene-trans-
fected mammary epithelial cells; and (2) elucidate the relationship
between myc expression, the extent of cellular metabolism of E,
and tumorigenic transformation. To this end, we have compared
the extent of EB metabolism in the spontaneously immortalized,
non-tumorigenic mammary epithelial cell line MMEC and the
stable transfectant MMEC/myc3 that expresses activated c-myc
proto-oncogene and is highly tumorigenic.
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MATERIALS AND METHODS

Cell lines

The non-tumorigenic mammary epithelial cell line MMEC was

established from the mammary tissue of a 6- to 8-week-old virgin
female BALB/c mouse. The stable myc transfectant MMEC/mvc3
was obtained by transfection of a recombinant myc construct
comprising the second and third coding exons expressed from a

MLV-LTR promoter in a NEO-derived vector. DM-myc, and expan-

sion of a stable G-4 18-resistant clone in the presence of 400 tg ml-'
G-418, which is cytotoxic to the parental MMEC (Telang et al,
1990). Routinely, MMEC and MMEC/mvc3 cells were maintained
in DME/F12 medium supplemented with heat-inactivated 10% fetal
bovine serum, 4 mM L-glutamine and 5 jg ml-' insulin. The stock
MMEC/mvc3 cells were maintained in the presence of 400 jg ml-'
G-4 18 to eliminate the accumulation of spontaneous revertants. For
the experiments measuring the cellular metabolism of E,, the
parental MMEC and the mvc transfectant MMEC/mvc3 cells were

cultured in the absence of G-418 for 72 h to exclude the possibility
of interference of the antibiotic with E, metabolism.

Growth characteristics

The growth pattern of MMEC and MMEC/myc3 cells was deter-
mined by a trypan blue exclusion test and haemocytometer counts
for viability and growth. In addition, population doubling time
(PDT), anchorage-independent growth (AIG) and mammary fat
pad tumorigenicity assays were performed according to the
published procedures (Ganguly et al, 1982; Telang et al, 1979,
1990, 1991). PDT was determined from the linear portions of the
growth curves generated for at least 4 days after plating 5 x 103
cells cm-2. AIG was evaluated by determining the number of
anchorage-independent, tridimensional colonies formed in 0.33%
agar after an initial seeding of 1.0 x 103 cells, and the data were

expressed as colony-forming efficiency (CFE, %) at day 14.
Tumorigenicity was determined by counting the number of
palpable tumours in mammary fat pads after the injection of 1.0 x
105 cells as a single 20-,ul bolus into parenchyma-free mammary

fat pads of syngeneic recipients.

c-myc expression and oestrogen receptor content

The relative expression of transfected (exogenous) c-mvc onco-

gene was determined by the Northern blot analysis of RNA from

Table 1 Biomarker status of MMEC and MMEC/myc3 cells

Cell line

Type of biomarker MMEC MMEC/myc3

G418 resistancea +
C-myc expressionb - 15.0 + 2.6
Oestrogen receptorc 12.5 + 3.9 5.0 ± 1.7
Population doubling 24.3 + 0.5 18.3 + 0.1
Anchorage independenced 0.01 + 0.005 1.33 + 0.075
Tumorigenicitye +

aGrowth in 400,g ml-' G418. Arbitrary scanning units for 2.8 kb (exogenous)
transcript hybridizing to [32P]-labelled c-myc probe.c Fmol ER protein per
10 pg DNA. percentage colony forming efficiency in 0.33% agar. eTumour
formation after mammary fat pad transplantation.

Table 2 Effect of c-myc oncogene expression in 17p-hydroxy steroid
dehydrogenase (17P-HSD) activity in mammary epithelial cells

17P-HSD activitya

Cell line E2 formed

(n= 12) (n= 11)
MMEC 22.14 + 2.72 1.47 +0.13
MMEC/myc3 15.14 + 3.39 1.30 +0.13

d.f. 11 d.f.10
t4.16 t3.40

P = 0.0028b p = 0.05b

aDetermined after 24 h incubation with [6,7-3H(N)]E or [6,7-3H(N)]E2 and
HPLC analysis of conversion products. 8Twotailed Student t-test. Values
represent mean + s.d. pmol 10 pg-1 DNA
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Figure 1 Typical high-pressure liquid chromatography (HPLC) profiles of
1 nm [6,7-3H(N)]E metabolites formed after 72 h incubation of 5 x 105 MMEC
(white peaks) and MMEC myc3 (dark peaks) cells. (1) 16aOHE,; (2) E2; (3) El

the parental MMEC and the stable transfectant MMEC/myc3 cell
lines essentially according to the method published previously
(Telang et al, 1990, 1991). A [32P]-labelled, nick-translated 1.8 kb
Sacl fragment of human c-mvc spanning the second exon was used
as the probe. The blots were scanned and the hybridization signal
was quantified by arbitrary scanning units (ASU) normalized to
20 ,ug of RNA loaded. The oestrogen receptor content of MMEC
and MMEC/mvc3 cells was determined by the ligand binding assay
(Castagnetta et al, 1992) and was expressed as fmol of oestrogen
receptor protein (ERP) per 10 ,tg of DNA.

HPLC analysis of 17P-HSD activity

The relative extent of 1 7f-HSD activity was determined by
measuring the interconversion of E, and El in the two cell lines.
T-25 flasks containing approximately 1.0x 106 MMEC and
MMEC/mvc3 cells were incubated for 24 h in serum-free, phenol
red-free and G-418-free medium in the presence of 2,tCi ml-'
[6,7-3H(N)]E, (specific activity 42.3 Ci mmol-', final concentra-
tion 4.6 x 10-8 M) or 2 ,tCi ml [6,7-3H(N)]E, (specific activity
41.9 Ci mmol-', final concentration 4.8 x 10-xM). The incubation
medium was collected, and 1-ml aliquots were extracted with 9:1
ethyl-ether:acetone. The extracts were analysed by reverse-phase
HPLC (C 18 column, 4.6 i.d. x 250 mm) under isocratic conditions
(acetonitrile: 0.05 M citric acid, 40:60) at a flow rate of 1 ml min-'
using a computer-aided optimized mobile phase (D'Agostino et al,
1985; Castagnetta et al, 1986). The detection of E, metabolites was
carried out using a UV detector and a three-channel radiometric
detector, both on-line to HPLC as described previously
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Figure 2 Time course of El metabolism in MMEC (A) and MMEC/myc3 (B)
cells. Cells (5 x 105) were incubated in the presence of 1 nM [6,7-3H(N)]E, for
3, 6, 12, 24, 48 and 72 h. Each data point represents the mean ± s.d. of
duplicate experiments, performed in triplicate, after correction for equal cell
numbers. (@) El; (0) E2; (A) 16aOHE,

(Castagnetta et al, 1986, 1991). The cells were lysed in 0.1%
sodium dodecyl sulphate (SDS), and DNA content was determined
(Carruba et al, 1994). The resulting data were normalized for total
radioactivity and expressed as pmol 10,g-I cellular DNA or
fmol ml-' after correction for equal cell numbers.

Separate experiments were carried out to inspect the time and
dose dependence of oestrogen metabolism in both MMEC and
MMEC/myc3 cells. To this end, 5 x 105 cells were incubated in the
presence of 1 nM tritiated E, for 3, 6, 12, 24, 48 and 72 h or
exposed to increasing concentrations (0.1, 1, 10 and 100 nM) of
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Figure 3 Dose-dependent El conversion to E2 in MMEC and MMEC/myc3
cells. Cells were incubated for 24 h in the presence of increasing
concentrations of [6,7-3H(N)]E. Percentage values represent the mean of
triplicate determinations corrected for total radioactivity and cell numbers.
(E) unconverted El; (-) E2 formed

the same radioactive oestrogen for 24 h, using exactly the same

experimental conditions and procedures described above.

Radiometric assay for E2 metabolism

The relative extent of E, metabolism via the C2- and C16at-
hydroxylation pathways was measured by determining 3H,O forma-
tion in cells incubated for 48 h in the presence of [C2-3H]E, or

[Cl6X-3H]E2 (final concentrations 5.6 x 104 d.p.m., 8.0 x 10-10 M) in
a medium lacking serum, phenol red and G-418. Aliquots of
500 gl of incubation medium were diluted to 3.5 ml with water, and
the lyophilized sublimate was counted for 3H radioactivity in a

liquid scintillation counter (Telang et al, 1991, 1992; Suto et al,
1992, 1993). The 3H release from [C2-3H]E, or [Cl6a-3H]E, to
form 3H20 provides an indirect measurement of regiospecific
hydroxylation of the steroid leading to the stoichiometric formation
of 2-hydroxyestrone (2-OHE,) or 16x-hydroxyestrone (16a-OHE1)
(Fishman and Martucci, 1980; Fishman et al, 1980, 1995; Telang et
al, 1991, 1992; Suto et al, 1992, 1993; Telang, 1996).

Statistical analysis
The data were analysed for statistical significance of the differ-
ences between cell types and treatment groups by unpaired two-
tailed Student t-test, using the Statview 4.01 statistical software.
Probability values of less than 0.05 were considered significant.

RESULTS

Growth characteristics of MMEC and MMEC/myc3 cells

The proliferative status, including AIG and tumorigenic potential,
of MMEC and MMEC/myc3 cells, is presented in Table 1. The
MMEC cell line exhibited toxicity to the aminoglycoside antibiotic
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Table 3 Oncogene-mediated alteration of 17-,-oestradiol (E2) metabolism
in mouse mammary epithelial cells

E2 metabolisma

Cell line 2-OHE, formed 16a-OHE, formed C16clC2 ratio
(n = 12) (n = 12)

MMEC 44.29 ± 5.71 20.00 ± 2.86 0.45
MMEC/myc3 22.86 ± 2.86 52.86 ± 7.14 2.31

d.f.11 d.f.11
t4.23 t5.25

P<0.001b P< 0.001b

aDetermined by3H20 formed after a 48 h incubation with [C2-3H]E2 or [C1 6a-
3H]E2. bTwo-tailed Student t-test; values are mean ± s.d. fmol 10 gg-I DNA.

G-418, lacked the expression of exogenous myc-specific
2.8 kb RNA transcript, exhibited a population doubling time of
24.3 ± 0.5 h, lacked anchorage-independent growth in vitro and
lacked the ability to form tumours when transplanted into
syngeneic recipients. These cells, however, exhibited a persistent
ability for ductal morphogenesis at the transplant site (data not
shown). In contrast, the MMEC/myc3 cell line did not exhibit any
G-418 cytotoxicity, expressed the exogenous 2.8 kb transcript
(15.0 ± 2.6 ASU 20,g-I RNA) and showed a shorter population
doubling time of 18.3 ± 0.1 h (d.f. 5, t = 3.40, P = 0.01).
Furthermore, MMEC/myc3 cells also showed a 132-fold increase in
AIG relative to that observed in MMEC and were highly tumori-
genic, exhibiting a 90% tumour incidence at 12 weeks after trans-
plantation (data not shown). These results essentially confirm our
earlier report (Telang et al, 1990), suggesting that the expression of
activated c-myc confers neoplastic transformation to mammary
epithelial cells. In addition to overexpression of exogenous c-myc,
the MMEC/myc3 cells exhibited a substantial reduction in
oestrogen receptor levels. Thus, whereas the oestrogen receptor
content of parental MMEC was 12.5 ± 3.9 fmol 10 ,ug-' DNA, it
was decreased to 5.7 ± 1.7 fmol 10 jg-I DNA (d.f. 5,
t = 4.07, P = 0.001) in the transfected MMEC/myc3 cells, resulting
in about a 60% reduction of ERP levels.
The experiment designed to establish the biological significance

of altered E2 metabolism examined whether treatment of
MMEC/myc3 cells with oestrogen metabolites 16x-OHE, or 2-
OHE, affects aberrant proliferation as shown by anchorage-
independent growth. Treatment of MMEC/myc3 cells with 160x-
OHE, resulted in about a 152% increase (d.f. 11, t = 4.07, P =
0.002) in anchorage-independent colony formation. In contrast,
treatment with 2-OHE, resulted in a 12.6% decrease (d.f. 11, t =
3.41, P = 0.01) in anchorage-independent colony formation.

17P-HSD activity in MMEC and MMEC/myc3 cells

The effect of c-myc oncogene on intrinsic 170-HSD activity was
evaluated by comparing the relative extent of interconversion of E2
and E, in MMEC and MMEC/myc3 cells. It is clear from the data
presented in Table 2 that the reductive pathway of E, to E2 domi-
nates over the opposing oxidative pathway of E2 to E, conversion,
the reductive reaction being about 14-fold and 12-fold greater than
the oxidative conversion in MMEC and MMEC/myc3 cells respec-
tively. However, in MMEC/myc3 cells, both reductive and oxida-
tive reactions are found to be significantly reduced, being about

32% (d.f. 11, t = 4.16, P = 0.0028) and 12% (d.f. 10, t = 3.40, P=
0.05) lower relative to those observed in MMEC cells.

Typical HPLC profiles of oestrogen metabolism in MMEC and
MMEC/myc3 cells are illustrated in Figure 1.
Time course experiments (3-72 h) were specifically designed to

compare E, conversion to E2 in parental MMEC and c-myc-trans-
fected cells. As shown in Figure 2, the extent of the reductive
pathway of 17j-HSD is significantly reduced (from three- up to
4.5-fold) in MMEC/myc3 cells. It is of interest that maximum E2
formation in the latter cell line was observed at 24 h (15.3%)
or 48 h (20.4%), whereas it was steadily increasing with time in
MMEC cells. Consistency in DNA values and cell counts was
ensured for reproducibility of data.

Parallel experiments carried out on MMEC and MMEC/myc3
cells using increasing precursor concentrations (from 0.1 up to
100 nM) showed that the proportion of E, formed remained rela-
tively unchanged using either 1, 10 or 100 nm E, in both MMEC
(33-35%) and MMEC/myc3 cells (8-10%), whereas it was
remarkably greater (46% in MMEC cells and 17% in MMEC/myc3
cells) at the lowest E, concentration (0.1 nM) used (see Figure 3).

Nevertheless, the extent of E2 formation was again significantly
(from 2.6- up to 4.6-fold) lower in MMEC/myc3 cells with respect
to the parental MMEC cells.

E2 hydroxylation in MMEC and MMEC/myc3 cells

The oestrogen metabolism was compared by radiometric determi-
nation of the relative extent of E2 conversion via the C2- and
Cl16a-hydroxylation pathways (Table 3). The two cell lines exhib-
ited persistent metabolic competence to convert E2. In parental
MMEC cells, the extent of conversion of [C2-3H]E2 and of [C16x-
3H]EB was 0.32 ± 0.04% and 0.14 ± 0.02% (per 104 cells) respec-
tively (mean + s.d., n = 12). In MMEC/myc3 cells, the extent of
conversion of [C2-3H]E2 was decreased to 0.16 ± 0.02%, while
that of [Cl6ot-3H]E2 was increased to 0.37 ± 0.05%. To maintain
consistency with the data from the experiments on interconversion
of E2 and E,, the data from E2 metabolism are expressed as
amounts of 2-OHE, and 16a-OHE, formed. The data presented in
Table 3 demonstrate clearly that MMEC/myc3 cells exhibit about
a 164.5% increase (d.f. 11, t = 5.25, P = 0.001) in 16ax-OHE,
formation, with a concomitant 48.3% decrease (d.f. 11, t = 4.23,
P = 0.001) in 2-OHE, formation. This results in a fourfold increase
in the C16ax/C2 hydroxylation ratio.

DISCUSSION

Altered endocrine status of the mammary tissue plays an important
role in the expression of tumorigenic phenotype (Telang et al,
1979; Ganguly et al, 1982; McCormick et al, 1982; Mauvais-
Jarvis et al, 1986; Siiteri et al, 1986; Welsch, 1987; Castagnetta et
al, 1992; Fishman et al, 1995; Telang, 1996). The experiments
designed in the present study have used the immortalized,
non-tumorigenic MMEC and the tumorigenic myc-transfected
MMEC/myc3 cells to understand the relationship between
oestrogen metabolic pathways and myc-mediated tumorigenic
transformation better.
The MMEC/myc3 cell line exhibits enhanced expression of the

cellular markers for transformation, namely aberrant hyperprolifer-
ation in vitro before tumorigenicity in vivo. We have observed
previously that (1) non-cancerous mammary tissue exhibits
increased C 16x-hydroxylation of E2 to diverse carcinogenic agents
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(Telang et al, 1991, 1997; Suto et al, 1992; Fishman et al, 1995;
Telang 1996); (2) exposure to 16ox-OHE, results in genotoxic DNA
damage and aberrant proliferation in non-cancerous mammary
epithelial cells (Telang et al, 1992); (3) specific E, metabolites
modulate proliferation in cells pretreated with chemical carcino-
gens or those derived from mammary carcinoma (Schneider et al,
1984; Suto et al, 1993); and (4) mechanistically distinct classes of
chemopreventive agents inhibit aberrant proliferation and induce
C2-hydroxylation of E, (Suto et al, 1992, 1993; Telang et al, 1997).
These observations taken together support the concept that E,
metabolism may represent a biochemical/endocrine marker for
mammary carcinogenesis and its prevention.

Interconversion of E, and E, has been reported to be altered in
the neoplastic breast tissue owing to a change in intrinsic 17p3-
HSD activity (Pollow et al, 1977; Prudhomme et al, 1984; Gompel
et al, 1986; Vermeulen et al, 1986; Tait et al, 1989; Poutanen et al,
1992; Pasqualini et al, 1996), which also appears to be different
according to the hormone-responsive status of cancer cells
(Castagnetta et al, 1995, 1996). This evidence is also relevant for
other target cells of steroids (Carruba et al, 1997). The relative
extent of 17P-HSD-mediated interconversion of E, and El
revealed interesting differences between MMEC and MMEC/mvc
cells. Overall, the reductive conversion of E, to E, was remarkably
greater than the opposing oxidative pathway in both MMEC and
MMEC/mvc3 cells. However, both reactions were significantly
lower in MMEC/mnvc cells with respect to the parental MMEC
cells. This could be, only partially, a reflection of the sustained
increase of 16cx-hydroxylation of E, seen in MMEC/mvc3 cells in
association with the persistent expression of the mvc oncogene.

Results from time course experiments and those obtained using
increasing concentrations of precursor confirmed that the extent of
E, reduction to E, is consistently and significantly lower in
MMEC/mvc3 cells than that observed in MMEC cells, regardless
of incubation time and dose of precursor used.
The alteration in 173-HSD activity observed in the present

study raises the possibility that deregulated mnyc expression may
have preferentially suppressed the reductive isoform of 17f-HSD
enzyme(s), resulting in an altered oestrogen substrate utilization
by MMEC/Invc3 cells, as has been reported in other systems
(Pollow et al, 1977; Strobl and Lippman, 1979; Tait et al, 1989;
Poutanen et al, 1993). The oestrogen receptor status is critical for
the genesis and/or evolution of a transformed cell phenotype and.
as such, modulation of the receptor status may coincide with
progression of hormone-dependent tumours to a hormone-
independent status (Abul-Hajj, 1979; McCormick et al, 1982;
Prudhomme et al, 1984; Welsch, 1985, 1987; Mauvais-Jarvis et al,
1986; Siiteri et al, 1986; Ball et al, 1988; Castagnetta et al, 1995;
Nguyen et al, 1995). In this context, it is interesting to note that
MMEC/mnvc3 cells that express exogenous c-m!yc also exhibit
about a 60% decrease in oestrogen receptor content relative to the
parental MMEC cells.
The experiments in the present study (designed to inspect the

metabolic pathways subsequent to the formation of El) demon-
strated clearly that the two cell lines are able to metabolize E, via
the mutually exclusive C2-hydroxylation and C16ux-hydroxylation
in a manner similar to that previously observed in mammary
epithelial cells that are initiated with the Ras oncogene or with the
chemical carcinogen DMBA (Suto et al, 1992; Telang et al, 1991,
1992). Furthermore, HPLC analysis confirmed that the incubation
of MMEC/mYc3 cells with close to a physiological E, concentra-
tion also resulted in an appreciable 16a-OHE, formation.

Consistent with the observed cellular effects of specific E, metabo-
lites in carcinogen/oncogene-initiated or carcinoma-derived cells
(Schneider et al, 1984; Suto et al, 1992, 1993; Telang et al, 1992),
16ot-OHE, and 2-OHE, were also effective in modulating growth
response of c-myc oncogene-transfected cells in the present model.

Overall, MMEC/mvc3 cells exhibit strikingly enhanced prolifer-
ative activity and persistence of the transformed phenotype that
appear to be associated with (I) altered equilibrium of E, to
E, conversion and consequent reduction in E, production; and
(2) increased ratio of C16ot/C2 hydroxylation with consequent
possible overstimulation of cell proliferation induced by both
increased 1 6oxOHE, level and decreased 20HE However,
concerning the relationship between aberrant hyperproliferation,
altered oestrogen metabolism and c-mVc-deregulated expression, it
remains unclear whether this represents a result of oncogene
expression/activation or is rather a consequence of phenotypic
transformation of the cells.
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