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ABSTRACT
PAR-1 is expressed not only in epithelium, neurons, astrocytes, immune cells, but 

also in cancer-associated fibroblasts, ECs (epithelial cells), myocytes of blood vessels, 
mast cells, and macrophages in tumor microenvironment, whereas PAR-1 stimulates 
macrophages to synthesize and secrete thrombin as well as other growth factors, 
resulting in enhanced cell proliferation, tumor growth and metastasis. Therefore, 
considerable effort has been devoted to the development of inhibitors targeting PAR-
1. Here, we provide a comprehensive review of PAR-1’s role in cancer invasiveness and 
dissemination, as well as potential therapeutic strategies targeting PAR-1 signaling.

INTRODUCTION

PAR-1 was the first member of the PARs 
(protease-activated receptors) family, which was found 
simultaneously by both two independent laboratories in 
1991, during the process of identifying GPCR (G protein-
coupled receptors) that mediate thrombin signal pathway 
in both human and hamster cells [1–3]. Thrombin-
activated PAR-1 is expressed not only in all types of 
blood cells, but also in epithelium, neurons, astrocytes, 
and immune cells [3, 4, 5–7]. Furthermore, PAR-1 
expression is also expressed in cancer-related fibroblasts, 
ECs (Epithelial Cells), blood vessels myocytes, mast 
cells, and macrophages in tumor microenvironment  
[8, 9]. In macrophages, PAR-1 elevates levels of numerous 
growth factors including thrombin [9]. More studies had 
since focused on the role of PAR-1 in biological function 
of tumor cells, as well as PAR-1 agonists and inhibitors 
[10–12]. PAR-1 as a target drug has become a hot spot 
in recent years, of which vorapaxar and atopaxar have 
entered the phase 3 clinical trial and phase 2 clinical trial, 
the clinical efficacy evaluation has become the last two 
years of research hotspots, which is expected to provide 
new clinical treatment ideas [13–23]. Hence, we review 

the role of PAR-1 in tumor development, invasion and 
metastasis, and discuss the potential therapeutic strategies 
for targeting PAR-1 signaling.

Biological function of PAR-1 

PAR-1 is a G protein-coupled receptor consisting 
of 415 amino acids, five functional domains: extracellular 
N-terminal, extracellular loop, 7 hydrophobic 
transmembrane domain, intracellular loop and intracellular 
C-terminal (Figure 1). PAR-1 is irreversibly activated by 
thrombin, tissue factor (TF), endothelial protein C receptor 
(EPCR), MMPs, and so on. More and more evidence 
has showed that PAR-1 not only participates in normal 
biological functions, but also in tumorigenesis.

Activation

The binding of thrombin, principal ligand of PAR-
1, to the N-terminus LDPR41-S42 sequence of the receptor 
cleaves the R41-S42 peptide bond [24]. The new unmasked 
sequence produced in this manner is used as a tethering 
ligand, which in turn binds intramolecular to the residue 
42SFLLRN47 in the conserved region of the receptor 
second loop to induce transmembrane signaling. Matrix 
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metalloprotease-1 (MMP-1) cleaves PAR-1 at a novel site 
(D39-P40) resulting in clonal ligands of two amino acids 
longer (PR-SFLLRN) than the one produced by thrombin, 
which activate the G12/13, Rho-GTP and MARK 
signaling to alter platelet shape and motility [3, 25]. EPCR 
interacts with the N-terminus of activated protein (APC) 
which induces protease cleavage of PAR-1 [26]. PAR-2 
induced gene regulation by TF / FVIIa in glioblastoma 
cell line is mediated by thrombin-mediated activation of 
PAR-1 [27]. Of note, PAR-1’s activation is irreversible 
(Table 1). 
Regulation 

Two main mechanisms that account for activation 
(cleavage) of PAR-1 are receptor trafficking and 
desensitization [8]. PAR-1 transports from the cell 
membrane to the endosome, followed by degradation 
in lysosomes [28, 29]. PAR-1 internalization requires 
ubiquitination and is associated with the clathrin / AP2 
(adapter protein 2) dimer and dynamin [30]. The transport 
of PAR-1 to lysosomes was facilitated by protein sorting 
nexin-1 (SNX-1) [31]. G protein-coupled receptor kinase 
(GPCRKs, GRKs) directed PAR-1 phosphorylation and 
protein interaction is fast, within a few seconds, ensued 
by G-protein dissociation and PAR-1 desensitization.

In contrast to the tight and rapid control of PAR-
1 activation in normal tissues, PAR-1 is constitutively 
activated in cancer cell (Figure 2). Thrombin activates 
signaling pathways in tumor cells by interacting with PAR-
1 [33–35]. Most of the cellular responses are activated by 
the persistent stimulation of the second messenger ERK1/2 

[36–37]. In a rat model of benign tumor, PAR-1 mediated 
silencing of pro-apoptotic genes led to tumor growth and 
invasion [38]. Repression of PAR-1 activity inhibited in 

vivo tumor growth, demonstrating PAR-1’s anti-apoptotic 
effects [36]. Consequently leading to consistent activation 
of second messenger signaling [36–37], PAR-1 cooperates 
with growth factor receptor (EGFR) and ErbB / Her2 or 
MMP-1 derived from fibroblasts to mediate Ca2+ pathway 
in cancer [39–40]. PAR-1 and MMP-1 alone can also up-
regulate Galectin-3 [41]. PAR-1 signaling also interacts 
with the Hippo-YAP pathway to promote tumorigenesis 
[42].

PAR-1 is also involved in cancer cell invasion 
and metastasis (Figure 2). Multiple tumor cell lines 
show that PAR-1 overexpression is closely related to 
invasive phenotype and distant metastasis [33–34, 36, 
37, 43–48]. PAR-1 enhances cancer cell invasiveness 
via increasing adhesion to extracellular matrix. After 
thrombin/PAR-1 stimulation, several cancer cell lines 
demonstrated increased platelets adhesion as well as to 
aorta and capillaries [32–34, 45, 49–50]. Prothrombin-
induced HIF-1α increases mRNA expression of torsion, 
whose protein level is also mediated by activated 
PAR-1: all these can enhance EMT and increase tumor 
metastasis [42]. The interaction of cancer cells with 
integrin v5 and cytoskeleton promotes lung cancer and 
melanoma cell migration, invasion and metastasis [32, 
50–51]. On the other hand, the use of anti-αvb5 antibodies 
specifically attenuated PAR-1-imediated invasion[50]. 
PAR-1 signaling induced expression of integrin IIb3 
and P-selectin promoted melanoma cell-EC/platelet 
interaction, thereby increasing the metastatic potential 
of cancer cells [33–34, 45, 52–53]. Overexpression of 
NF-κB, EGFR can activate PAR-1 signaling, which 
consequently promotes tumor cell growth and invasion 
[54]. In contrast to normal tissue, STAT3-dependent 
transactivation of EGFR and PAR-1 in endothelial cells of 

Figure 1: PAR-1 structure.
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clear cell renal cell carcinoma was significantly increased 
[55]. PAR-1 stimulated Akt / PKB signaling pathway, 
resulting in decreased Bim and Bax expression, and lower 
caspase-3 and caspase-9 cleavage levels, which induced 
less apoptosis [56]. 

PAR-1 plays an important role in angiogenesis 
(Figure 2). PAR-1 small interfering RNA (siRNA) lowered 
expression levels of IL-8, MMP-2 and VEGF, causing less 
vascular density [11]. PAR-1 expression is also directly 
associated with increased VEGF levels, stimulating 
angiogenesis [57]. PAR-1-induced effects depend on 
agonist concentration, allowing low concentrations of 
thrombin to stimulate the proliferation and growth of 
tumor cells, whereas high thrombin levels inducing 
apoptosis [58]. Down-regulation of long non-coding RNA-
ncRuPAR resulted in tumor inhibition via modulating 
PAR-1 and VEGF [59]. Mouse development studies have 
confirmed the PAR-1-angiogenesis association since half 
of the mice that deprived PAR-1 perished due to poor 
blood development [60–62].

In summary, these aforementioned findings 
demonstrated that PAR-1-dependent promotion of tumor 
growth and metastasis is mediated by its regulation of 
adhesion and pro-antigenic factors, suggesting PAR-1 as a 
potential cancer therapeutic target. 

PAR-1 in cancers

Many a study has elucidated PAR-1 regulates several 
pro-tumorigenic signaling pathways in cancer. PAR-1 
overexpression has been found in breast, melanoma, renal,  
gastric, colon, lung, pancreatic, esophageal, prostate, liver, 
ovarian, endometrial, head and neck cancers [27, 43, 46–
47, 63–69] (Suppplementary Table 1, Figure 3).
Breast cancer

While not secreted in normal breast epithelium, 
benign dysplasia or adenoma, PAR-1 over-expresses in 
situ carcinoma and secreted in invasive breast cancer cell 
lines [38, 70–71]. PAR-1 signaling is activated by TF, 
MMPs and thrombin, mediates tumor progression, PAR-
1 and PAR-2 cooperate functionally in breast cancer [8, 
72]. Tumor growth and invasion in breast cancer gland 
xenograft models require thrombin-induced interplay 
between ErbB and EGFR, or by MMP-1-induced 
fibroblasts derived Ca2+ signaling [8]. Sustained activation 
of ErbB/Her2 and EGFR via thrombin-cleaved PAR-1 
signaling was identified in invasive breast cancer but not 
in normal mammary epithelial cells [8, 36]. 
Melanoma

PAR-1 is over-expressed in metastatic melanoma cell 
lines and metastatic melanomas, but not in primary nevus 
and normal skin [11, 55]. In addition, melanoma cells 
isolated from patients’ metastatic lesions had increased 
PAR-1 mRNA and protein expression compared to those 
of non-metastatic disease [73]. Studies also revealed 

activated PAR-1 signal pathway in precursor phenotype 
of melanoma cells [11, 32, 40]. Studies on melanoma cell 
lines showed that PAR-1 signaling mobilized adhesion, 
invasion, anti-apoptotic and angiogenic factors to promote 
the invasion and metastasis of melanoma [11, 32, 40]. 
The migration capability of melanoma cells is enabled 
by thrombin- or MMP-1-mediated PAR-1 activation [40, 
70, 74–75]. MMP-1 is shown to enhance type I collagen 
levels through skin to promote melanoma invasion, 
whereas PAR-1 activation leads to an increase in growth 
factor activation of EGFR and IGF-1 [40, 55]. In addition, 
PAR-1 induces metastatic melanoma by modulating tumor 
suppressor Maspin and the connexin 43 [76]. PAR-1 
silencing and inhibiting thrombin decrease dissemination 
of metastatic melanoma cells [11–12, 77]. PAR-1 siRNA 
mediated inhibition decreased MMP-2, IL-8 and VEGF, 
expression levels, subsequently vascular density [78]. 
Accordingly, studies have shown that by inhibiting PAR-
1 function, melanoma cells lost motility, became non-
metastatic and less invasive. 
Renal-cell cancer

It was reported that PAR-1 was associated with 
distant metastasis and survival in renal cell carcinoma 
(RCC). AA genotype of PAR-1 gene variant IVSn-14A> 
T was associated with an increased risk of RCC metastasis 
and a poorer prognosis [79]. In contrast to normal tissues, 
STAT3-dependent EGFR and PAR-1 activation in 
endothelial cells OF clear cell renal cell carcinoma was 
significantly increased [55].
Gastric and colorectal cancers

Thrombin-activated PAR-1 induces EMT 
(epithelial-mesenchymal transition, EMT) in gastric 
cancer cell lines [80]. Overexpression of NF-κB, EGFR, 
and TN-C also activated PAR-1 expression, which in turn 
promoted gastric cancer cell growth and invasion [54]. 
PAR-1 signaling is involved in multidrug resistance and 
tumorigenesis by interacting with Hippo-YAP pathway 
in gastric cancer stem cell-like cells [43]. EPCR activates 
ERK1/2 through PAR-1 to enhance proliferation and 
migration of MGC803 gastric cancer cells [37]. PAR-1 
and MMP-1 up-regulate Galectin-3 in metastatic gastric 
cancer [41]. LncRNA-ncRuPAR regulates PAR-1 and 
VEGF in GC patients [59]. ALEX1 inhibits gastric cancer 
metastasis through dampening PAR-1/Rho GTPase 
signaling pathway [81]. PAR-1 expression levels are 
higher in metastatic gastric cancer and have prognostic 
value [82].

PAR-1 is associated with prognostic factors for 
colorectal cancer [83]. PAR-1 could promote colorectal 
cancer growth, local invasion and metastasis [84]. 
Downregulation of lncRNA-ncRuPAR contributes to 
tumor inhibition through PAR-1 and VEGF in colorectal 
cancer patients [85]. PAR-1 induced platelet activation is 
critical in EMT and migration of colon cancer cells [86]. 
Thrombin-mediated HIF-1α increases twist mRNA and 
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protein levels, which is induced by PAR-1 activation and 
regulation of the HIF-1α translation, thereby regulating 
EMT and increasing metastasis [42]. KLK4 induces 
activated PAR-1 signaling in colon tumorigenesis [87]. 
Tumor-endothelial cross-talk via an intravascular MMP-
1/PAR-1 axis exists in microvascular and macrovascular 
endothelium [88]. PAR-1 signaling enhances cancer 
cell invasion via Rho-Rho kinase axis and tumor 
microenvironment [89]. Activated PAR-1 also promotes 
colon cancer cell proliferation EGFR transactivation [90].
Lung cancer

The serum levels of PAR-1 might have a diagnostic 
value in lung cancer patients [91]. PAR-1 in NSCLC 
(Non-small cell lung cancer) is mainly expressed in cells 
that constitute the tumor microenvironment, including 
vascular endothelial cells, macrophages and stromal 
fibroblasts [92]. According to a survey of 209 patients, 
PAR-1 polymorphism was associated with tumor stage 
and median OS (overall survival) of squamous cell lung 
cancer patients [93]. A study of 63 lung cancer patients 
showed that continuous activation of platelets and thus 
exhaustion was involved in cancer-associated venous 
thromboembolism (VTE) and cancer mortality, through 
activating PAR-1 [94]. PAR-1 siRNA significantly 
decreases lung adenocarcinoma cell growth and invasion 

[95]. PAR-1 expression was up-regulated by TGF-β 
and indispensible for A549 lung adenocarcinoma cells 
[96]. Gαq and Gα13, coupled with PAR-1 as well as 
constitutively active GαqQL and Gα12/13QL mutants 
to stimulate SCLC (small cell lung cancer) to connect 
autocrine bombesin (BBS). BBS-induced activation of 
GPCR/Gαq-12/13/Rho-mediated NF-κB signaling un-
regulates the activity of NF-κB response element in the 
Shh gene promoter [97].
Pancreatic cancer

PAR-1 expression levels are positively associated 
with disease progression and OS in pancreatic cancer 
[98–100]. Thrombin-activated PAR-1 can significantly 
enhance the integrin β1-specific adhesion of pancreatic 
cancer cells to vitronectin [101]. Nuclear Ca2+ signaling 
generated by trypsin and thrombin-PAR-1 pathway 
promote proliferation in pancreatic stellate cells (PSC) 
[39]. 
Prostate cancer

It is reported that PAR-1 is overexpressed in prostate 
cancer, may contribute to the malignant progression of 
prostate cance [102–103]. Unregulated PAR-1 expression 
in peritumoral stroma of prostate cancer patient is 
associated with biochemical recurrence. MMP-1 and PAR-

Table 1: PAR-1 activators
PAR-1 Activators The activation point

Thrombin [3–7, 13] R41-S42, S42-FLLRN47

MMP-1,MMP-2,MMp-9,MMP-13 [3, 25] D39-P40

APC [26], Plasmin [26], Factor Xa [26], Granzyme 
A [26], Gingipains-R [26], 

Cleave the N-terminus, with the EPCR as a cofactor

TF-FVIIa [27] Gene elcited by TF-FVIIa through PAR-2 

Figure 2: Biological function of PAR-1.
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1 coexpression with the clinicopathological characteristics 
and prognosis of patients with prostate cancer [103]. 
Tissue kallikrein (TK) promotes keratinocyte migration 
through activation of PAR-1 and transactivation of EGFR 
[104]. Evidence also showed for a novel double-paracrine 
mechanism whereby cancer epithelium produces KLK4 
to activate PAR-1 in the surrounding stroma, which in-
turn releases cytokines (IL-6) that stimulate cancer cells to 
proliferate and increase production of KLKs [105]. 
Others

  PAR-1 promotes tumor cell growth and invasion in 
nasopharyngeal carcinoma [106–107]. Thrombin-induced 
PAR-1 activation breaks down extracellular matrix and 
basement membrane to increase MMP-1/-9 levels, which 
is closely related to nasopharyngeal carcinoma metastasis 
[106]. PAR-1 enhances acute myeloid leukemia leukemia 
stem cell activity and aggravates disease progression 
[108–109]. The expression of PAR-1 in esophageal 
squamous cell carcinoma was increased [110], to promote 
glioma cell malignancy and glioblastoma neoangiogenesis 
[111]. Thrombin activates PAR-1 expression, thus enabling 
tumor cell seeding and metastasis, giving rise to increased 

tumor cell growth and angiogenesis in glioblastoma [112]. 
Per HIF-α/VEGF pathway, PAR-1 maintains self-renewal 
and tumorigenicity of tumor-initiating progenitor cells 
(TPC) in gliomas, whilst inhibition of PAR-1 signaling 
slows down tumor progression [113–114]. PAR-1 and 
PAR-4 activate common promigratory signaling pathways 
in Hep3B liver carcinoma cells including activation of the 
receptor tyrosine kinases Met and PDGFR, the formation 
of ROS and the inactivation of PTP1B. However, PAR1/4-
triggered Met and PDGFR transactivation seem to be 
mediated independently from the ROS-PTP1B signaling 
module [115]. PAR-1 has also been shown to be associated 
with the pathogenesis of ovarian cancer, which may be 
associated with PO-14 - tumor expression of coagulation 
proteases of the APC pathway [116]. 

Drugs targeting PAR-1 in clinical use

According to the experimental research mentioned 
above, PAR-1 inhibitors may have the effect of inhibiting 
tumor cell proliferation, reducing invasion and metastasis, 
and anti-tumor angiogenesis. The development of 
drugs targeting PAR-1 has caused widespread concern. 

Figure 3: PAR-1 in cancers.
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Currently, vorapaxar (SCH530348) and atopaxar (E5555) 
are the two clinical formulations of PAR-1 inhibitors 
[13–23],which have undergone extensive clinical 
development. 

Vorapaxar is the first PAR-1 inhibitor approved for 
clinical use. Regarding to vorapaxar, phase 3 clinical trial 
data has been available since 2012, and the parent drug 
company Merck has filed for submission of approval 
to the US FDA, as well as the European Medicines 
Agency (EMA) [13–14]. Its main indication is the 
reduction in thrombotic cardiovascular events in patients 
with previous myocardial infaction or symptomatic 
peripheral artery disease. Numerous clinical studies have 
demonstrated that it plays an effective role in peripheral 
arterial disease, pulmonary hypertension, acute coronary 
syndrome, and so on [15–18]. It is regarded as a new 
approach to antiplatelet therapy. Vorapaxar was recently 
approved in two key jurisdictions: the FDA approved 
the drug for the reduction of thrombotic cardiovascular 
events in patients with a history of MI or with PAD, 
and EMA approved it for the reduction of thrombotic 
cardiovascular events in those with a history of MI [19]. 
But vorapaxar in cancer clinical research is still very 
few. A recent study showd that vorapaxar could inhibit 
epithelial ovarian cancer (EOC) progression in ovarian 
cancer [20]. No other researches had been reported of 
PAR-1’s role in other cancers. The most common side 
effect of vorapaxar is bleeding, which needs careful 
assessment in treatment.

Atopaxar hydrobromide is the second inhibitor used 
in clinical. It shows potent inhibitory effects on human 
platelet aggregation. Phase 2 clinical evidence is available 
for atopaxar administered in combination with ASA and/
or P2Y12 receptor antagonists. These trials reported an 
increased bleeding risk [21–22] While, another case of 
the evidence on atopaxar came from LANCELOT phase 
2 trials, which had two target populations , ACS (acute 
coronary syndrome) and CAD (coronary artery disease)  
[21–23]. The goals of these two studies were to look at the 
safety and tolerability of atopaxar in patients with ACS 
[22–23] The results showed no increases in any CURE 
bleeding between the combined (50 mg, 100 mg, 200 
mg) atopaxar group and the control group (0.6% versus 
3.3%; P = 0.125); there was also no statistically significant 
difference in the rate of TIMI bleeding in the combined 
atopaxar group versus the control group (19.4% versus 
16.4%; P = 0.61).As a result, further research is needed to 
confirm its side effect. Currently, there is no reports in the 
study of Atopaxar in cancer.

Thus, PAR-1 inhibitors in cancer clinical study is 
still lacking, to be further enriched and assessed. The 
potential importance of PAR-1 target in cancer therapy 
is of concern. Whether it can play a clinical role in 
the development of tumor invasion and metastasis, 
angiogenesis, is still our attention and important research 
direction. 

CONCLUSIONS

PAR-1 has far-reaching significance in the 
mechanism of cancer research, as the earliest and most 
in-depth molecular of the PARs family. As mentioned 
above, PAR-1 actively participates in steps of cancer 
cell proliferation, invasion and metastasis which involve 
complex mechanisms. Therefore, more PAR-1 centered 
studies are in dire need, not only for elucidation of its 
tumorigenic functions, but also for its future use as 
a promising molecular target for clinical treatment. 
Although PAR-1 antagonists are known to be potent 
antiplatelet agents that are also complementary to other 
antiplatelet therapies, its role in clinical cancer treatment 
is still a mystery. Once it is demonstrated that PAR-
1 targeted drugs play a role in tumor development or 
invasion and metastasis, it may become a new target for 
tumor therapy. Drug research and development based on 
PAR-1 mechanism is still a new potential direction of 
clinical treatment.
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