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Abstract: Our aim was to investigate the subset distribution and function of circulating monocytes,
proinflammatory cytokine levels, gut barrier damage, and bacterial translocation in chronic spinal
cord injury (SCI) patients. Thus, 56 SCI patients and 28 healthy donors were studied. The levels of
circulating CD14+highCD16−, CD14+highCD16+, and CD14+lowCD16+ monocytes, membrane TLR2,
TLR4, and TLR9, phagocytic activity, ROS generation, and intracytoplasmic TNF-α, IL-1, IL-6, and
IL-10 after lipopolysaccharide (LPS) stimulation were analyzed by polychromatic flow cytometry.
Serum TNF-α, IL-1, IL-6 and IL-10 levels were measured by Luminex and LPS-binding protein (LBP),
intestinal fatty acid-binding protein (I-FABP) and zonulin by ELISA. SCI patients had normal mono-
cyte counts and subset distribution. CD14+highCD16− and CD14+highCD16+ monocytes exhibited
decreased TLR4, normal TLR2 and increased TLR9 expression. CD14+highCD16− monocytes had
increased LPS-induced TNF-α but normal IL-1, IL-6, and IL-10 production. Monocytes exhibited
defective phagocytosis but normal ROS production. Patients had enhanced serum TNF-α and IL-
6 levels, normal IL-1 and IL-10 levels, and increased circulating LBP, I-FABP, and zonulin levels.
Chronic SCI patients displayed impaired circulating monocyte function. These patients exhibited
a systemic proinflammatory state characterized by enhanced serum TNF-α and IL-6 levels. These
patients also had increased bacterial translocation and gut barrier damage.

Keywords: monocyte; cytokines; chronic spinal cord injury; bacterial translocation; gut barrier
damage; systemic inflammation

1. Introduction

Spinal cord injury (SCI) is a cause of severe health problems and disability [1]. The
acute stage of the disease is characterized by the induction of a neurological lesion of
the spinal cord and the associated clinical manifestations and systemic stress responses
determined by the etiopathogenesis of the SCI [2–7]. The management of acute SCI has im-
proved in recent years, with a dramatic reduction in mortality [8,9]. However, patients with
chronic SCI suffer a high incidence of medical complications, such as infections, metabolic
diseases, cardiovascular events, and recurrent episodes of impaired general health [10,11].
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It is well known that acute SCI patients show an intense disturbance of immune-
inflammatory responses, which includes hallmarks of inflammation and immunodefi-
ciency [12,13]. At injury sites in the spinal cord, the infiltration of immune cells, including
monocytes/macrophages, is involved in determining the extent of the initial tissue damage
and causing secondary neural destruction during the first several weeks postinjury [2,14].
Furthermore, the secondary systemic immunodepression that is observed in patients with
SCI has been associated with a predisposition to infection complications [15,16]. Acute
inflammation after SCI also appears to be related to patient functional outcomes [17].
The mechanisms that contribute to acute SCI-associated immune disturbance appear
to be multifactorial, including traumatic and surgery stress-related neuro-endocrine re-
sponses, infection complications, and central and autonomous nervous system alterations
and lesions [18,19].

The function of the immune system in patients with chronic SCI remains partially
characterized. Abnormal levels of several circulating cytokines have been described [20].
Decreased natural killer (NK) cell counts and cytotoxic activity levels have been reported,
and T lymphocytes from patients with chronic SCI also show abnormal function [6,21].
Furthermore, inflammatory cells have been detected in human spinal cord tissue years
after the initial SCI [22].

Monocytes are bone marrow-derived cells that mediate essential regulatory and
effector functions in innate and adaptative immunity [23]. Circulating human monocytes
are phenotypically and functionally heterogeneous and are divided into three major subsets
based on the expression of the lipopolysaccharide (LPS) receptor CD14 and the FcγRIII low-
affinity IgG receptor CD16: classical (CD14+highCD16−), intermediate (CD14+highCD16+),
and nonclassical (CD14+lowCD16+) [23,24].

The recognition of microorganisms by proteins that recognize pathogen-associated
molecular patterns, such as Toll-like receptors (TLRs), is critical for the activation of mono-
cytes and development of the natural immune response [25]. TLR2, TLR4, and TLR9
recognize bacterial molecules, such as lipoteichoic acid, LPS, and unmethylated cytosine-
phosphate-guanine DNA, respectively. Activated monocytes show relevant immunomodu-
latory activities, including the secretion of pivotal cytokines, such as the proinflammatory
cytokines interleukin (IL)-6, IL-1 and tumor necrosis factor-alpha (TNF-α), and the anti-
inflammatory cytokine IL-10 [26]. Monocytes are also important phagocytic cells [27].
Monocytes have been demonstrated to be involved in the pathogenesis of several organ-
specific and systemic inflammatory diseases [28].

In experimental models of SCI, intestinal dysbiosis and increased gut permeability
were recently demonstrated [29]. We propose that patients with chronic SCI suffer damage
to the intestinal barrier, with secondary increased permeability that favors increased bacte-
rial translocation, and a systemic inflammatory imbalance, with monocyte compromise.
Intestinal fatty acid-binding protein (I-FABP) and zonulin are recognized protein markers
of the integrity of the intestinal barrier. The hepatic synthesis of LPS-binding protein
is promoted by LPS [30], and in several clinical settings, plasma LBP reflects long-term
exposure to bacteria and their endotoxins [31,32].

We have focused our work on the study of circulating monocytes and the level of
bacterial translocation and gut barrier damage in patients with chronic SCI. To avoid
confounding factors, we focused our study on a homogeneous population of 56 chronic
SCI patients without clinical infections or concomitant diseases with potential interactions
with the immune system. In parallel, we studied 28 age- and sex-matched healthy controls
(HCs). We analyzed the pattern of distribution of the CD14+highCD16−, CD14+highCD16+

and CD14+lowCD16+ circulating monocyte subsets, as well as their TLR2, TLR4 and TLR9
expression levels. We also investigated the intracytoplasmic production of TNF-α, IL-1,
IL-6 and IL-10 after LPS stimulation and the serum levels of these cytokines. Monocyte
reactive oxygen species (ROS) production and phagocytic activity were also analyzed. We
measured the serum levels of LBP, I-FABP, and zonulin to study bacterial translocation and
gut barrier damage.
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2. Results
2.1. Demographic Profile of Chronic SCI Patients

Table 1 shows the characteristics of the 56 chronic SCI patients and 28 HCs included
in the analysis. No significant differences were found between chronic SCI patients and
HCs with respect to age or sex distribution or the clinical and analytical variables studied.

Table 1. Demographic, clinical and biological data of the patients and healthy controls.

Variables Healthy Controls Chronic SCI AIS Group 1 AIS Group 2 Injury Level
Group 1

Injury Level
Group 2

(n = 28) Patients
(n = 55)

(A–B)
(n = 30)

(C–D)
(n = 25)

(C1–T6)
(n = 35)

(T7–L6)
(n = 20)

Age (years) 25.03 ± 2.86 26.92 ± 12.87 24.96 ± 12.90 30.65 ± 13.30 23.28 ± 13.64 27.21 ± 12.69
Sex

(men%/women%) 43.24/56.76 68.00/32.00 76.67/23.33 60.86/39.14 74.28/25.71 57.89/42.10

Time of injury
(years) 12.00 ± 9.22 10.7 ± 9.15 12.91 ± 9.61 10.74 ± 9.69 14.23 ± 8.81

AIS (%)
A 34.00 63.33 48.57 10.52
B 21.43 36.67 14.28 26.31
C 19.64 45.83 8.57 36.84
D 25.00 54.17 28.57 21.05

Injury level (%)
C1–C4 23.21 20.00 25.00 34.28
C5–C8 19.64 20.00 16.67 28.57
T1–T6 23.22 33.33 12.50 37.14

T7–T12 19.64 13.33 29.17 57.89
L1–L6 14.29 13.33 16.67 42.10

AIS: American Spinal Injury Association (ASIA) Impairment Scale; SCI: Spinal Cord Injury.

At the inclusion time, 68% of the SCI patients were males and 32% women. Their
mean age was 26.9286 ± 12.8797 years. The mean time of SCI onset was 11.6786 ± 9.0621
years, a time of evolution that certainly define them as chronic injuries. Regarding the
SCI etiology, 54% were traumatic (traffic accidents, diving injuries and falls), and the rest
of them non-traumatic, 5% birth-SCI doubt to labor dystocia, 11% inflammatory myelitis,
6% spinal vascular diseases, 11% spinal cord tumor sequelae, and the remaining 13%
consequently to spina bifida.

Regarding the need for spinal surgery in the acute period of SCI, it was necessary in
76% of traumatic patients versus 56% of those whose injury was due to a non-traumatic
aetiology. Traumatic patients mainly received vertebral fracture reduction and arthrodesis
by plates or bars and screws. Only one of them required replacement of the osteosynthesis
material a few weeks after the first surgery, due to loosening and incomplete reduction
of the fracture. Non-traumatic patients were treated by laminectomies and drainage of
abscesses or haematomas or, in the case of spina bifida, closure of the congenital spinal
defect at birth. No statistically significant differences were found between both subgroups
in this regard (Mann–Whitney Rank Sum Test, p = 0.134). Only 12% of the traumatic
patients needed new spinal surgeries along their SCI time evolution, compared to 45% of
the non-traumatic ones (Mann–Whitney Rank Sum Test, p = 0.001), mostly due to the need
of an average of more than two spinal surgeries in the SB patients. In no case was any
patient included in the study who had undergone surgery, spinal or any other type, in the
last year. The average time since the last surgery in the present series was 3.6 years, being
significantly longer in non-traumatic cases (Mann–Whitney Rank Sum Test, p = 0.016).

The neurological level of spinal damage was located within C1–C4, C5–C8, T1–T6,
T7–T12 and lumbosacral metameras in 23.21%, 19.64%, 23.22%, 19.64% and 14.29% of the
patients respectively, which implies that more than 66% of our patients showed SCI above
T6, with higher expected signs and symptoms of autonomic disreflexia. With respect to the
ASIA impairment score (AIS), 34% of the patients were AIS A, 21.43% AIS B, 19.64% AIS C,
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and 25% AIS D, meaning that although 66% of our patients showed incomplete lesions,
only 44.64% showed motor incomplete injuries with different degrees of infralesional motor
preservation and theoretically better mobility profiles. These results are in agreement with
the quite good functional scores that these patients reached, both in the basic activities of
daily living and in the ability to walk: the mean SCIM III score of our series was 60 ± 2.9818
over a maximum score of 100. When we analyzed the three SCIM III domains separately, we
found acceptable performance in self-care (mean subscore = 14.5 ± 0.8886 over a maximum
of 20), respiratory and sphincters management (mean score = 26.0714 ± 0.8816 over a
maximum of 40) and mobility (mean subscore = 19.4464 ± 1.5289 over a maximum of 30).
Locomotion was preserved in 32 patients, (mean WISCI II score of 12.1875 ± 1.1798 over a
maximum value of 20), meaning of 57% of our patient series. It would be a quite surprising
result, since we only had 44.64% motor incomplete injuries in our series and plus 66%
of them showed SCI above T6, in which locomotion is less less likely to be preserved. A
value of 12 in WISCI II scale implies to walk with two crutches plus both legs braces and
no physical assistance throughout 10 m, which is more a therapeutic than community
locomotion, not able to free the patient from the wheelchair (Thomas Jefferson University.
Copyright 2004). Regarding another neurological consequences of having a chronic SCI,
our patients showed mild-moderate levels of spasticity (mean Ashworth and Penn scores,
1.4821 ± 0.1372 and 1.5536 ± 0.1650 respectively) and pain (mean basal nociceptive and
neuropathic VAS score = 0.3214 ± 0.1198 and 0.9107 ± 0.2474 respectively; mean VAS
score during pain nociceptive and neuropathic crisis = 0.3214 ± 0.1198 and 0.9107 ± 0.2474
respectively). Finally, to ensure that only neurologically stable patients were recruited,
a magnetic resonance scan and sensory and motor evoked potentials were performed,
excluding from the present study those patients who, in the opinion of the radiologist
and/or neurophysiologist, were worse than in previous studies. In the MRI images, the
presence of syringomyelia was specifically addressed as an evolutionary complication in
both traumatic and non-traumatic patients. Only 0.02% and 0.18% of our cases respectively
presented it at the radiologist’s discretion. Only those syringomyelia that had not been
modified in the last year were included.

The deficits derived from the autonomic nervous system damage were evident in the
bladder (mean bladder ASIA Autonomic Standard Assessment score = 2.6250 ± 0.2016
over a maximum value of 6) and bowel (mean Bowel ASIA Autonomic Standard Assess-
ment score = 2.5357 ± 0.2101) function of our patients, but although they suffered an
average of less than 2 UTIs in the previous year, a higher rate than the general population
(Flores-Mirelles et al., 2015; Foxman et al., 2000), no urinary or intestinal relevant complica-
tion was reported. With regard to the comorbidity conditions, the patients of our series
showed non significative levels of fatigue (mean FSS scale = 2.3988 ± 0.1985) and only
mild levels of anxiety (mean anxiety HAD score = 5.9464 ± 0.5568; mean anxiety EADG
score = 2.7321 ± 0.3852) and depression (mean depression HAD score = 3.4107 ± 0.5082;
mean depression EADG score = 2.0357 ± 0.3293). No statistically significant differences
were found between traumatic and non-traumatic patients regarding to these param-
eters. No significant differences were found either between SCI patients and healthy
controls with respect to age or sex distribution, neither in the clinical nor analytical vari-
ables studied except in two points: the comorbidity was significatively higher (mean SCI
patients Charlson score = 2.7679 ± 0.1299 versus controls = 0.0909 ± 0.290; p < 0.001)
and the One’s own health status perception significatively lower (mean SCI EQ5D-VAS
score = 68.8929 ± 3.3782 versus controls = 84.975 ± 1.358; p < 0.001) between SCI patients
and healthy controls, pointing to the intense impact that a chronic SCI, even the less
complicated of them, has in a patient’s life.

2.2. Chronic SCI Patients Show Normal Monocyte Subset Distributions and Cell Counts but
Abnormal TLR Expression

First, we studied the absolute number of circulating monocytes and their percent-
ages in PBMCs from 56 patients with chronic SCI and 28 sex- and age-matched HCs.
There were no statistically significant differences in the number of circulating mono-
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cytes between SCI subjects and HCs (Figure 1a). Next, we studied the distribution of
the CD14+highCD16−, CD14+highCD16+ and CD14+lowCD16+ monocyte subsets in both
groups of subjects (Figure 1). There were no significant differences in the percentages
of the CD14+highCD16−, CD14+highCD16+ and CD14+lowCD16+ monocyte subsets in the
circulating monocyte population between chronic SCI patients and HCs.
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We also investigated the expression of TLR2, TLR4 and TLR9 in circulating monocytes
from both groups of subjects (Figure 2). We found a significant decrease in the percentage
of circulating monocytes that expressed TLR4 in patients with chronic SCI compared to the
percentage observed in HCs. Concomitant with that change, we observed a significant in-
crease in the percentage of monocytes that expressed TLR9 in SCI patients compared to the
percentage observed in HCs. In contrast, we found no significant differences in the percent-
age of monocytes that expressed TLR2. We also analyzed TLR4, TLR9 and TLR2 expression
in the different monocyte subsets from chronic SCI patients and HCs. We found a signifi-
cant decrease in the percentages of the CD14+highCD16− and CD14+highCD16+ monocyte
subsets that expressed TLR4 in SCI patients compared to the percentages observed in HCs.
In contrast, we observed significant increases in the percentages of CD14+highCD16− and
CD14+highCD16+ monocytes that expressed TLR9 in SCI patients compared to the percent-
ages observed in HCs. No differences in the expression of TLR2 in the CD14+highCD16−,
CD14+highCD16+, and CD14+lowCD16+ monocyte subsets were observed between the two
groups of subjects.
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2.3. Chronic SCI Patients Exhibit TNF-α Overproduction by Monocytes and Increased Serum
Levels of the Proinflammatory Cytokines TNF-α and IL-6

The intracellular expression of TNF-α, IL-1β, IL-6 and IL-10 was analyzed in mono-
cytes from SCI patients and HCs after LPS stimulation (Figure 3). We found a significant
increase in the percentage of monocytes that produced TNF-α after LPS stimulation in
chronic SCI patients compared to the percentage observed in HCs. We found no significant
differences in the percentages of monocytes that expressed IL-1β, IL-6, and IL-10 between
the two groups of subjects.

Next, we studied the expression of these cytokines in the CD14+highCD16−, CD14+high

CD16+ and CD14+lowCD16+ monocyte subsets after LPS stimulation. We found that the
CD14+highCD16− monocyte subset from chronic SCI patients shows increased TNF-α expres-
sion compared to the expression level of the same subset in HCs. In contrast, in the three
analyzed monocyte subsets, there were no significant differences in the percentages of mono-
cytes that expressed IL-1β, IL-6, and IL-10 after LPS stimulation between the two groups
of subjects.

We also measured the circulating levels of the proinflammatory cytokines TNF-α,
IL-1β and IL-6 and the anti-inflammatory cytokine IL-10 (Figure 4). Subjects with chronic
SCI had significantly higher levels of TNF-α and IL-6 than did HCs. Most chronic SCI
patients presented higher TNF-α levels (70.83%) than did the top quartile of HCs.
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Figure 3. Cytokine production by circulating monocytes from chronic SCI patients. Percentages of monocytes producing
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Moreover, in chronic SCI patients, we found a significant direct correlation between
serum TNF-α levels and LPS-induced TNF-α production in monocytes (r = 0.43, p < 0.05)
and in the CD14+highCD16− (r = 0.48, p < 0.05) and CD14+lowCD16+ (r = 0.42, p < 0.05)
monocyte subsets (Figure 5). We also found a significant negative correlation between
serum TNF-α concentrations and TLR4 expression in the monocyte population (r = −0.31,
p < 0.05) and in the CD14+highCD16− (r = −0.31, p < 0.05) and CD14+highCD16+ monocyte
subsets (r = −0.32, p < 0.05) but not in CD14−CD16+ monocytes (r = −0.2, p < 0.24).
We found no significant correlations between serum TNF-α levels and TLR2 and TLR9
expression in monocytes from the two groups of subjects. In the HC group, there were
no significant correlations among serum TNF-α levels, LPS-induced monocyte TNF-α
expression, and TLR expression in circulating monocytes (data not shown).
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Figure 4. Determination of serum soluble mediators in chronic SCI patients. Serum concentrations of TNF-α: (panel (a))
IL-1β; (b) IL-6; (c) IL-10; (d) LBP; (e) zonulin; (f) and I-FABP; (g) in chronic SCI patients (gray box) and healthy controls
(white box) are shown. * Significant difference between patients and healthy controls (p < 0.05). *** Significant difference
between patients and healthy controls (p < 0.001).
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2.4. Monocytes from Chronic SCI Patients Show Defective Phagocytic Effector Functions

We investigated phagocytosis and ROS production by monocytes after E. coli stim-
ulation in chronic SCI patients and HCs (Figure 6). We found a significant decrease in
the percentage of monocytes that phagocytosed E. coli in SCI patients compared to the
percentage observed in HCs (Figure 6c). However, we found no significant differences in
ROS production in monocytes from chronic SCI patients (Figure 6d).

2.5. Chronic SCI Patients Show Increased Levels of Circulating LBP, I-FABP and Zonulin

We also investigated the serum concentrations of LBP, I-FABP and zonulin in chronic
SCI patients and HCs (Figure 4e–g). We found that chronic SCI patients show significantly
increased LBP serum levels compared to those found in HCs. Specifically, 60.47% percent
of chronic SCI patients presented higher LBP levels than did the top quartile of HCs. We
also found that serum I-FABP and zonulin concentrations were significantly higher in
chronic SCI patients than in HCs. Specifically, 72% and 66% percent of chronic SCI patients
presented higher I-FABP and zonulin levels, respectively, than did the top quartile of HCs.

We also analyzed the different immune system parameters studied in the chronic SCI
patient population stratified by the level of the spine lesion (from C1 to T5 versus from
T6 to L6) (Figure 7a). We found that both groups of patients showed significantly higher
TNF-α production and serum levels of TNF-α, LBP, I-FABP, and zonulin and lower TLR4
expression in monocytes than did HCs. There were no significant differences between the
two groups of patients.
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Figure 6. Phagocytosis and ROS production by circulating monocytes from chronic SCI patients.
Representative analysis of monocytes that phagocytosed E. coli in a healthy control: (a) and a chronic
SCI patient; (b). The percentages of peripheral blood monocytes that phagocytosed E. coli; (c) and
that produced ROS; (d) in chronic SCI patients (gray box) and healthy controls (white box) are shown.
*** Significant difference between patients and healthy controls (p < 0.001).

1 
 

 

 
Figure 7. Clinical stratification of chronic SCI patients. Different immune system parameters (LBP, I-FABP, zonulin, serum
TNF-α, TLR4 and TNF-α-producing monocytes) in chronic SCI patients (gray box) and healthy controls (white box) were
analyzed. Patients were stratified by the level of the spine lesion: (a), from C1 to T5 (Group 1) versus from T6 to L6
(Group 2), and by the AIS score; (b), as follows: group 1 covers A and B AIS scores, and group 2 covers C, D and E AIS
scores. * Significant difference between patients and healthy controls (p < 0.05). ** Significant difference between patients
and healthy controls (p < 0.01). *** Significant difference between patients and healthy controls (p < 0.001). X Significant
difference between both groups of patients (p < 0.01).
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Finally, we classified chronic SCI patients into two groups according to their AIS scores:
group 1, which covered A and B AIS scores, and group 2, which covered C, D and E AIS
scores. We found a significant increase in the serum concentration of LBP in group 1 and
group 2 compared to the concentration observed in HCs, as well as a significant decrease
in group 2 compared to group 1 (Figure 7b). Monocyte TNF-α production as well as serum
levels of I-FABP, zonulin and TNF-α were significantly elevated in both groups compared
to the levels observed in HCs. We also found a significant decrease in the percentage of
monocytes that expressed TLR4 in group 1 compared to the values observed for HCs.

3. Discussion

In this paper, we have demonstrated that chronic SCI patients without associated
inflammatory and infectious diseases show functional impairment of circulating monocytes,
with diminished TLR4 expression, increased LPS-induced TNF-α production and defective
phagocytosis. These patients also show a systemic proinflammatory state characterized
by enhanced serum TNF-α and IL-6 levels. Furthermore, augmented circulating levels of
LBP, I-FABP, and zonulin are found in chronic SCI patients, indicating increased bacterial
translocation and gut barrier damage.

The function of the immune system in patients with chronic SCI remains poorly
defined. Contradictory results have been reported for T lymphocyte counts, subset dis-
tributions, and functions [21,33–37]. Monocytes are a cornerstone of the immune system
that links innate and adaptive immunity and plays critical roles in the response to bac-
terial infections and in the induction and regulation of the inflammatory response [23].
Our findings show that chronic SCI patients have normal monocyte counts, which is con-
sistent with a previous report [36]. Furthermore, reduced monocyte counts have been
reported 4–5 months after SCI in acute patients [37]. Moreover, the distribution of the
CD14+highCD16−, CD14+highCD16+, and CD14+lowCD16+ circulating monocyte subsets is
also normal in these patients.

Members of the TLR family play critical roles as regulators of innate and adaptive
immune responses. Interestingly, the expression of TLR4 on monocytes from chronic SCI
patients is diminished, and this observation can be explained by the observed reduction
in the CD14+highCD16− and CD14+highCD16+ subsets. However, chronic SCI patients
show normal TLR2 expression on monocytes and in all three monocyte subsets. Alter-
ations in monocyte TLR4 expression have been described in acute and chronic diseases.
TLR4 overexpression on monocytes has been found in different noninfectious diseases,
such as atrial fibrillation and major depression [38]. In contrast, sepsis patients show
decreased TLR4 expression on monocytes that has been associated with worse outcomes
and mortality [39,40]. We also found increased TLR9 expression on monocytes from
chronic SCI patients, which could be explained by the enhanced expression found on the
CD14+highCD16− and CD14+highCD16+ monocyte subsets. TLR9, which binds bacterial
DNA, is an intracellular molecule that is also found on the cell surface [10,41,42]. It has been
proposed that the cell surface form of TLR9 binds bacterial DNA and that the ligand is then
transferred from the cell surface to the intracellular compartment [42,43]. Increased TLR9
expression has been reported in chronic infectious and noninfectious inflammatory dis-
eases, such as systemic lupus erythematosus, cutaneous leishmaniasis, chronic hepatitis B,
and acute sepsis [44–47].

Monocytes can produce a plethora of cytokines that are essential for the adequate regu-
lation of immune responses. In this study, we show a clear enhancement of monocyte TNF-
α production, but the levels of IL-1, IL-6 and IL-10 were normal. The increased monocyte
TNF-α expression observed in chronic SCI patients is linked to the CD14+highCD16− subset.
It is known that monocytes, of which a majority of cells are in the CD14+highCD16− subset,
secrete cytokines, including TNF-α, IL-1, IL-6 and IL-10, and release inflammatory medi-
ators when stimulated with LPS [48]. In contrast, CD14+highCD16+ and CD14+lowCD16+

monocytes from chronic SCI patients show normal TNF-α, IL-1, IL-6 and IL-10 production
by monocytes after LPS stimulation. These CD14+lowCD16+ monocytes mainly respond
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to nucleic acid stimulation [49]. Interestingly, decreased secretion of IP-10 by monocytes
from chronic SCI patients has been described [36]. Thus, patients with chronic SCI show a
specific proinflammatory pattern of altered monocyte cytokine production. This abnormal
pattern of monocyte subset distribution has not been previously described in inflammatory
diseases [48,50,51]. Furthermore, we found a marked defect in E. coli uptake but normal
ROS generation in monocytes from patients with chronic SCI. These results indicate an
impaired phagocytic ability but preserved monocyte intracellular microbicidal activity in
these patients. Interestingly, monocyte ROS generation is preserved or even enhanced
in septic patients, suggesting that oxidative metabolism and cytokine production are
differentially regulated in monocytes from septic patients [52].

Increased serum levels of TNF-α and IL-6 have been associated with inflammatory dis-
eases [53,54]. Consistent with previous studies, we found an increase in the inflammatory
mediators TNF-α and IL-6 but normal IL-1β and IL-10 levels in chronic SCI patients [20,55].
Interestingly, serum TNF-α levels correlate with the production of this cytokine by LPS-
stimulated monocytes from chronic SCI patients. The source of the increased IL-6 levels
cannot be ascribed to monocytes since the production of this cytokine was normal. Sev-
eral immune and nonimmune cells may produce IL-6, and its production can be induced
by TNF-α [56].

Several mechanisms may be involved in the pathogenesis of the proinflammatory
monocyte abnormalities found in chronic SCI patients, and our findings help to improve our
understanding of this immune system alteration. To the best of our knowledge, this is the
first report of elevated circulating LBP levels in chronic SCI patients. The hepatic synthesis
of LBP is promoted by LPS, and LPS-LBP complexes bind to CD14 on the monocyte
surface. LBP peaks in the plasma 2 to 3 days after transient bacteriemia or endotoxemia,
and the levels remain increased up to 72 h later [30]. Indeed, in several clinical settings,
plasma LBP seems to better reflect long-term exposure to bacteria and their endotoxins
than endotoxin itself [32,57]. Increased serum LPS levels have been associated with higher
circulating levels of TNF-α and IL-6 and increased TNF-α expression on monocytes [58].
Furthermore, increased LBP production has been associated with decreased expression of
TLR4 on host immune cells [39]. Thus, the clinical setting described here differs from that
of sepsis and septic patients, in which massive, acute LPS exposure promotes very high
LBP concentrations that inhibit the LPS response by human monocytes and is therefore
thought to be protective [59].

It was recently reported that experimental SCI is associated with increased intestinal
permeability and bacterial translocation from the gut [60]. We investigated gut barrier
damage in chronic SCI patients by quantifying I-FABP and zonulin, which are validated
markers [61,62]. The increased serum I-FABP and zonulin levels observed in chronic SCI
patients might reflect a loss of the integrity of the intestinal barrier. Increased intestinal
permeability favors bacterial translocation [63]. Therefore, increased intestinal permeability
in SCI patients may play a role in the observed increase in LBP levels. The urinary tract does
not appear to be a relevant source of bacterial translocation in our chronic SCI patients since
they had neither clinical manifestations of UTI nor positive urine cultures. Furthermore,
the increased LBP levels cannot be explained by a clinical infection because the presence of
recent acute or chronic infections was a patient exclusion criterion in our study.

In animal models, the immune disturbance found in acute SCI has been related
to the involvement of the sympathetic autonomous nervous system and neuroimmune
regulation [64]. However, in humans, the relevance of this impairment has not been
established. Contradictory reports about the relationship between the level of injury and
the impairment of NK cells have been made [6,33–35]. Our results show that gut barrier
damage, bacterial translocation, monocyte disturbance, and systemic proinflammatory
conditions in chronic SCI patients are independent of the thoracic level of the lesion.

The monocyte dysfunction and systemic proinflammatory cytokine pattern that are
associated with increased bacterial translocation in chronic SCI patients provide clues to
improve our understanding of the clinical complications that develop in these patients. Im-
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paired monocyte phagocytic activity and defective TLR4 expression in the CD14+highCD16−

and CD14+highCD16+ monocyte subsets might be involved in common causes, predomi-
nantly septicemia, of death in the years following SCI [65,66]. Indeed, TLR4 plays a critical
role in the clinical response to intraperitoneal E. coli, and TLR4 modulates the phagocytosis
of bacteria by peritoneal macrophages [67]. Furthermore, increased bacterial translocation
defined by enhanced LPS levels has also been associated with an increased prevalence of
infections and mortality in different clinical settings, including those with augmented gut
barrier damage and monocyte dysfunction [28,58].

Our findings demonstrate that patients with chronic SCI suffer an unexpected sys-
temic inflammatory state, with severe disturbances of monocyte function and pathogenic
compromise of the intestinal barrier, as summarized in Figure 8. Chronic SCI patients show
a critical compromise of the intestinal barrier, as shown by the enhanced plasma levels of I-
FABP and zonulin. This impairment favors a subsequent increase in bacterial translocation,
as demonstrated by the augmented LBP levels found in chronic SCI patients. This bacterial
pressure appears to be involved in maintaining monocyte overstimulation. Furthermore,
monocytes from chronic SCI patients display defective phagocytic activity. These findings
demonstrate that chronic SCI patients suffer not only a motor, sensory and/or autonomous
nervous system disease but also a systemic inflammatory disease. These patients have
severe comorbidities, such as premature coronary heart disease, metabolic syndrome and
diabetes mellitus [10,68]. Activated monocytes and proinflammatory cytokines are clearly
involved in the pathogenesis of accelerated atherogenesis and insulin resistance in different
chronic inflammatory diseases [69,70]. Thus, the immune disturbances found in chronic SCI
patients may also favor the appearance of these high-morbidity diseases. Taken together,
our findings suggest that we should consider noncomplicated chronic SCI as a systemic
inflammatory disease with monocyte dysfunction and increased bacterial translocation
across the intestinal barrier.
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One limitation to this study might be the limited number of participants. In addition,
we have not carried out a longitudinal study of the patients. Moreover, the immune system
is a complex system that involves many populations and molecules that must be analyzed
together. Therefore, it would be interesting to analyze other compartments of the immune
system as well as their functional interaction between them
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Our findings provide an innovative understanding of chronic SCI that will support the
development of new strategies for preventing the severe comorbidities that these patients
suffer. Future translational and longitudinal clinical studies must define the potential
biomarker value of immune system and/or bacteria-dependent host parameters for the
development of infectious and noninfectious complications. Furthermore, these results
support the need to investigate new immunomodulatory and microbiological strategies
in patients with chronic SCI. These immune disturbances and the associated bacterial
translocation must be analyzed in the whole population of patients, including those with
inflammatory or septic complications.

4. Materials and Methods
4.1. Study Protocol

In this prospective study, we included 56 chronic SCI patients using the following
inclusion criteria: (1) ≥18 years of age; (2) a history of SCI, with at least 1 year of SCI at
any level; (3) SCI with any severity, including grades A to E classified with the American
Spinal Injury Association (ASIA) Impairment Scale (AIS). A physiatrist board-certified in
SCI medicine evaluated the subjects’ injuries according to the International Standards for
Neurologic Classification of Spinal Cord Injury [71,72]. Potential subjects were excluded
if they had (1) a concurrent infection complication, such as a urinary tract infection (UTI)
or a respiratory infection with positive urine culture in the last three months; (2) chronic
bacterial or viral infection; (3) pressure ulcers in the last 12 months; (4) received steroids
or immunomodulatory drugs in the last three months; (5) an autoimmune disease; (6) a
severe cardiovascular disease; (7) a hematopoietic, lung, hepatic or renal disorder; (8) an
endocrine or metabolic disease, including diabetes mellitus; (9) a history of malignancy;
(10) immunodeficiency and malnutrition; (11) pregnancy or lactation; and (12) psychiatric
disorders. The patients were studied in parallel with 28 sex- and age-matched HCs.

The experimental protocol included a detailed clinical assessment that encompassed
several clinical parameters—some of them directly related to the SCI but others needed for
the correct interpretation of immunological data—and a blood sample for the determina-
tion of routine hematological and biochemical parameters along with the immunological
parameters detailed below. Clinical data from the SCI subjects were obtained during a
routine medical examination in an outpatient clinic in the Physical Medicine and Reha-
bilitation Department, and included: (1) baseline demographic characteristics; (2) time
from and mechanism of initial injury; (3) neurologic injury level and severity; (4) tonic and
phasic spasticity; (5) presence, type and severity of pain; (6) medical history of infections
and other symptoms evocative of some chronic SCI complication; (7) comorbid conditions;
(8) concurrent medications; (9) fatigue; (10) depression and anxiety levels; (11) level of
independence in daily living activities; (12) and a measure of one’s own quality of life and
health status perception.

This study was approved by the institutional and regional clinical ethics committee.
Written informed consent was obtained from all subjects before study enrollment.

Clinical data from the SCI patients were obtained during a routine medical exam-
ination at an outpatient clinic in the Physical Medicine and Rehabilitation Department
and included the following. This study was approved by the institutional and regional
clinical ethics committee. Written informed consent was obtained from all subjects before
study enrollment.

Blood samples were drawn from all subjects via standard venipuncture using estab-
lished aseptic technique. Samples were obtained from the chronic SCI patients at the time
of the clinical evaluation in the outpatient clinic area. Serum samples from 56 subjects with
chronic SCI and 28 uninjured subjects were included for analysis. After collection, the
samples were centrifuged, and the serum was isolated, aliquoted, and stored at −80 ◦C
until analysis.
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4.2. Isolation of Peripheral Blood Mononuclear Cells

Peripheral blood mononuclear cells (PBMCs) were separated by Ficoll-Hypaque
(LymphoprepTM, Axis-Shield, Oslo, Norway) gradient centrifugation. The cells were then
resuspended in RPMI 1640 (BioWhittaker Products, Verviers, Belgium) supplemented
with 10% heat-inactivated fetal calf serum, 25 mM HEPES (BioWhittaker Products) and
1% penicillin-streptomycin (BioWhittaker Products). Cell enumeration was performed by
conventional light microscopy using a Neubauer chamber following the criteria for trypan
blue dead cell exclusion.

4.3. Immunophenotype Studies

The proportions of monocyte subsets were determined in fresh PBMCs by ten-color
polychromatic flow cytometry in a FACSAria cytometer using FACSDiva software (Becton
Dickinson, NJ, USA). One million PBMCs were incubated with a combination of the
following monoclonal antibodies (MoAbs): CX3CR1-FITC, Slan-PE, HLA-DR-PerCP, CCR2-
PerCP-Cy5.5, CD11c-PE-CY7, CD3/CD56/CD19-APC, CD62L-APC-A780, CD16-PB, Aqua-
QD565, and CD14-QD655. For these procedures, CD14-QD655, CD16-Alexa405, HLA-DR-
PerCP, CD3-APC, CD19-APC, CD56-APC, CCR2-PerCP-Cy5.5, and CD62L-Alexa780 were
obtained from Becton Dickinson, CX3CR1-FITC and CD11C-PE-CY7 were obtained from
e-Biosciences (e-Biosciences, San Diego, CA, USA), SLAN-PE was obtained from Miltenyi
(Miltenyi, Bergisch Gladbach, Germany) and Aqua-QD565 was obtained from Invitrogen
(Invitrogen, Carlsbad, CA, USA).

The expression of TLRs on monocyte subsets was determined in fresh PBMCs by five-
color polychromatic flow cytometry in a FACSAria cytometer using FACSDiva software
(Becton Dickinson). Fresh PBMCs were labeled with CD14-QD655, CD16-Alexa405, TLR2-
FITC, TLR4-APC and TLR9-PE (Becton Dickinson) MoAbs.

For all samples, once the MoAbs were added, the cells were incubated for 20 min at
4 ◦C in the dark. After that time, the cells were washed in phosphate-buffered saline (PBS)
to eliminate excess antibody, and 100 µL of PBS was added for subsequent acquisition by
flow cytometry. Analyses were carried out using FlowJo software (TreeStar Inc., Ashland,
OR, USA).

4.4. Intracellular Cytokines

To analyze the production of cytokines by PBMCs, fresh PBMCs were cultured in ul-
tralow attachment plates (Corning Incorporated, Baltimore, MD, USA) (1 mL of cells at 106

cells/mL) and incubated for 4 h at 37 ◦C with 5% CO2. PBMC stimulation was performed
by adding LPS (5 µg/mL, Sigma-Aldrich Chemistry, Madrid, Spain) and monensin (50
µg/mL, Sigma). Next, the cells were labeled with CD14-PerCP and CD16-Alexa647 (Becton
Dickinson) MoAbs and the vital dye Aqua-QD565. For intracytoplasmic staining, the cells
were fixed and permeabilized (Fix and Perm, Caltag Laboratories, Burlingame, CA, USA),
and cytokines were stained with IL-1β-FITC, IL-10-PE, IL-6-V505, and TNF-α-Alexa700
(Becton Dickinson) MoAbs.

4.5. Flow Cytometry Studies of Oxidation and Phagocytic Activity

The phagocytic function of circulating monocytes was determined by the intake
of Escherichia coli (Phagotest; Becton Dickinson) and the quantification of the oxidative
burst activity of monocytes in heparinized human whole blood was determined by the
PHAGOBURST test (Becton Dickinson).

4.6. Quantification of Serum Cytokines Using Luminex

To study the concentrations of cytokines in the serum, the Milliplex MAP Kit (MERCK,
Darmstadt, Germany) was employed using the protocol recommended by MERCK. The
plate was read in a Luminex MAGPIX with xPONENT software (Luminex Corporation,
Northbrook, IL, USA).
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4.7. Study of Damage to the Intestinal Barrier

To study intestinal barrier damage, an analysis of I-FABP and zonulin concentrations
in the serum was performed by ELISA. I-FABP was purchased from Hycult Biotech (Hycult
Biotech, Wayne, PA, USA), and zonulin was purchased from R&D Systems (R&D Systems,
Minneapolis, MN, USA). The plate was read in an iMark Microplate Reader at 450 nm with
Microplate Manager Software (Thermo Fisher Scientific, Frederick, MD, USA).

4.8. Study of the Acute Phase Response

To study the acute phase response, we determined the concentration of LBP in the
serum by ELISA (Abnova, Taipei, Taiwan). The plate was read in an iMark Microplate
Reader at 450 nm with Microplate Manager Software (Thermo Fisher Scientific).

4.9. Statistical Analysis

Comparisons between patients and HCs were performed using the nonparametric
Mann–Whitney U test. Associations between variables were assessed with the Spearman’s
rank correlation coefficient by simple linear regression analyses. All calculations were
performed using the Statistical Package for the Social Sciences (SPSS, version 22.0, Chicago,
IL, USA). Significance was set at p < 0.05.
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