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ABSTRACT

Purpose: Allergic rhinitis (AR) is a common otolaryngology disease and one of the clinical 
causes of olfactory dysfunction (OD). The olfactory bulb serves as a transfer station for 
olfactory information transmission, and alleviating its neuroinflammation may be expected to 
improve AR-induced OD. Recent studies have suggested that the dopamine D2 receptor acts 
as a key target in regulating immune functions and neuroinflammatory reaction. However, the 
effect of dopamine D2 receptor on AR-induced neuroinflammation is still unknown.
Methods: An AR mouse model with OD induced by ovalbumin were constructed. The buried 
food pellet test was to evaluate the olfactory function of the mice. Immunofluorescence 
staining, hematoxylin and eosin staining, enzyme-linked immunosorbent assay and western 
blotting were also used to investigate the molecular mechanisms underlying the anti-
inflammatory effects of the dopamine D2 receptor in AR-induced OD.
Results: We found that AR-induced OD has a relationship with inflammatory responses in 
the olfactory bulb. Nasal administration of quinpirole (Quin, a dopamine D2 receptor agonist, 
3 mg/kg) improved olfactory function in mice, inhibited the expression of toll-like receptor 
4 (TLR4)/nuclear factor-κB (NF-κB) signalings and the levels of tumor necrosis factor-α, 
interleukin (IL)-1β and IL-6 in the olfactory bulb. In vitro, Quin (20 μmol/L) inhibited the release 
of TLR4/NF-κB signalings-dependent inflammatory cytokines in cultured microglia.
Conclusions: Activation of the dopamine D2 receptor inhibits the release of inflammatory 
cytokines through TLR4/NF-κB signaling in the olfactory bulb microglia, and protects 
olfactory function.
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INTRODUCTION

Allergic rhinitis (AR) is a common clinical otorhinolaryngology disease, which has a huge impact 
on public health. Olfactory dysfunction (OD) is one of the symptoms of AR, and its mechanism 
is not fully understood.1,2 Recent studies have shown that airway allergen exposure may damage 
the brain's related functions.3-5 Th2-type cytokines are produced in the prefrontal cortex and 
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olfactory bulb of AR mouse model,5 and tumor necrosis factor (TNF)-α and interleukin (IL)-6 
are up-regulated in the hippocampus.6 In addition, nasal corticosteroids inhibit the activation 
of microglia and the release of inflammatory mediators in the hippocampus and the prefrontal 
cortex caused by allergic airway inflammation,7 reduced the expression of neuronal nitric oxide 
synthase in the olfactory bulb,8 and helps reduce the loss of neurons. Therefore, the olfactory 
bulb serves as a transfer station for olfactory information transmission, and alleviating its 
neuroinflammation may be expected to improve AR-induced OD.

Dopamine D2 receptor, a member of the rhodopsin-like heptahelical receptor family, can be 
used as an important bridge molecule to connect the nervous and immune system.9 Increasing 
evidence indicates a protective role for dopamine D2 receptor in regulating immune functions 
and inflammatory reaction.10 For example, dopamine D2 receptor agonist LY171555 inhibited 
the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasomes in the 
substantia nigra of Parkinson's disease (PD) mice, thereby reducing MPTP-induced neurons 
loss.11,12 In animal models of ischemic stroke, activation of dopamine D2 receptor reduced the 
neuroinflammatory response through αβ-crystallin.13-15 In allergic encephalomyelitis, dopamine 
D2 receptor agonist inhibited dendritic cell-mediated Th17 cell differentiation, and alleviates 
the occurrence of encephalomyelitis and quadriplegia.16 In addition, injecting dopaminergic 
neurotoxins into the olfactory bulb produced olfactory deficits, and induced a decrease in the 
number of dopaminergic neurons in the olfactory bulb, which were reversed by dopamine 
receptor agonists.17,18 Furthermore, dopamine D2 receptor is the main subtype of dopamine 
receptor in the olfactory bulb.19 Therefore, we speculate that dopamine D2 receptor may be a 
potential therapeutic target for AR-induced OD.

Numerous studies have found that the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-
κB) pathway in microglia is a key link in inducing neuroinflammatory damage.20-22 In 
the brain, TLR4 is mainly expressed in microglia and can be specifically recognized by 
lipopolysaccharide (LPS). When TLR4 is triggered by LPS, the downstream protein NF-κB of 
the TLR4 signaling pathway is activated to release inflammatory cytokines. Previous studies 
have shown that inhibition of TLR4 signaling pathway can reduce neuroinflammation.23 
Based on the above studies, we speculate that dopamine D2 receptor may inhibit the TLR4/
NF-κB pathway in microglia, thereby protecting olfactory function.

MATERIALS AND METHODS

Establishment of the AR model with OD
The 6- to 8-week-old C57BL/6 mice were provided by the Animal Experiment Center of 
Renmin Hospital of Wuhan University. All experimental procedures were approved by the 
Animal Ethics Committee of Renmin Hospital of Wuhan University (License No. WDRM 
20190419). The AR model with OD was established as described previously.24 On days 0, 7, 
and 14, 300 μL phosphate buffered saline (PBS) containing 100 μg ovalbumin (OVA, grade V; 
Sigma-Aldrich, Taufkirchen, Germany) and 5 mg of aluminum hydroxide was administered by 
intraperitoneal injection for sensitization. On the 21st day, 20 μL PBS containing 200 μg OVA 
was administered intranasally in the model group (n = 22) once a day for 2 consecutive weeks 
for the challenge. The mice in the control (Ctrl) group (n = 8) were given the same amount of 
PBS in the nasal cavity. Finally, the AR mice with OD were selected by the buried food pellet 
test (BFPT; Fig. 1A). To verify this model, histopathology, OVA-specific immunoglobulin E 
(IgE) and allergic symptoms were evaluated.
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Buried food pellet test (BFPT)
The BFPT was used to evaluate the olfactory function of mice as previously described.25 
Briefly, the mice were fasted 18–24 hours before the test. In the test cage (45 cm length × 24 
cm width × 20 cm height), a food pellet of approximately 4g was buried at a depth of 0.5 cm 
under the bedding. After 1 hour of habituation, the time it took the mice to grasp the food 
pellets with their front paws or teeth was recorded. If the food pellets were not found within 
300 seconds (an average of 3 tests), it was identified as OD. In addition, we measured the 
latency time of each mouse after the drug treatments.

Drug treatment and experimental grouping
The AR mice with OD were identified and randomly divided into the following groups: 
quinpirole (Quin, 3 mg/kg; Sigma-Aldrich) was administered nasally every day for 3, 6, 9, and 
12 days (n = 8 for each group), and the Ctrl group (n = 8) was given PBS in equal doses. The 
drug concentration and route of administration used were based on the previously published 
article,14 and the nasal-brain pathway allows the drugs to bypass the blood-brain barrier and 
enter the central nervous system (CNS). In our preliminary experiments, we have found 
that both nasal administration and intraperitoneal injection improved olfactory function, 
but Quin administered nasally at the same drug dose achieved drug effects earlier and more 
effectively. During this period, the mice were challenged with OVA every other day. The 
olfactory function was evaluated 24 hours after the administration, and the mice were used 
for the following experiments after being sacrificed.
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Fig. 1. Establishment of the AR mouse model with OD. After the last challenge, histopathology, OVA-specific IgE and allergic symptoms were evaluated. (A) 
Protocol for the mice model of AR with OD. (B, C) Eosinophils in the nasal mucosa were counted in random high-power fields (×400) by H&E staining, and 
eosinophils were labeled by arrows. (D) OVA-specific IgE in serum was measured by enzyme-linked immunosorbent assay. (E) Symptoms of sneezing and rubbing 
were counted 10 minutes after final challenge. Ctrl (n = 8), AR without OD (n = 9), AR with OD (n = 13). 
BFPT, buried food pellet test; i.p., intraperitoneal; OVA, ovalbumin; i.n., intranasal; Ctrl, the control group challenged with phosphate buffered saline; AR without 
OD, the group of allergic rhinitis without olfactory dysfunction; AR with OD, the group of allergic rhinitis with olfactory dysfunction; IgE, immunoglobulin E. 
†P<0.01.



Culture of microglia
Magnetic bead sorting maintains the in vivo state of microglia to a greater extent, and 
recapitulates the relationship between microglia and neuroinflammation. As previously 
reported,26,27 the microglia were isolated from the olfactory bulbs after successful modeling. 
The olfactory bulbs were enzymatically digested and filtered through 70-μm cell strainers 
to prepare a single cell suspension. The microglia were sorted with CD11b magnetic beads 
(Miltenyi Biotec, Bergisch Gladbach, Germany). After 3 rounds of resuspending, loading, and 
washing, the positive cells on the sorting column were collected. The cells were resuspended 
with DMEM/F12 medium containing 10% fetal bovine serum (Gibco, Carlsbad, CA, USA), 
inoculated into a polylysine-coated culture plate, and cultured a humidified CO2 (5%) incubator 
at 37°C. Simultaneously, microglia were cultured with Quin (20 μmol/L) for 24 hours.

Hematoxylin and eosin (H&E) staining
After the mice were sacrificed, their noses and olfactory bulbs were fixed in 4% 
paraformaldehyde for 48 hours. Additionally, the noses were decalcified in decalcified 
solution for 2 weeks and then made into paraffin sections. After the paraffin sections were 
deparaffinized, hematoxylin was used to stain the nucleus and eosin was used to stain the 
cytoplasm. The morphology of the nasal mucosa and olfactory bulbs were then observed 
under a light microscope (×400). Five fields on each slice were randomly selected, in which 
the number of eosinophils was counted under the microscope and then averaged.

Immunofluorescence staining
The olfactory bulbs were fixed with 4% paraformaldehyde, embedded in slices, and baked. After 
the paraffin sections were completely dewaxed with xylene, 10% calf serum was added, and the 
section were placed at room temperature for 10 minutes. The sections were incubated with rabbit 
polyclonal anti-CD11b antibody (1:500, ab184308; Abcam, Cambridge, UK) at 4°C overnight, 
followed by a FITC-labeled goat anti-rabbit IgG (ab150080; Abcam) at room temperature for 30 
minutes. The sections were washed with water, blown dry, sealed with glycerin, and followed by 
observation under a fluorescence microscope (Olympus, Tokyo, Japan).

Enzyme-linked immunosorbent assay (ELISA)
The olfactory bulbs, blood and culture media were collected after drug treatments. The 
olfactory bulbs on both sides of a mouse were taken, and 200 μL of lysate was added. After 
homogenization, the lysate was split on ice for 30 minutes and centrifuged at 12,000 rpm 
for 15 minutes. The protein concentration of the supernatant was measured by a BCA kit 
(Absin, Shanghai, China), and ensured that the total protein of each sample was 50 µg. 
Similarly, supernatants of blood and culture media were retained. The levels of inflammatory 
mediators were measured using ELISA kits of TNF-α, IL-6, IL-1β (BD Biosciences, San Jose, 
CA, USA) and OVA-specific IgE (Bioswamp, Wuhan, China) according to the manufacturer's 
instructions, respectively. Briefly, 50 μL ELISA diluent and 50 μL sample were added to 
each well, and incubated at room temperature for 2 hours. After aspirating and washing 5 
times, 100 μL of the working detector was added and incubated at room temperature for 1 
hour. Then, 100 μL of TMB one-step substrate reagent was added and incubated at room 
temperature for 30 minutes. After adding 50 μL stop solution, read at 450 nm within 30 
minutes. The experiments were repeated for 3 times.

Western blot
After the drug treatment, the total protein was extracted. Briefly, RIPA lysis buffer containing 
a protease inhibitor and a phosphatase inhibitor was added to the tissues or cells, which were 
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then placed on ice for 30 minutes. After centrifugation at 12,000 rpm for 15 minutes at 4°C, 
the supernatant was extracted. The protein concentration was measured by a BCA kit (Absin), 
and samples of 40 μg were loaded onto the gel for sodium dodecyl sulphate-polyacrylamide 
gel electrophoresis (SDS-PAGE) electrophoresis. After SDS-PAGE electrophoresis, the proteins 
were transferred to a membrane, which was blocked in 5% skim milk for 1.5 hours. The 
following primary antibodies, which were incubated at 4°C in a shaker overnight, were used: 
TLR4 (1:500, sc-293072; Santa Cruz, Dallas, TX, USA), MyD88 (1:500, sc-74532; Santa Cruz), 
NF-κB p65 (1:1,000, sc-8008; Santa Cruz), NF-κB phospho-p65 (1:1,000, sc-166748; Santa 
Cruz) and β3-tubulin (1:1,000, ab78078; Abcam). The secondary antibody was labeled with 
HRP (Servicebio, Wuhan, China) and incubated with the membrane at room temperature for 1 
hour. The blots were washed 3 times for 10 minutes. The bands were visualized with enhanced 
chemiluminescence (Millipore, Burlington, MA, USA) using a gel imaging system (Bio\xe2\x80\
x90Rad, Hercules, CA, USA). ImageJ was used to determine the gray value. Using β3-tubulin as 
the reference protein, the relative intensities of each target protein band were calculated.

Statistical analysis
All results are represented as mean ± standard error of mean. The data and graphs were 
analyzed by GraphPad Prism 8.0 (GraphPad Software, San Diego, CA, USA). The results 
were analyzed by 1-way analysis of variance followed by post hoc Tukey's tests for multiple 
comparisons. A P value of < 0.05 was considered significant.

RESULTS

Establishment of the mouse model of AR with OD
To verify this model, histopathology, OVA-specific IgE and allergic symptoms were evaluated, 
and the AR mice were divided into groups with or without OD by the BFPT. In this study, we 
used 8 and 22 mice in the Ctrl and AR groups, respectively. Out of 22 mice, 13 mice had OD 
and 9 mice did not have OD. The incidence of OD observed in AR mice was 59.09% (13/22), 
which is consistent with that in the AR population being from 21% to 88%.2 The reason why 
some AR mice did not develop OD may be that OD is a common symptom of AR, but not 
all AR is accompanied by OD. H&E staining showed that the infiltration of eosinophils was 
significantly increased in the submucosa of the AR mice with or without OD, compared with 
the Ctrl group (Fig. 1B and C). The levels of OVA-specific IgE and the frequency of sneezing 
and rubbing in the AR mice with or without OD were significantly increased, compared with 
the Ctrl group (Fig. 1D and E). This finding suggests that the AR mice with or without OD 
exhibit the characteristics of AR, and the AR mice with OD selected met the needs of the 
subsequent experiments.

Neuroinflammation in the olfactory bulb of AR mice with OD
Microglia, being the resident immune cells of the CNS, play an important role in maintaining 
tissue homeostasis and contribute towards brain development under normal conditions.28 
However, overactivation of microglia will release a wide spectrum of proinflammatory 
cytokines, neurotoxic factors and chemokines, including TNF-α, IL-1β, IL-6, monocyte 
chemotactic protein-1, nitric oxide and prostaglandin E2 that induce neuroinflammation.29 To 
verify the relationship between AR-induced OD and neuroinflammation in the olfactory bulb, 
we detected the expression of microglial marker CD11b and the related cytokines TNF-α, 
IL-1β and IL-6 in the olfactory bulb. Our research found that the cells in the olfactory bulb of 
AR mice with OD were arranged irregularly, and substantial neuron loss (Fig. 2A). Compared 

886https://e-aair.org https://doi.org/10.4168/aair.2021.13.6.882

Dopamine D2 Receptor Alleviates Neuroinflammation



with the group without OD, the expression of CD11b, TNF-α, IL-1β and IL-6 in the group 
with OD were all significantly increased (Fig. 2A-C). To verify the role of TLR4 in AR-induced 
OD, the expression of the TLR4/NF-κB pathway in microglia sorted from the olfactory bulb 
was detected. The expression of TLR4, MyD88 and NF-κB phospho-p65/p65 in microglia of 
the group with OD were all significantly increased, compared with the group without OD, 
respectively (Fig. 2D and E). However, the above proteins in the group without OD was not 
significantly different from that of the Ctrl group, which further reveals that AR-induced OD 
may be caused by neuroinflammation of the olfactory bulb, and be related to the TLR4/NF-κB 
pathway in microglia.

887https://e-aair.org https://doi.org/10.4168/aair.2021.13.6.882

Dopamine D2 Receptor Alleviates Neuroinflammation

D

TLR4

MyD88

phospho-p65

p65

β3-tubulin

96 KD

33 KD

72 KD

72 KD

50 KD

Re
la

tiv
e 

ex
pr

es
si

on
 (%

) 300

100

0

200

E

†

†

*
†

†

†

MyD88 phospho-p65/p65TLR4

Ctrl
AR without OD
AR with OD

Ctrl

AR without OD

AR with OD

†

†

†

†

†

†

B

pg
/m

L

150

50

0

100

C
Ctrl

AR without OD

AR with OD

Ctrl
AR without OD
AR with OD

IL-1β IL-6TNF-α

†

†

Fl
uo

re
se

nc
e 

in
te

ns
ity

 (%
) 300

100

0

200

A

H&E

CD11b

AR without ODCtrl AR with OD

100 µm 100 µm

20 µm 20 µm 20 µm

100 µm

Fig. 2. Neuroinflammation in the olfactory bulb of AR mice with OD. (A, B) Morphology of the olfactory bulb was detected by H&E staining. The expression of 
CD11b in the olfactory bulb was detected by immunofluorescence, and fluorescence intensity in each group of mice was analyzed. (C) The expression of TNF-α, 
IL-1β and IL-6 in the olfactory bulb were detected by ELISA. (D, E) The expression of TLR4, MyD88, NF-κB p65 and NF-κB phospho-p65 in microglia sorted from 
the olfactory bulbs for each group were detected by Western blot. Ctrl (n = 8), AR without OD (n = 9), AR with OD (n = 13). 
H&E, hematoxylin and eosin; Ctrl, the control group challenged with phosphate buffered saline; AR without OD, the group of allergic rhinitis without olfactory 
dysfunction; AR with OD, the group of allergic rhinitis with olfactory dysfunction; TNF-α, tumor necrosis factor-α; IL, interleukin; TLR4, toll-like receptor 4; NF-
κB, nuclear factor-κB. 
*P < 0.05, †P < 0.01.



Quin alleviates neuroinflammation in AR mice with OD
To verify the effect of dopamine D2 receptor on the olfactory mucosa and olfactory bulb, 
Quin, a dopamine D2 receptor agonist, was administered intranasally to assess the olfactory 
function, the morphology of olfactory mucosa and the expression of CD11b, TNF-α, IL-1β 
and IL-6 in the olfactory bulb. The BFPT found that Quin could shorten the time to find the 
food pellets, and the most significant improvement in olfactory function occurred on day 12 
(Fig. 3B). Therefore, olfactory mucosa and olfactory bulb on the 12th day of treatment were 
selected for further analysis. Compared with AR mice with OD (no treatment), the olfactory 
mucosa eosinophils were not significantly increased fter 12 days of OVA challenge, but the 
expression of CD11b in the olfactory bulb was increased. Quin had no significant effect on 
eosinophil infiltration in olfactory epithelium, but reduced the activation of microglia in the 
olfactory bulb (Fig. 3C), compared with OVA challenge only. Furthermore, after treatment 
with Quin, the expression of TNF-α in the olfactory bulb was decreased on the 6th, 9th and 
12th days, the expression of IL-1β was decreased on the 9th and 12th days, and the expression 
of IL-6 was also decreased on the 9th and 12th days (Fig. 3D-F), compared with OVA 
treatment alone. In order to further study the anti-inflammatory effects of Quin, we sorted 
the microglia from the olfactory bulbs after successful modeling. After 24 hours of treatment 
with Quin, TNF-α, IL-1β and IL-6 in the culture medium were also significantly decreased 
(Fig. 3G). The results suggest that Quin reverses neuroinflammation in the olfactory bulb and 
improve olfactory function.

Quin inhibits the TLR4/NF-κB pathway in vivo
Previous studies have shown that TLR4/NF-κB is a vital pathway by which microglia release 
inflammatory factors.20-22 Therefore, we explored Quin's effect on the expression of TLR4, 
MyD88, NF-κB p65 and NF-κB phospho-p65 in the microglia sorted from the olfactory bulbs 
for each group. Compared with OVA treatment alone, after nasal administration of Quin, 
the expression of TLR4 was decreased on the 3rd, 6th, 9th, and 12th days; the expression of 
MyD88 was decreased on the 6th, 9th, and 12th days; the expression of phospho-p65/p65 was 
also decreased on the 6th, 9th, and 12th days, respectively (Fig. 4). The results suggest that 
the reversal of neuroinflammation by Quin may be related to the TLR4/NF-κB pathway.

Quin exerts anti-inflammatory effects through the TLR4/NF-κB pathway
To further study the direct correlation between Quin and the TLR4/NF-κB pathway, we 
explored Quin's effect in vitro on the expression of TLR4, MyD88, NF-κB p65 and NF-κB 
phospho-p65 in the microglia sorted from the olfactory bulbs for each group. After 24 hours 
of treatment with Quin in vitro, TLR4, MyD88, and phospho-p65/p65 in the microglia of 
AR mice with OD were reduced significantly (Fig. 5A and B). Then, we sorted the microglia 
of normal mice and observed the effect of Quin on microglia treated with TLR4 agonist 
LPS. After 24 hours of treatment with Quin, TLR4, MyD88 and phospho-p65/p65 were also 
significantly decreased compared with LPS treatment alone, respectively (Fig. 5C and D). 
Concurrently, TNF-α, IL-1β and IL-6 were decreased compared with LPS treatment alone, 
respectively (Fig. 5E). This suggests that Quin plays an anti-inflammatory role through the 
TLR4/NF-κB pathway directly.

DISCUSSION

The mechanism by which AR causes OD is not fully understood. The previous view believed 
that swollen nasal mucosa caused by inflammation was the main cause of OD.30 However, 
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recent studies reported that the degree of nasal obstruction is not directly related to AR-
induced OD. For instance, nasal mucosal decongestant does not restore normal olfactory 
function in AR patients. Studies by Cowart et al.31 also showed that although nasal resistance 
was significantly higher among AR patients than among normal Ctrls, it was not related to 
olfactory threshold in either group. Wang et al.24 found that the inflammatory response of 
AR led to pathological changes in the olfactory mucosa, the expression of olfactory marker 
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*P < 0.05, †P < 0.01.



protein decreased, and the number of olfactory receptor neurons decreased. In addition, 
our research found that the cells in the olfactory bulb of AR mice with OD are irregularly 
arranged, and substantial neuron loss. Besides, the microglia of the olfactory bulb were 
abnormally activated, which may be one of the reasons for AR-induced OD.

Several studies on humans and rodents have shown that intranasal or nebulized inhalation 
of allergens in sensitized animals induced avoidance behavior and activated limbic brain 
areas.5-8 This study also showed that AR mice with OD showed abnormal activation of 
microglia and release of inflammatory cytokines, but not in AR mice without OD (Fig. 2A-C), 
which further proved that AR-induced OD is closely related to neuroinflammation of the 
olfactory bulb. Similar to the findings, Tonelli et al.5 reported that OVA or pollen-induced 
AR rats produced TH2 cytokines in the olfactory bulb and prefrontal cortex, but not in the 
temporal cortex and hypothalamus, and increased brain activity was observed by functional 
MRI. Asthma induces activation of the microglia in the hippocampus and the prefrontal 
cortex, elevated levels of TNF-α and IL-1β, and a significant loss of neurons in the brain.7 
In some other allergic diseases, the migration of microglia and the production of ROS 
increase, which ultimately enhance the neurotoxicity induced by glutamate.32-34 However, the 
mechanism that causes neuroinflammation of the olfactory bulb is unclear.

Microglia are important immune cells of CNS.28 In homeostasis, microglia monitor the 
microenvironment and protect astrocytes and neurons. Under pathological conditions, 
microglia are activated and morphologically altered to protect nerve cells by phagocytic 
fragments and altered secretions. However, overactivation of microglia can lead to neuronal 
damage and therefore plays an important role in neuroinflammation.29 Numerous studies 
have shown that TLR4 is a key molecule that regulates the immune response during 
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CNS infection and injury,20 which is mainly expressed in microglia and can be specifically 
recognized by LPS. After activation in the brain, TLR4 binds to MyD88 to relieve the inhibitory 
effect of IκB on NF-κB, promote NF-κB nuclear translocation, stimulate inflammation-related 
gene expression, and promote the synthesis and release of TNF-α, IL-1β and IL-6.20-22 In 
Alzheimer's disease, PD, amyotrophic lateral sclerosis and other neurodegenerative diseases, 
TLR4 activates the expression of key pro-inflammatory cytokine genes.35-37 In our research, 
TLR4/NF-κB pathway, TNF-α, IL-1β and IL-6 was significantly increased in the olfactory 
bulb microglia in AR mice with OD, but not in AR mice without OD (Fig. 2D and E). In 
addition, TLR4 knockout significantly reduced neuroinflammation and dysfunction in animal 
studies.36,38 Therefore, TLR4 may be a potential therapeutic target for AR-induced OD.

Recently, the anti-neuroinflammatory effects of the dopamine D2 receptor have been 
highlighted, related to NLRP3 inflammasome, renin-angiotensin system and αB-
crystallin.12,13,39 Nasal administration of Quin not only reduced systemic side effects,40,41 but 

891https://e-aair.org https://doi.org/10.4168/aair.2021.13.6.882

Dopamine D2 Receptor Alleviates Neuroinflammation

C

TLR4

MyD88

phospho-p65

p65

β3-tubulin
LPS

Quin
− − + +
− + − +

96 KD

33 KD

72 KD

72 KD

50 KD

A

Re
la

tiv
e 

pr
ot

ei
n 

(%
)

300

100

0

200

B

††

††

††TLR4

MyD88

MyD88

phospho-p65

phospho-p65/p65

p65

β3-tubulin
Quin

Extracts from: Ctrl AR with OD
− + − +

TLR4

96 KD

33 KD

72 KD

72 KD

50 KD

Quin
Extracts

from:
Ctrl AR

with OD

− + − +

Re
la

tiv
e 

pr
ot

ei
n 

(%
)

300

100

0

200

D

††

*† ††

MyD88 phospho-p65/p65TLR4

LPS
Quin

− − + +
− + − +

pg
/m

L

150

50

0

100

E

††

*†

††

IL-1β IL-6TNF-α

LPS
Quin

− − + +
− + − +

Fig. 5. Quin exerts anti-inflammatory effects through the TLR4/NF-κB pathway. (A, B) In the cultured microglia extracted from the olfactory bulbs after successful 
modeling, the expression of TLR4, MyD88, NF-κB p65 and NF-κB phospho-p65 of microglia after treatment with Quin (20 μmol/L) for 24 hours. (C, D) The effect 
of Quin (20 μmol/L) on microglia sorted from the normal mice after 24 hours of LPS (TLR4 agonist, 1 μg/mL) treatment. (E) The effect of Quin (20 μmol/L) on 
TNF-α, IL-1β and IL-6 in medium supernatant of microglia sorted from the normal mice after 24 hours of LPS treatment (n = 6 per group). 
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also entered the olfactory bulb more efficiently than systemic delivery. For example, studies 
have found that after 30 minutes of intranasal administration of dopamine, the uptake of [3H]
dopamine in the brain was significantly higher than that of intravenous administration.42 
After [3H]dopamine was administered to the unilateral nasal cavity (right), the content of [3H]
dopamine in the right olfactory bulb was 27 times higher than that in the left olfactory bulb 
at 4 hours.43 In our study, the dopamine D2 receptor agonist Quin inhibited the expression 
of TLR4/NF-κB pathway in vivo and in vitro (Figs. 4, 5A and B), and the release of TNF-α, 
IL-1β and IL-6 (Fig. 3D-G), finally improved olfactory function in mice (Fig. 3B). In addition, 
Quin inhibited TLR4/NF-κB pathway and the release of inflammatory cytokines induced by 
TLR4 agonist LPS (Fig. 5C-E). Consistent with these results, Quin suppressed the expression 
of TLR4/NF-κB pathway in PD mice by increasing the expression of βArr2.23 This suggests 
that dopamine D2 receptor activation can reduce the TLR4/NF-κB-dependent inflammatory 
response of the olfactory bulb and protect olfactory function.

There are some limitations to our study. The relationship between dopamine receptors and 
olfactory loss caused by AR would have been further investigated. This study mainly focuses 
on the pharmacological mechanism of dopamine D2 receptor. It is believed that the study 
of the relationship between dopamine receptors and olfactory loss can provide a more 
comprehensive understanding of the pathogenesis of AR with OD.

In conclusion, the microglia of the olfactory bulb were abnormally activated in AR with OD, 
with the up-regulation of TLR4/NF-κB signaling, TNF-α, IL-1β and IL-6. Quin, a dopamine 
D2 receptor agonist, can improve TLR4/NF-κB signaling-dependent neuroinflammation 
and help restore olfactory function. Our findings suggest an association among dopamine 
D2 receptor, neuroinflammation and olfactory function, providing a novel target for the 
treatment of OD induced by AR.
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