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Abstract

Many physical systems exhibit random or stochastic components which shape or 

even drive their dynamic behavior. The stochastic models and equations describing 

such systems are typically assessed numerically, with a few exceptions allowing for 

a mathematically more rigorous treatment in the framework of stochastic calculus. 

However, even if exact solutions can be obtained in special cases, some results 

remain ambiguous due to the analytical foundation on which this calculus rests. In 

this work, we set out to identify the conceptual problem which renders stochastic 

calculus ambiguous, and exemplify a discrete algebraic framework which, for all 

practical intents and purposes, not just yields unique and exact solutions, but might 

also be capable of providing solutions to a much wider class of stochastic models.

Keywords: Applied mathematics, Statistical physics

1. Introduction

The first descriptive mentioning of an intriguing new type of motion governing 

the behavior of tiny particles, now generally known as “Brownian motion”, can be 

traced back to the Roman poet and philosopher Titus Lucretius Carus (Lucretius), 

who already around 60 BCE noticed and described with remarkable accuracy the 

seemingly random movement of dust in air [1]. Although Lucretius attributed the 
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cause behind this jiggling dance of dust to tiny air currents created by sunlight, he 

also suggested that collisions between atoms are responsible for its spontaneous 

nature. It took almost two millennia before observations of this phenomenon, 

specifically the motion of small organic particles submerged in fluids, appeared 

again in the literature, e.g. in the works of biologists Stiles and Gleichen (movement 

of pollen and particles of the ovulum of Zea Mays), Needham, Leclerc (Buffon) 

and Spallanzani (movement of pollen, active molecules and other organic particles), 

as well as the botanist Brogniart (movement of pollen-grain; for a more detailed 

account of the historical experimental background, see [2,3]). However, the physical 

explanation of the observed phenomenon remained obscure. Slow progress was 

finally made in more detailed investigations by Ingen-Housz, who showed that coal 

dust on the surface of alcohol is subject to the same type of random motion [4], 

and, independently, the studies of Bywater [5]. Both demonstrated that the observed 

phenomenon is not restricted to organic materials, but governs the motion of tiny 

inorganic particles as well, thus opening the door for a more focused approach to 

delineate its physical causes. It was finally botanist Robert Brown who, standing 

on a large body of available experimental work, first investigated this seemingly 

random particle motion in a systematic fashion [2], effectively constructing the 

foundation on which later the theoretical framework and mathematical description 

of this phenomenon could be built. For this arguably justifiable reason, in a historical 

context, the discovery of what later became known as “Brownian motion” is 

attribution to him.

However, also Brown was unsuccessful in identifying the physical cause of this 

motion, let alone conceiving of a mathematical description of this phenomenon 

within the mindset of Newtonian determinism dominating physics at this time. It 

still took almost a century before Einstein [6], and independently Smoluchowski 

[7], provided a mechanistic explanation of this random motion, and proposed a 

mathematical model which allowed for its more rigorous treatment. Today, Brownian 

motion is cited as a classical and, perhaps, the most simple example of stochastic 

processes, and its mathematical analysis serves as the primary illustration of what 

became known as stochastic calculus [8,9]. However, despite the overwhelming 

success of stochastic calculus in describing natural phenomena and its many 

applications far beyond the realms of physics, a conceptually satisfying solution 

to the core conundrum surrounding it, namely the fact that results of stochastic 

calculations typically depend on the chosen mathematical convention (e.g., see 

[9,10,11,12,13,14]) is still at large (but see, e.g., [15] Chapter X and [16]).

In this contribution, we set out to explore this dilemma from a perhaps naive, 

more foundational angle, and assert that its source is rooted in the idealizing 

assumption of the continuity of physical observables and, resting on this assumption 

of continuity, the analytic mathematical framework commonly used to describe 
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physical phenomena. Although discretization of physical observables is an accepted 

and widely employed technique to render mathematical models of natural phenomena 

finite and, thus, treatable, we will conjecture that only a rigorously discrete and 

finite mathematical framework can provide a meaningful description of physical 

measurements as well as basis for the construction of models describing physical 

reality, at least, but likely not only, in cases where stochastic observables are 

involved.

Unfortunately, however, to date such a well-developed discrete-algebraic framework 

remains largely unexplored beyond the focus on mere applicational issues (for 

examples of such discrete approaches, see [17,18]). In this contribution, we will 

therefore exemplify the proposed approach by considering a simple yet not explicitly 

and unambiguously solvable stochastic model, and demonstrate that, for all practical 

intents and purposes, an exact solution can be obtained for the system’s state variable. 

Moreover, the presented constructive solution is unique and, thus, devoid of the 

aforementioned conceptual dilemma which riddles stochastic calculus. With this, 

we hope to shed some light on the nature of stochastic phenomena, as well as 

the mathematical language which would be necessary to adequately describe such 

phenomena.

2. Background

Einstein’s physical explanation and mathematical description of Brownian motion 

are often cited as the first stochastic model of a natural phenomenon. Looking at 

the change of the number of particles per unit volume in finite time intervals [6], 

however, Einstein’s derivation is also widely regarded as only approximative in 

nature. This arguably unjust verdict does remain untouched even when considering 

the finite time intervals as being infinitesimally small compared to the time the 

system is observed, thus translating the original finite and discrete model into 

one which describes the spatio-temporal distribution of particles in terms of a 

continuous diffusion equation. Regardless of the approximative nature of Einstein’s 

model of Brownian motion, the associated diffusion equation formed historically the 

impetus for the development of stochastic calculus. Here, Langevin [19] formulated 

the first method for generalizing dynamical equations to probabilistic equations 

by considering differential equations of continuous functions with random terms 

such as white noise. However, it quickly became clear that the mathematically 

rigorous treatment of such equations requires the generalization of commonly used 

classic-analytical concepts, specifically that of the differential and integral, and it 

took yet another four decades before Itô introduced a rigorous notion of stochastic 

differentials and integrals [20,21].
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Despite the rigor of Itô’s stochastic calculus, it is far from being free of conceptual 

problems. To illustrate this point, let us consider the random term in Langevin’s 

equation as being a highly irregular and rapidly fluctuating function. In order to 

give mathematical meaning to an associated stochastic differential equation, this 

random term must be made subject to stringent restrictions. Among other properties, 

one has to demand that values taken by the random term at different times are not 

correlated. Although being a reasonable constraint to impose, mathematically it leads 

to a 𝛿-shaped autocorrelation function and, thus, to an infinite variance of the random 

term. Physically, there is little justification to support such an assumption when 

describing natural processes. Unfortunately however, many stochastic models of 

natural phenomena utilize Gaussian white noise due to its mathematical simplicity, 

a stochastic process which satisfies on a mathematical level the above requirement, 

yet remains physically an ideal which cannot have a realization in nature. Indeed, 

in a recent experimental study [22], it was demonstrated that, due to long-range 

hydrodynamic correlations, the thermal forces governing the random motion of 

Brownian particles cannot be characterized by a white noise spectrum, as commonly 

assumed in stochastic models of Brownian motion. In other experiments (e.g., 

see [23]), it could be argued that the assumption of white noise is justified, but 

that such a justification can only be maintained under very specific circumstances 

ultimately leading to mathematical models of the investigated physical system which 

no longer respect the system’s physical boundaries, an argument which will be 

further exemplified below.

Viewed from a more mathematical perspective, the seemingly insurmountable 

conceptual problems one faces when dealing with stochastic systems become even 

more transparent. Let us consider, as an example, a differential equation with an 

additive stochastic term 𝑓 (𝑡) subject to 𝛿-autocorrelation, i.e. ⟨𝑓 (𝑡)𝑓 (𝑡′)⟩ = 𝛿(𝑡 − 𝑡′). 
Assuming that the associated differential equation describes a physical phenomenon, 

we must demand it to be integrable, hence the integral

𝑡

∫
0

𝑓 (𝑠) 𝑑𝑠 = 𝐹 (𝑡)

must both exist and yield a continuous function 𝐹 (𝑡), called a Wiener process. 

However, it can be shown that 𝐹 (𝑡) is not differentiable, thus rendering the original 

differential equation altogether meaningless in a strict mathematical sense [9].

Itô’s contribution to the solution of this conundrum was, instead of dealing with 

the integrated stochastic term itself, to remain with the formal integral equation and 

define a stochastic differential

𝑑𝐹 (𝑡) = 𝑓 (𝑡) 𝑑𝑡
on.2018.e00691
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denoting the increment of the Wiener process 𝐹 (𝑡). Arguably nothing more than a 

valid mathematical trick, with this re-interpretation, the above integral takes the form

𝑡

∫
0

𝑓 (𝑠) 𝑑𝑠 =
𝑡

∫
0

𝑑𝐹 (𝑠),

which is the simplest example of a stochastic Riemann–Stieltjes integral [24]

endowed with a mathematically well-defined meaning.

In general, integrals of the form

𝑡

∫
𝑡0

𝑔(𝑠, 𝐹 (𝑠)) 𝑑𝐹 (𝑠), (1)

where 𝑔(𝑡, 𝐹 (𝑡)) denotes an arbitrary real-valued function which is 𝐶1 in both 𝑡

and the Wiener process 𝐹 (𝑡), as well as independent of the behavior of 𝐹 (𝑡) for 

future values of 𝑡 (i.e. nonanticipating; see [9], Chapter 4), are treated similar to the 

classical Riemann integral by partitioning of the integration interval and considering 

the asymptotic limit of partial (Riemannian) sums. Specifically, let {𝑡𝑖}, 𝑖 ∈ [0, 𝑛]
with 𝑡𝑖−1 < 𝑡𝑖 and 𝑡𝑛 = 𝑡 be a discretization of the interval [𝑡0, 𝑡] into 𝑛 equidistant 

points, and choose for each 𝑖 > 0 a point

𝜏𝑖 = 𝛼𝑡𝑖 + (1 − 𝛼)𝑡𝑖−1 (2)

with 0 ≤ 𝛼 ≤ 1 residing inside the interval [𝑡𝑖−1, 𝑡𝑖]. Expressing (1) in terms of 

an 𝛼-integral, an approach which generalizes Stratonovich’s evaluation of stochastic 

integrals, it can be shown [25] that the general solution is given by

𝑡

∫
𝑡0

𝑔(𝑠, 𝐹 (𝑠)) 𝑑𝐹 (𝑠) = 𝐺(𝑡, 𝐹 (𝑡)) − 𝐺(𝑡0, 𝐹 (𝑡0)) −
𝑡

∫
𝑡0

𝜕𝐺(𝑠, 𝐹 (𝑠))
𝜕𝑠

𝑑𝑠

+
(
𝛼 − 1

2

) 𝑡

∫
𝑡0

𝜕2𝐺(𝑠, 𝐹 (𝑠))
𝜕𝐹 (𝑠)2

𝑑𝑠, (3)

where 𝐺(𝑡, 𝐹 (𝑡)) denotes a function such that

𝜕𝐺(𝑡, 𝐹 (𝑡))
𝜕𝐹 (𝑡)

= 𝑔(𝑡, 𝐹 (𝑡)).

If we set 𝑔(𝑡, 𝐹 (𝑡)) = 𝐹 (𝑡), then (3) yields

𝑡

∫
𝑡0

𝐹 (𝑠) 𝑑𝐹 (𝑠)

= 1
2

(
𝐹 (𝑡)2 − 𝐹 (𝑡0)2

)
+
(
𝛼 − 1

2

)
(𝑡 − 𝑡0)
on.2018.e00691
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=
⎧⎪⎨⎪⎩

1
2

(
𝐹 (𝑡)2 − 𝐹 (𝑡0)2

)
− 1

2 (𝑡 − 𝑡0) for 𝛼 = 0 (Itô)

1
2

(
𝐹 (𝑡)2 − 𝐹 (𝑡0)2

)
for 𝛼 = 1∕2 (Stratonovich)

(4)

which is one of the most-cited examples of stochastic integration in the literature.

The integrals on the right-hand side of (3) are classical Riemann integrals, thus 

exist and are well-defined for appropriate functions 𝑔(𝑡, 𝐹 (𝑡)). However, the last 

term renders the stochastic integral somewhat pathologic in a mathematical sense, 

as the general solution remains dependent on the arbitrary choice of the point (2)

at which the argument is evaluated when considering the partial sums, even after 

taking the asymptotic limit. This is in stark violation of the general tenet that the 

mathematical description of physical phenomena cannot and must not depend on 

the chosen mathematical convention, and highlights one of the main problems in the 

theory of stochastic integrals and, thus, stochastic calculus in general.

Historically, two conventional choices for 𝛼 emerged and are now most-widely used. 

For 𝛼 = 0, one obtains Itô’s original calculus [20,21], which was found to be 

both mathematically and technically most satisfying, however, on the expense of 

differential rules which deviate from those utilized in classical calculus. While the 

Itô calculus dominates applications in financial mathematics (e.g., see [26,27,28]; 

but see [29]), the last term on the right-hand side in (3), or 12 (𝑡 − 𝑡0) in the example 

presented in Eq. (4), often eludes a physical meaning. On the other hand, 𝛼 =
1
2 yields the well-known Stratonovich calculus [30], an analytic framework which 

retains the classic rules of calculus and, although being mathematically more difficult 

to deal with, constitutes the natural choice for the description of physically more 

realistic phenomena involving stochastic processes with finite correlation time.

To make matters worse, a rigorous link between both established and employed 

stochastic calculi or, in general, the calculi emerging from an arbitrary choice of 𝛼 ∈
[0, 1] is still at large, and despite many promising attempts (e.g., see [31,32,33]), 

so far no general rule could be established which dictates which calculus to use for 

modelling specific stochastic phenomena of physical reality. Perhaps the term “Itô–

Stratonovich dilemma” [9,15,34,35] is well chosen, as it suggests a more general 

problem with our understanding of the nature of mathematical models of stochastic 

phenomena, and not just the insufficiency of a single model and the particular 

calculus utilized to adequately describe it. In the remainder of this paper, we will 

carefully argue that, indeed, the core mathematical language of differential calculus 

employed in stochastic calculus itself is ill-suited, as it is an idealization which does 

not, and cannot, reflect physical reality (Section 3). Furthermore, in Section 5 we 

will exemplify, perhaps naively, a finite algebraic approach which is, by definition, 

devoid of ambiguities stemming from the choice between different mathematical 

conventions.
on.2018.e00691
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3. Analysis

Let us return to Brownian motion as the classical example of a stochastic

phenomenon. Einstein’s intuition into the physical nature of this phenomenon 

provided the mechanical explanation of the observed seemingly random movement 

as being the result of collisions between suspended particles and the atoms or 

molecules of a fluid whose behavior is governed by the molecular-kinetic theory 

of heat and thermal equilibrium [6]. In deducing a mathematical formulation of 

this mechanical model, Einstein argued that certain constraints have to be satisfied. 

Firstly, the movement of each suspended particle needs to be considered as being 

independent from the movement of all other particles. Secondly, the movement of 

each given particle at different times must be assumed as being independent. In 

order to satisfy the first constraint and, thus, ensure that statistical equilibrium is 

achieved, the time intervals considered in the mathematical model must be small 

enough (preferably infinitesimal) compared to the time frame the whole system is 

observed. However, the second constraint demands the time intervals considered 

in the mathematical model to be large enough (certainly not infinitesimal) in 

order to ensure the aforementioned independence of the random movement of 

each suspended particles at different times. In other words, a given particle must 

experience collisions which change its path between successive time intervals. 

Similar constraining arguments can be made for the space variable entering the 

mathematical model of Brownian motion, as from a physical point of view both the 

suspended particles and the molecules or atoms of the fluid are spatially extended 

objects.

Mathematically, a lower bound for spatial and temporal variables naturally yields 

a description of the phenomenon in terms of finite and discrete, i.e. algebraic, 

equations, specifically difference equations, as reflected in the original approach of 

Einstein. However, in order to establish the link to the well-known phenomenon 

of diffusion, Einstein discarded later in his original work these lower bounds and 

arrived at a differential formulation of Brownian motion which, as mentioned earlier, 

set the stage for the development of stochastic calculus by Itô many decades later. 

In Einstein’s defense, we have to stress that the approach of using infinitesimal 

limits of certain variables in algebraic equations in order to arrive at a mathematical 

description in terms of differential, hence analytic, equations is rather commonplace. 

On the other hand, unfortunately, it also needs to be noted that questions like whether 

such limits, despite being mathematically sound, make sense physically, or to which 

extent the taking of limits of variables retains the physical meaning of the original 

model, are often only barely addressed or, worse, simply ignored.

To exemplify the importance of such questions, let us once more take a look at 

the example of Brownian motion. What does it mean to consider infinitesimal time 
on.2018.e00691
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intervals? As mentioned above, the lower bound of time intervals in the model of 

Brownian motion is dictated by the requirement that the movement of a suspended 

particle must be independent when considering consecutive time intervals. As 

the observed random movement is, on physical grounds, the consequence of 

collisions between the particle and the fluid’s fast-moving constituents, such an 

independence is certainly only ensured if, within two consecutive time intervals, at 

least one collision occurs. To retain independence of movement when asymptotically 

approaching infinitesimally small time intervals, an increasing number of collisions 

is required, which physically necessitates the fluid in which the Brownian particle is 

suspended to either have a temperature or a density approaching infinity. On the other 

hand, if we retain physically plausible properties of the system, i.e. finite density 

and temperature, then choosing increasingly smaller time intervals must result in 

a mathematical model whose behavior does no longer capture the random nature 

of the movement of the Brownian particle. Indeed, for sufficiently small yet still 

finite time intervals, no collisions between the suspended particle and the fluid’s 

constituents will occur, hence the motion of both the Brownian particles and that 

of the fluid will be deterministic in the classical Newtonian sense and, thus, exhibit 

no stochastic behavior. In other words, one could argue that the random nature of 

the Brownian motion is merely an emergent phenomenon tied to the time scale at 

which the system is observed, and that a valid mathematical model must respect this 

scale. Brownian motion is certainly not an isolated case exhibiting this breakdown 

of the link between physical reality and its mathematical description, but arguments 

similar to the ones made above can be brought forth for many, possibly all stochastic 

models of physical phenomena. Either the mathematical limits required to obtain 

differential formulations of the given stochastic phenomena do not make sense 

physically, or yield models which no longer reflect the physical reality they were 

originally constructed to describe.

In defiance of this principal problem, various paths were explored to retain the 

power of differential calculus for describing stochastic systems. As Itô demonstrated, 

the classical definition of integrals and differentials can be extended to encapsulate 

stochastic variables by utilizing limits of finite constructs, such as the Riemannian 

sum in the case of integrals. However, as we saw in Section 2, the results of this 

approach typically depend on the way these limits are approached, see Eq. (3), 

thus violating one of the core pillars of modern physics, namely the requirement of 

independence of a model describing physical reality from mathematical convention. 

Fixating on one specific convention, such as either Itô or Stratonovich, does not 

solve the problem either, as for each possible convention, examples of physical 

systems can be found whose characteristics are at odds with that of the corresponding 

mathematical model. Last but not least, one could abolish the requirement of a 

𝛿-shaped autocorrelation crucial to Itô’s original stochastic calculus all together. 

This certainly moves stochastic differential calculus closer to its classical counterpart 
on.2018.e00691
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(e.g., see [9,15,36]), but opens up a whole new Pandora’s Box of demonstrating 

the mathematical rigor of the resulting calculus. Finally, and in conjunction with 

this idea, it certainly is conceivable to retain the differential framework at the base 

of stochastic calculus, along with its well-documented advantages, and somehow 

“cure”, in a mathematically rigorous way, the resulting formalism from its conceptual 

shortcomings. Specifically, fully abandoning the notion of white noise in favor of 

colored noise with finite correlation times, or introducing new stochastic processes 

which better account for the microscopic reality of a given physical phenomenon, 

such as telegrapher’s noise [37] and its generalization (which was shown to account 

for the finite velocities of Brownian particles, see [38]), is a road already well-

explored. Unfortunately, however, along this road one often looses the advantages 

of simplicity and a more general applicability of the generated models, as the latter 

need to account for, and require, a deep knowledge of the microscopic reality of the 

given physical situation.

Another and certainly more radical option is to give up on the idea of defining a 

viable differential calculus suitable for describing stochastic systems altogether. The 

justification of such an approach is inherently linked to the epistemological problem 

of conception and validation of models of physical reality, and, in the wider sense, 

to the theory of measurement of physical observables. Let us define as “physical 

observables” all variables and parameters entering models of physical phenomena 

which can be experimentally probed and, thus, are accessible through the process of 

measurement. Then we can assert three intuitive principles for the construction of 

mathematical models of physical phenomena:

(1) Physical observables are finite. Although intuitively viable and upheld by 

centuries of experimental observations, mathematical models of physical phenomena 

often violate this law from experience by considering asymptotic or infinitesimal 

limits which not only see little reflection in reality, but might even break the 

boundaries of the validity and applicability of a given model.

(2) Physical observables can only be ascertained with finite precision.
Experimentally probing physical reality is always subject to noise and uncertainties 

which limit the precision with which physical observables can be known. But rather 

than being a nuisance, this principal limit of how precise we can measure and, more 

generally, how much we can know about nature at any given time might prove an 

advantageous ingredient in the conception of a mathematical framework better suited 

to describe reality.

(3) Physical observables exhibit lower and upper bounds marking the validity of 
a given model. It is an acknowledged fact that each given model of a physical 

phenomenon is and can only be valid within certain bounds of its observables. 

Considering asymptotic or infinitesimal limits of physical variables in order to 
on.2018.e00691
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arrive at a formulation in terms of differential calculus, however, might breach these 

bounds and unjustly extend the scope of a given model beyond its applicability, as 

exemplified above in the case of Brownian motion.

The mathematical framework used for describing physical phenomena must, or 

at least should, respect these core principles as they encapsulate what can be 

known, and thwart stepping on the treacherous ground of idealizations whose 

validation and experimental verification is hard or even impossible to achieve. 

Moreover, mathematical models of physical reality must, or at least should, never 

leave the scope of their applicability, as only this way it is possible to draw viable, 

unambiguous and predictive conclusions one can work with and build upon. We 

argue that a discrete and finite mathematical framework under the umbrella of 

algebraic constructivism encapsulates, by definition, all of the above principles and, 

thus, is better suited as mathematical framework for describing physical phenomena, 

in particular those with emergent stochastic characteristics.

In the remainder of this study, we will exemplify the power of a purely constructive 

algebraic mindset and approach, using a simple yet non-trivial stochastic system 

which cannot be solved unambiguously and explicitly in the framework of stochastic 

calculus. Unfortunately, however, as a rigorous mathematical framework is still in 

development, we must abstain from generalizations and a presentation of potential 

applications, but only demonstrate that, in this specific instance, the explicit and 

exact temporal stochastic evolution of the system’s state variable can be obtained.

4. Example

In a discrete algebraic framework, ideally, one would start with a strictly algebraic 

model of a given physical system in terms of recursive equations which, akin to 

differential equations, describe the incremental evolution of the system in question. 

The task then would be to solve these recursions explicitly, hence arrive at an 

“integrated” model which can be used for formulating predictions and establishing 

the link to experimental observations. However, as the goal of this study is the 

presentation of an alternative approach to stochastic calculus, we will utilize a 

model formulated in terms of differential calculus, and explore its treatment within 

a constructive algebraic framework (Section 5).

4.1. The toy model

For the purpose of illustration, let us consider the following first-order stochastic 

differential equation in 𝑥(𝑡):

𝑥̇(𝑡) = 𝑎1𝑥(𝑡) + (𝑎2𝑥(𝑡) + 𝑎3)𝑓 (𝑡), (5)
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where all 𝑎𝑖 ∈ ℚ ∶ 𝑎𝑖 ≠ 0 are constants, and 𝑓 (𝑡) denotes an arbitrary 

function or stochastic process driving the dynamics of the system. Equation (5)

has far-reaching applications. For instance, in the case of 𝑓 (𝑡) being colored (e.g. 

Ornstein–Uhlenbeck) noise, the above differential equation is subject to applications 

in theoretical neuroscience as effective stochastic model of neurons driven by a 

single multiplicative, i.e. conductance, synaptic noise source (e.g., see [39]). If 𝑓 (𝑡)
is a Gaussian white noise source, then, due to the multiplicative coupling between 

the state variable 𝑥(𝑡) and the noise term, Eq. (5) belongs to the class of primary 

examples which is typically utilized to illustrate the Itô–Stratonovich dilemma (e.g., 

see [9,10,34,35]).

As argued earlier, due to the very nature of stochastic processes, the stochastic 

differential equation (5) does, in general, not allow for an explicit and, more 

importantly, unique solution within the framework of stochastic calculus. However, 

if we consider for a moment 𝑓 (𝑡) as being a smooth function of 𝑡, then an explicit, 

formal solution of this differential equation is given by

𝑥(𝑡) = 𝑥(0)e𝐼(𝑡) + 𝑎3

𝑡

∫
0

𝑓 (𝑠)e𝐼(𝑡)−𝐼(𝑠) 𝑑𝑠, (6)

where

𝐼(𝑡) =
𝑡

∫
0

(
𝑎1 + 𝑎2𝑓 (𝑠)

)
𝑑𝑠. (7)

As an example, Figure 1A illustrates for 𝑓 (𝑡) = sin(𝑡) the numerical evaluation of 

this solution, and compares the latter to the numerical integration of the original 

differential equation (5).

4.2. The explicit analytic solution

Although (6) provides, under the weak assumption of smooth and integrable 𝑓 (𝑡)
in the interval [0, 𝑡], an explicit solution of (5), a closed analytic form for arbitrary 

𝑓 (𝑡) can, in general, not be obtained. A case which does, however, allow for such 

a solution and will play a crucial part in the remainder of this study, is given if we 

assume 𝑓 (𝑡) as being piecewise constant. Specifically, let 𝑓 (𝑡) = 𝑓𝑡 be constant in the 

left-open finite interval (𝑡, 𝑡 +Δ𝑡], Δ𝑡 > 0. For notational simplicity but without loss 

of generality, we will first consider the interval (0, Δ𝑡]. In this case, Eq. (6) directly 

yields

𝑥(𝑡) = 𝑥0e(𝑎1+𝑎2𝑓0)𝑡 +
𝑎3𝑓0

𝑎1 + 𝑎2𝑓0

(
e(𝑎1+𝑎2𝑓0)𝑡 − 1

)
(8)

∀𝑡 ∈ (0, Δ𝑡]. A representative example is illustrated in Figure 1B.
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Figure 1. Representative examples of solutions of the differential equation (5) for various inputs 𝑓 (𝑡). 
Compared are the numerical integration of the original system (grey), the explicit analytical solution 
((A)–(C): black) and recursive algebraic solution ((D): dots). (A): Eq. (6) for 𝑓 (𝑡) = sin(𝑡); (B): Eq. (8)

for 𝑓 (𝑡) = 𝑐𝑜𝑛𝑠𝑡; (C): Eq. (10) for 𝑓 (𝑡) = 𝑓𝑡 = 𝑐𝑜𝑛𝑠𝑡 for 𝑡 ∈ (𝑡, 𝑡 + Δ𝑡]; (D): Eq. (11) for 𝑓𝑛 = 𝑐𝑜𝑛𝑠𝑡

∀𝑛 ∈ ℕ. Model parameters: 𝑎1 = −1, 𝑎2 = −0.4 for (A)–(C) and 𝑎2 = −1 for (D), 𝑎3 = −1, 𝑥(0) ≡
𝑥0 = 0; (A): 𝑓 (𝑡) = sin(𝑡); (B): 𝑓 (𝑡) = 1; (C) and (D): 𝑓𝑡 and 𝑓𝑛 were chosen from a normal distribution 
with mean 0 and standard deviation 0.4. Numerical evaluations were performed using Mathematica 10 
[40], with a precision goal of 10−100, h = Δ𝑡 = 1 in all cases. Numerical integration of the original set of 
differential equations (5) was performed using NIntegrate with default settings, ensuring the precision 
goal and, thus, an integration step ≪ h .

Before proceeding, we would like to stress that although the assumption made here, 

namely that all parameters and variables in the considered model are elements of 

ℚ, and not ℝ, might appear as irrelevant subtlety, this subtlety is essential both 

mathematically for remaining within the discrete algebraic, i.e. finite, framework 

which forms the basis of the approach presented in the next section, as well as 

conceptually for remaining within a physical framework consistent with the three 

intuitive principles argued for in Section 3. A consistent restriction to ℚ not just 

ensures that the solution for 𝑥(𝑡) presented above, which will be used in the remainder 

of this article, is valid and finite, but also weakens or even absorbs conditions 

imposed on differential equations to ensure their solvability within the framework 

of classical differential calculus.

5. Results

As shown in the last section, under certain conditions, an explicit closed-form 

solution of the differential equation (5) can be obtained. Unfortunately however, this 

does not include 𝑓 (𝑡) being a stochastic variable. In this case, numerical integration 

of the original differential equations provides, so far, the only viable and generally 

trusted approach. Here, a sizeable variety of techniques is readily available, each 

of which is naturally based on discretization by transforming a original differential 
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equation into a difference equation, and assessing the latter numerically. Such 

a discretization is justified, and typically yields results approximating what is 

considered the “exact” solution, if certain mathematically weak requirements are 

met. Specifically, and perhaps most importantly, the temporal resolution employed 

in the numerical integration must be higher than the smallest time constant occurring 

in the system in order to faithfully capture the system’s dynamical properties.

The approach presented here, however, will deviate from such a naive numerical 

discretization. As we saw above, Eq. (8) present an analytically exact solution of (5)

under the condition of constant input during the time interval Δ𝑡. One can now argue 

that restricting to arbitrary yet finite Δ𝑡, and assuming a constant input 𝑓 (𝑡) in each 

consecutive time interval, constitutes the basis for a justifiable approach to solve (5), 

even in cases in which 𝑓 (𝑡) is being sampled from a stochastic process. To that end, 

we will generalize in this section the exact solution presented above to arbitrary 

𝑡, and deduce an algebraic recursion which delivers, for all practical intents and 

purposes, the analytically exact temporal development of the state variable 𝑥(𝑡) in 

discrete time steps under piecewise constant yet arbitrary inputs 𝑓 (𝑡). Moreover, we 

will demonstrate that, to a certain extent, this algebraic recursion can be “integrated” 

to yield an explicit solution valid and exact for every 𝑡.

5.1. The recursive algebraic solution

As pointed out above, the solution of (5) for constant 𝑓 (𝑡) = 𝑓0 ∈ ℚ and boundary 

values 𝑥(0) ∈ ℚ obtained in the previous section, Eq. (8), is valid ∀𝑡 ∈ (0, Δ𝑡]
with Δ𝑡 > 0. With an appropriate choice of boundary values, this solution can be 

easily generalized to arbitrary 𝑡 > 0. To that end, we assume that 𝑓 (𝑡) is a piecewise 

constant function with constant step width Δ𝑡 ∈ ℚ ∶ Δ𝑡 > 0, defined as

𝑓 (𝑡 + 𝑠) = 𝑓𝑡 = 𝑐𝑜𝑛𝑠𝑡 (9)

with 𝑓𝑡 ∈ ℚ, 𝑠, 𝑡 ∈ ℚ ∶ 𝑠 ∈ (0, Δ𝑡], 𝑡 = 𝑛Δ𝑡, 𝑛 ∈ ℕ. In this case, the solution given 

in (8) generalizes to

𝑥(𝑡 + 𝑠) = 𝑥(𝑡)e(𝑎1+𝑎2𝑓𝑡)𝑠 +
𝑎3𝑓𝑡

𝑎1 + 𝑎2𝑓𝑡

(
e(𝑎1+𝑎2𝑓𝑡)𝑠 − 1

)
, (10)

where 𝑠 ∈ (0, Δ𝑡]. As 𝑓𝑡 can take arbitrary values, Eq. (10) provides a valid and 

piecewise exact solution of (5) in intervals of length Δ𝑡 even in cases where 𝑓 (𝑡)
describes a discrete-time stochastic process. Figure 1C visualizes a representative 

example in which values of 𝑓𝑡 at different times 𝑡 are drawn from a normal 

distribution, thus describing a discrete-time stochastic process which, in the

statistical limit, resembles a Gaussian white noise process.

Before proceeding towards a recursive algebraic form of the solution presented 

above, it is important to note that the Δ𝑡 occurring here plays a role which 
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fundamentally differs from the notion of “step size” utilized in numerical integration 

schemes. As pointed out earlier, the latter serves as a mere quantitative measure of the 

numerical discretization at the level of differential equations, and as such is subject 

to constraints to ensure not only the numerical stability of the solution, but also a 

satisfactory numerical accuracy. However, irrespective of the size of Δ𝑡, numerical 

integration approaches can, in general, only deliver approximate solutions which 

typically accumulate numerical errors. This is not the case in the solution presented 

above. Indeed, Eq. (10) provides the exact analytic form of the solution of the system 

of differential equations (5) under the assumption (9), with Δ𝑡 serving as a quantifier 

for the level of discretization of this solution, and not of the underlying differential 

equations. Indeed, due to the definition of Δ𝑡, this discretization is dictated solely 

by the “sampling rate” with which the input 𝑓 (𝑡) drives the system, i.e. the accuracy 

with which the driving force is or can be known. Thus, in contrast to the notion of 

step size in numerical integration schemes, Δ𝑡 is endowed with a direct link to the 

process of measurement, hence physical reality, and not mathematical conditions 

of stability and accuracy. Recalling the fact that each physical observable is subject 

to constraints regarding its precision, we accept that each experimental observation 

can only deliver a finite and discrete set of values for a probed observable. Such 

a set can always be expressed in a form similar to (9). In this sense, the solution 

presented in Eq. (10) and, more generally, the type of discretization explored here 

are consistent with the principles highlighted in Section 3, with Δ𝑡 quantifying the 

limitations imposed by the process of experimental measurement.

This decoupling of numerical precision and the role of Δ𝑡 constitutes the conceptual 

basis which does now allow to deduce a recursive algebraic form of (10). Indeed, 

this equation is already somewhat recursive in the sense that the solution at 𝑡 + 𝑠

with 𝑠 ∈ (0, Δ𝑡] depends solely on the solution at time 𝑡, and the constant value of 

𝑓 (𝑡) = 𝑓𝑡 in the interval (𝑡, 𝑡 + Δ𝑡]. The value of the state variable 𝑥(𝑠) within open 

intervals (𝑡, 𝑡 +Δ𝑡) thus becomes irrelevant due to the considered discretization, and 

can be discarded. With this, 𝑡 acts as a mere label, and, without loss of generality, 

can be replaced by 𝑛 ∈ ℕ, 𝑛 ≥ 0. Equation (10) then takes the discrete, specifically 

recursive, algebraic form

𝑥𝑛+1 = 𝑥𝑛e(𝑎1+𝑎2𝑓𝑛)h +
𝑎3𝑓𝑛

𝑎1 + 𝑎2𝑓𝑛

(
e(𝑎1+𝑎2𝑓𝑛)h − 1

)
, (11)

where h ∶= Δ𝑡 ∈ ℚ for notational convenience. A representative example of the 

recursive algebraic solution is presented in Figure 1D.

It is important to note that, due to their recursive nature, Eq. (11) describes the exact 

incremental evolution of the system in finite and strictly positive steps h ∈ ℚ. In 

this sense, a recursive algebraic solution is conceptually equivalent to a formulation 

in terms of differential equations, which describe the evolution of a system in 

infinitesimal steps 𝑑𝑡. Moreover, the algebraic nature of (11) ensures that the solution 
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is not only unique, but also finite for arbitrary h and 𝑛, irrespective of the convergence 

properties for 𝑛 → ∞. With this in mind, we will next recover the explicit algebraic 

form for 𝑥𝑛, thus move towards an “exact”, within the context of our approach, 

solution of (5).

5.2. The explicit algebraic solution

Although (11) appears to have a somewhat delicate mathematical form, it belongs 

to the class of linear inhomogeneous recurrence relations for which a whole host of 

techniques is readily available (e.g., see [41]). In order to apply the latter, we first 

introduce for notational convenience

𝑛 ∶= exp
[
(𝑎1 + 𝑎2𝑓𝑛)h

]
,

𝑛 ∶=
𝑎3𝑓𝑛

𝑎1 + 𝑎2𝑓𝑛

(
e(𝑎1+𝑎2𝑓𝑛)h − 1

)
. (12)

With this, Eq. (11) takes the simpler recursive form

𝑥0 = 𝑐𝑜𝑛𝑠𝑡, 𝑥𝑛+1 = 𝑛𝑥𝑛 + 𝑛, 𝑛 ≥ 0. (13)

In what follows, we will solve (13) by utilizing what could be termed “operator 

approach”, as 𝑛 acts as operators on the state variable 𝑥𝑛 at step 𝑛, thus evolving 

the system to step 𝑛 + 1.

Successive application of 𝑖 for 𝑖 ∈ [0, 𝑛 − 1] in Eq. (13) yields the explicit 

expression

𝑥𝑛 =

(
𝑛−1∏
𝑖=0

𝑖

)
𝑥0 +

𝑛−1∑
𝑖=1

(
𝑛−1∏
𝑗=𝑖

𝑗

)
𝑖−1 + 𝑛−1 (14)

for the state variable 𝑥𝑛 with 𝑛 ∈ ℕ, 𝑛 ≥ 1. This expression can be further simplified 

by noting that

𝑛−1∏
𝑖=0

𝑖 = exp
[ 𝑛−1∑

𝑖=0
(𝑎1 + 𝑎2𝑓𝑖)h

]
= exp

[
𝑛𝑎1h + 𝑎2F𝑛−1h

]
and

𝑛−1∏
𝑗=𝑖

𝑗 =

𝑛−1∏
𝑗=0

𝑗

𝑖−1∏
𝑗=0

𝑗

= exp
[
(𝑛 − 𝑖)𝑎1h + 𝑎2(F𝑛−1 − F𝑖−1)h

]
.

Here, we introduced the linear (unweighted) sum over all previous inputs

F𝑛 ∶=
𝑛∑
𝑓𝑖, (15)
𝑖=0
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which obeys the linear recursive relation

F0 = 𝑓0,F𝑛+1 = F𝑛 + 𝑓𝑛+1, 𝑛 ≥ 0. (16)

This leaves us finally with the exact explicit algebraic solution for 𝑥(𝑡), Eq. (5), at 

discrete times 𝑡 = 𝑛h , 𝑛 ∈ ℕ ∶ 𝑛 ≥ 1 in form of

𝑥𝑛 = e(𝑛−𝑖)𝑎1h+𝑎2(F𝑛−1−F𝑖−1)h𝑥0

+
𝑛−1∑
𝑖=0

𝑎3𝑓𝑖
𝑎1 + 𝑎2𝑓𝑖

(
e(𝑎1+𝑎2𝑓𝑖)h − 1

)
e(𝑛−𝑖−1)𝑎1h+𝑎2(F𝑛−1−F𝑖)h . (17)

Equation (17) is interesting in various respects. Firstly, and most importantly, we note 

that, although this expression is explicit in the initial state variable 𝑥0, it still contains 

a recursive term F𝑛 whose values depend on the full history of the inputs 𝑓𝑛 up to 

step 𝑛. The presence of this term, however, is neither surprising nor conceptually 

at odds with the result obtained when tackling the original differential equation (5)

within the confines of differential calculus, i.e. an analytic approach. Integrating a 

differential equation, in fact the very concept of an “integral” in standard analysis, 

is equivalent to an infinitesimally-paced summation over all functional values of the 

integrand. Although in the case of (5) with stochastic term 𝑓 (𝑡) such an integration 

is, in general, not possible without ambiguities (see Section 2), a finitely-paced 

summation within a discrete framework can be performed, as demonstrated above, 

leading to the presence of nonlinear yet finite and well-defined terms reflecting the 

“integrated” history of the system, specifically its driving input.

Secondly, and as already detailed above, the parameter h has an interpretation which 

differs from the notion of “step size” in the numerical integration of differential 

equations. The latter is not just crucial for the stability but also the accuracy of the 

numerical solution, especially when considering systems whose intrinsic dynamics 

is fast, in which case the step size in classical numerical integration schemes must 

be chosen small enough to faithfully capture the system’s dynamical properties. 

In contrast, the parameter h in (17) is only constraint by the sampling rate of the 

input 𝑓𝑛, thus linked to experimental limitations or the resolution of the discrete-time 

stochastic process used in numerical simulations. To illustrate this point, Figure 2A 

compares the case of constant input, 𝑓𝑛 = 𝑐𝑜𝑛𝑠𝑡 ∀𝑛 ≥ 0, in two systems with fast 

and slow internal dynamics. Utilizing classical numerical integration methods, such 

as Euler or Runge–Kutta, requires an integration step smaller than the typical time 

constant of the given system. Specifically, in the example visualized, the fast system’s 

time constant is of the order of 0.01 (𝑥(𝑡) decays rapidly to its asymptotic value; 

Figure 2A, solid), whereas the slow system’s 𝑥(𝑡) (Figure 2A, dashed) enjoys a slow 

decay of order 10. In order to capture the intrinsic dynamics of the fast system and 

ensure numerical stability of the solution, the integration time step required must 

be smaller than 0.01, while in the latter case a time step short of 10 would suffice. 
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Figure 2. Representative examples of explicit algebraic solutions of the differential equation (5) for 
various inputs 𝑓 (𝑡). Compared are the numerical integration of the original system (solid and dashed), and 
the explicit algebraic solution (dots and triangles), Eq. (17). (A): Constant input (𝑓𝑛 = 𝑐𝑜𝑛𝑠𝑡 ∀𝑛 ≥ 0) to 
systems with different intrinsic time constants. Despite differences in the internal dynamics, the algebraic 
solution allows to calculate accurately the state variable in large intervals (here h = 5); (B): 𝑓𝑛 = sin[(𝑛 +
1)h]. In this case, F𝑛 in Eq. (15) allows for an explicit representation; (C): Discrete-time stochastic process 
modelled by the logistic map in the chaotic regime, Eq. (21), with 𝑓0 = 0.4; (D): Discrete-time stochastic 
process with inputs 𝑓𝑛 drawn from a normal distribution with mean 0 and standard deviation 0.4. Model 
parameters: (A): 𝑥0 = 1, 𝑓𝑛 = 0.5 ∀𝑛 ≥ 0, dashed: 𝑎1 = −0.01, 𝑎2 = −0.05, 𝑎3 = −0.05, solid: 𝑎1 =
−1, 𝑎2 = −10, 𝑎3 = −10; (B)–(D): 𝑎1 = −1, 𝑎2 = −0.5, 𝑎3 = −1, 𝑥0 = 1. Numerical evaluations 
were performed using Mathematica 10 [40], with a precision goal of 10−100, h = Δ𝑡 = 5 (A) and h =
Δ𝑡 = 1 (B–D). Numerical integration of the original set of differential equations (5) was performed using

NIntegrate with default settings, ensuring the precision goal and, thus, an integration step ≪ h .

In contrast, (17) yields precise solutions (Figure 2A, dots and triangles) even if h , 

i.e. the step size after which the corresponding equations are numerically evaluated, 

is chosen much larger than the smallest time constant occurring in the original fast 

system, suggesting that h is now decoupled from the intrinsic dynamical properties of 

the system in question. Indeed, h appears to be solely determined by the driving input 

(in the given example a constant function) and could be chosen much larger without 

impairing the numerical precision of the result, as (17) only requires evaluation 

when this input changes. However, a more thorough investigation of this arguably 

interesting aspect of the presented discrete algebraic framework is required for a 

justifiable generalization, and lies outside the scope of this study.

5.3. A simple application

As noted above, the algebraic solution (17) is explicit in the state variable 𝑥𝑛, but 

contains the term F𝑛 which is subject to the linear recursion (15). In many cases, 

this recursive element can be made explicit. For instance, considering periodic inputs

𝑓𝑛 = sin[(𝑛 + 1)h], (18)
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it can easily be shown that F𝑛 takes the explicit form

F𝑛 =
sin[ 𝑛+12 h] sin[ 𝑛+22 h]

sin[ 12h]
. (19)

With such an explicit expression, Eq. (17) can be further simplified, and an 

illustrative example utilizing (18) is shown in Figure 2B.

In the case of discrete-time stochastic inputs, one generally remains with the 

necessity to recursively evaluate all coefficients and auxiliary variables entering 

(17). However, also here, in some specific instances, simplifications are possible. 

A classical example of stochastic inputs is given by pseudo-random numbers 

modelled according to a nonlinear discrete map serving as random number generator, 

such as the logistic map

𝑓0 ∈ [0, 1], 𝑓𝑛+1 = 𝑎𝑓𝑛(1 − 𝑓𝑛), 𝑛 ≥ 1 (20)

in its chaotic regime (𝑎 = 4). Here, an explicit solution of (20) is known and given 

by

𝑓𝑛 =
1
2
(1 − cos[2𝑛𝛾]) , (21)

where 𝛾 = arccos[1 − 2𝑓0]. Together with a finite power expansion of this solution, 

which is also available for general values of 𝑎 (see [42]), F𝑛 can be expressed 

explicitly. A representative example utilizing the explicit solution of the logistic 

map is shown in Figure 2C. However, in the general case of genuine discrete-time 

stochastic inputs 𝑓𝑛 (see Figure 2D for an illustrative example), no simplification is 

possible, and (17), despite providing an explicit and exact finite solution for the state 

variable 𝑥𝑛, remains with the recursive term F𝑛.

6. Conclusions

In this article, we elaborated on some conceptual issues surrounding stochastic 

calculus, in particular its validity and faithfulness in representing physical reality, 

and explored the possibility of a finite and discrete algebraic approach for describing 

stochastic systems. We exemplified the proposed approach using a prototype 

stochastic model which has applications in a variety of fields. It was demonstrated 

that, within a discrete algebraic framework, not just an exact solution of the stochastic 

temporal evolution of the model’s state variable can be obtained, but that this solution 

is, by construction, also free from the ambiguities which typically riddle classical 

stochastic calculus.

Although the notion of an “exact solution” utilized here must be taken with extreme 

care, we argue that all experimental and computational approaches naturally impose 
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stringent albeit fluent limitations on the precision with which physical observables 

can be known or should be treated. The notion of “exact” used in this study must be 

understood, and is justifiable, within the context of these principal epistemological 

limitations, and differs from that utilized when qualifying the accuracy of solutions 

obtained by utilizing numerical integration methods. In this sense, the solution of 

the differential equation (5) presented here yields analytically exact values for the 

state variables at discrete time intervals, with a discretization dictated solely by 

the sampling rate of the driving input. The proposed algebraic approach is general 

and applicable to a larger class of stochastic systems as long as this discretization 

remains finite and is not made subject to asymptotic evaluations. We assert and 

hopefully favourably argued, however, that the condition of finiteness is in accord 

with our experience of physical reality. In fact, we hope to have demonstrated 

with the example of Brownian motion, that an approach which uses asymptotic or 

infinitesimal limits to arrive at a differential or, more general, analytic description of 

a physical phenomenon might no longer reflect physical reality or the characteristics 

of the phenomenon in question, thus rendering itself questionable as descriptive and 

predictive vessel of reality.

Indeed, arguing from the perspective of physical reality, we identified differential 

calculus and its underlying analytical framework as an idealization which does break 

the link between model and reality, at least in cases where stochastic observables 

or systems with stochastic dynamics are involved. The finite discrete algebraic 

framework proposed here does respect three fundamental principles of measurement 

theory, namely that each physical observable is finite, can only be ascertained with 

finite precision, and exhibits lower and upper bounds marking the limits of the 

applicability of a given model. Thus, we argue that an algebraic framework does 

serve as a more suitable mathematical basis for describing physical reality. Although 

a rigorous mathematical foundation of such an algebraic calculus akin to differential 

calculus is still mostly missing, we hope to have demonstrated the potential power 

of a discrete and finite mindset in helping to deal with stochastic models.

However, we must also stress that the utilization of a strictly finite algebraic 

framework comes at a hefty price. Within such a framework, powerful analytic 

notions such as “integral” or “differential” have neither conceptual nor direct 

applicable meaning. Thus, before abandoning analytic and differential calculus as 

descriptive tools, we must address the question whether analysis, or the finite and 

discrete algebraic mathematical framework promoted here, are more in tune with 

physical reality, whether physical reality has a continuous or discrete makeup. 

Although a contribution to this question on a philosophical level lies outside 

the scope of this study, we note that, throughout the history of science, this 

question played and continues to play a central role (e.g., see [43] for a review 

of philosophical elaborations and historical notes). Unfortunately however, with 
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experimental findings covering both sides of the aisle (e.g., see [44], but see [45]), 

a definite answer is still at large.

Given the conceptual issues addressed in this article, we ask the Reader to open-

mindedly consider the possibility of a discrete makeup of reality itself, and indulge 

in the far-reaching consequences such a possibility will carry for our mathematical 

description of nature. Although, at this point in history, the assumption of a discrete 

and finite makeup of our world is still a matter of mere believe not too different from 

the assumption of the actual existence of infinity or Cantor’s real numbers, we argue 

that, in lack of any viable proof demonstrating the existence of a truly continuous or 

infinite real-existing physical system, the assumption of a discrete makeup of reality 

is fully in accord with experimental observations, logically reasonable and justifiable 

on epistemological grounds. If indeed found to be true, we must eventually, or 

ultimately, reject the powerful blue-colored analytical toolset of an ideal real number 

line in favor of the red pill of discrete and finite (or effinite, see [46]) algebraic 

constructivism. With this study, we hope to have argued that such a framework might 

indeed prove useful in arriving at a finite, exact and unambiguous description not just 

of stochastic phenomena.
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