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The 2018–2020 Ebola outbreak in the Democratic Republic of the Congo is the
first to occur in an armed conflict zone. The resulting impact on population
movement, treatment centres and surveillance has created an unprecedented
challenge for real-time epidemic forecasting. Most standard mathematical
models cannot capture the observed incidence trajectory when it deviates
from a traditional epidemic logistic curve. We fit seven dynamic models of
increasing complexity to the incidence data published in the World Health
Organization Situation Reports, after adjusting for reporting delays. These
models include a simple logistic model, a Richards model, an endemic
Richards model, a double logistic growth model, a multi-model approach
and two sub-epidemic models. We analyse model fit to the data and compare
real-time forecasts throughout the ongoing epidemic across 29 weeks from
11 March to 23 September 2019. We observe that the modest extensions
presented allow for capturing a wide range of epidemic behaviour. The
multi-model approach yields the most reliable forecasts on average for this
application, and the presented extensions improve model flexibility and
forecasting accuracy, even in the context of limited epidemiological data.
1. Introduction
There is a long, rich history of using mathematical models to study the spread
and control of infectious diseases [1–3]. For instance, mathematical models can
provide insight on the impact of different transmission mechanisms and inter-
ventions [4–6], estimate transmission potential across different pathogens and
social settings [7,8] and evaluate optimal strategies for resource allocation
[9,10]. Mathematical models can forecast, identify and predict the morbidity
and mortality patterns in infectious disease outbreaks in near real time (e.g.
[10,11]). Public health officials can use the model short-term projections to
inform public health interventions during an outbreak [4,12–18].

Manymodelling studies relyonhistorical epidemicdata toevaluate the effective-
ness of the model for forecasting an epidemic [5,6,13,15]. By contrast, real-time
studies aim to generate predictions as the epidemic unfolds [4,7,10–12,19–21].
These real-time studies present with additional challenges, as surveillance data are
often affected by underreporting, misclassification and reporting delays [21,22].
Fortunately, standardstatisticalmethodscanbeuseful to adjust short-term incidence
trends for reporting delays and ‘nowcast’ data in real time [21,23,24].

The 2018–2020 Ebola epidemic in the Democratic Republic of the Congo
(DRC) was initially declared on 1 August 2018. As of 26 April 2020, a total of
3461 cases have been reported, mostly in the provinces of North Kivu and
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Ituri (with six cases from the province of South Kivu) [25]. The
outbreak has now largely been brought under control; how-
ever, small resurgences are still being reported over a year
and a half after the start of the outbreak. Despite vaccination
and other preventative efforts, the outbreak has persisted lar-
gely due to long-standing conflict in the region, including
recurrent violent attacks targeting Ebola treatment centres
and healthcare teams [25–27]. Particularly, regions of North
Kivu and Ituri have been destabilized, leading to conflict
from more than 70 armed militant groups [28]. In addition
to violence, a complicated history of humanitarian interven-
tion has hindered the Ebola response efforts, impacting
epidemiological surveillance and contact tracing efforts,
including temporary suspension of Ebola response activities
[22,26,28,29]. The multiple Ebola resurgences associated with
these instabilities have resulted in a multimodal incidence pat-
tern (see electronic supplementary material, figure S1) [7,30].
The complex characteristics and trajectory of this outbreak
pose an unprecedented challenge for forecasting the trajectory
of the epidemic in real time.

InFebruary 2019, a sharp increase in cases and transmission
was observed, coinciding with deteriorating security, targeted
attacks on response teams and decreasing trust in the Ebola
response efforts [31,32]. Previous studies have provided real-
time forecasts at different time points of the 2018–2020 Ebola
epidemic in the DRC (electronic supplementary material,
figure S1) using various approaches, including a semi-struc-
tured model that relies on nowcasting [21], stochastic and
auto-regressive models that incorporate historical data [20],
as well as a sub-epidemic wave framework [30], which we
also use here. While each of these approaches performed well
for fitting and forecasting the trajectory of the outbreak in 2018
and early 2019, each model failed to predict the case resurgence
observed in February 2019, resulting in forecasts that drastically
underestimated the true cumulative case count to date. There-
fore, we focus model calibration in this study on the large 2019
resurgence to better project the upcoming epidemic trajectory.
This also allows for the implementation of simpler models,
including models that only allow for a single peak.

We systematically compare real-time forecasts (one to four
weeks ahead) for the ongoing Ebola epidemic in the DRC
using seven dynamic models of variable complexity. Our
models range from simple scalar differential equation
models, such as the standard logistic growth and Richards
models, to more complex dynamic models that capture a diver-
sity of epidemic trajectories, such as multimodal outbreaks.
These include extensions of the recently developed sub-epi-
demic wave framework consisting of systems of differential
equations [30], an extended Richards model that incorporates
an endemic state and a double logistic growth model that sup-
ports incidence curves with two peaks [33]. We also present a
performance-based multi-model approach that incorporates
the four single equation models in order of increasing complex-
ity. We stratify forecasting performance within specific
forecasting phases, as defined by the multi-model approach.

2. Data and methods
2.1. Incidence data of the DRC Ebola epidemic and

adjusting for reporting delays
We retrieve weekly case incidence data for the 2018–2020
Ebola epidemic in the DRC from the epidemic curves
published weekly in the World Health Organization
(WHO) Situation Reports [25]. Many complicating factors,
including the recurrent violent attacks and widespread
public distrust, have hindered the Ebola surveillance and con-
tainment efforts in the DRC [26,34] and resulted in delays in
reporting the true incidence curve [22]. Outbreak curves
describing epidemic spread in near real time can be distorted
by reporting delays, so we adjust the crude incidence for
reporting delays using statistical methods.

Reporting delay is defined as the time lag between the
time of onset and the time when the case is reported and
entered into the database [33]. Reporting delays occur for
multiple reasons, including difficulty in tracing and monitor-
ing cases, attacks on health workers and health centres,
resistance of sick individuals to seek treatment as soon as
symptoms occur, inefficient surveillance systems and popu-
lation mobility [35]. We use a non-parametric actuaries
method that adapts survival analysis for use with right trun-
cated Ebola weekly incidence data by employing point
estimation based on reverse time hazards to statistically
adjust for reporting delays based on the empirical distri-
bution of the delays [24,36,37]. This allows us to estimate
the number of occurred but not yet reported events at a
given point in time owing to incomplete case reporting.
This well-established method involves expressing the con-
ditional reporting delay distribution as the product of
conditional probabilities. The adjusted incidence data are
obtained by appropriately dividing the observed number of
cases by the reporting delay distribution. The reporting
delay adjustment is given by

î(t) ¼ N(t; C)QC
u¼C�tþ1 [1� bgu] ¼

N(t; C)
bPrðX � C� tjX � CÞ

,

t ¼ 1, 2, . . . ,C:

In other words, the number of event onsets at time t observed
by the current time C, or N(t; C ), is a proportion of the
number of onsets occurring at time t, i(t):

N(t; C) ¼ i(t) �PrðX � C� tjX � CÞ:
This proportion is estimated by

bPr(X � C� tjX � C) ¼
YC

u¼C�tþ1
[1� bgu],

where cPr(X � C� tjX � C) represents the proportion of
events with a delay X � C� t, out of those with a delay
X ≤ C [23,28]. Thus cPr(X � C� t) represents the percentage
of events at times t reported by time C. This method works
better when case counts are moderately large, as larger num-
bers in data provide greater precision and narrower confidence
intervals. We sequentially analyse incidence data from con-
secutive Situation Reports to adjust for reporting delays as
more information becomes available.
2.2. Model calibration and forecasting approach
We conducted 29 week-to-week forecasts between 11 March
and 23 September 2019. Each forecast was fitted to the report-
ing delay-adjusted weekly incidence from data reported
in Situation Reports 33–61, between 19 March 2019 and
1 October 2019. The uncertainty in the reporting delay is
greatest in the most recently reported (last observed)
weekly incidence data point; thus, we exclude the last
weekly incidence data point in the analysis (lag of one
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week) (electronic supplementary material, figure S9). The first
model calibration process relies on five incidence weeks:
11 February–11 March 2019, with the latest snapshot
of the epidemic corresponding to Situation Report 33
(19 March 2019). Sequentially, models are re-calibrated each
week using the most up-to-date adjusted incidence curve,
meaning that the length of the calibration period increases
by one week with each new weekly published WHO
Situation Report [25].

The set of model parameters, Θ = (θ1, θ2,…, θm) (electronic
supplementary material, table S1), is estimated using
nonlinear least-squares fitting to minimize the sum of
squared errors between the model prediction f (t, Θ) and the
data yt. The estimated parameters Q̂ ¼ argmin

Pn
t¼1

ðf ðt,QÞ � ytÞ2 define the best-fit model f(t,Q̂ ). To test the
uniqueness of the best-fit model, we initialize the parameters
for the nonlinear least-squares method over a wide range of
feasible parameters from a uniform distribution using Latin
hypercube sampling. Further, we fix the initial condition
according to the first data point.

We use a parametric bootstrap approach to quantify par-
ameter uncertainty and estimate prediction intervals (PIs),
which involves resampling with replacement of incidence
data assuming a Poisson error structure [38]. Our calibration
results represent M= 300 resampled datasets that are refitted
to obtain M new parameter estimates. Model fits are used to
obtain 95% confidence intervals for each parameter [38].

Each of the M model fits is used to generate m = 30 simu-
lated data curves with Poisson noise; these 9000 (M x m)
curves are then used to construct the 95% PIs for the forecast-
ing period of one to four weeks (h = 1, 2, 3, 4). We give a
detailed description of this parameter estimation method in
prior studies [38–40].
2.3. Performance metrics
We used the following model performance metrics to assess
the quality of the model fit and forecasting performance
(h = 1–4 weeks ahead). For calibration performance, we com-
pare model fit with the adjusted observed data, whereas we
compare forecasts with the raw incidence data reported
four weeks ahead of the last date of the calibration period.

The mean squared error (MSE) and the mean absolute
error (MAE) assess average deviations of the model to the
observed data

MSE ¼ 1
n

Xn
i¼1

(Yi � Ŷi)
2

and

MAE ¼ 1
n

Xn
i¼1

jYi � Ŷij,

where Yi is the data, Ŷi is the model prediction and n is the
number of data points in the interval. For the calibration
period, n equals the number of data points calibrated to,
and for the forecasting period, n = h = 1, 2, 3, 4 for 1–4
weeks ahead forecasts, respectively.

To assess model uncertainty and performance of PIs, we
use PI coverage and mean interval score (MIS) [41]. PI cover-
age is the fraction of data points that fall within the 95% PI,
calculated as

PI coverage ¼ 1
n

Xn
t¼1

1{Yt . Lt > Yt , Ut},

where n is the length of the period, Lt and Ut are the lower
and upper bounds of the 95% PIs, respectively, Yt are the
data and 1 is an indicator variable that equals 1 if Yt is in
the specified interval and 0 otherwise.

The mean interval score considers the width of the inter-
val as well as the coverage, with a penalty for data points not
included within the PIs. The MIS is calculated as

MIS ¼ 1
n

Xn
t¼1

(Ut � Lt)þ 2
a
(Lt � Yt)1{Yt , Lt}

þ 2
a
(Yt �Ut)1{Yt . Ut},

where n is the length of the period, Lt and Ut are the lower
and upper bounds of the 95% PIs, respectively, Yt are the
data, α is the significance level (α = 0.05) and 1 is an indicator
variable that equals 1 if Yt is in the specified interval and 0
otherwise [41]. Therefore, if the PI coverage is 1, the MIS is
the average width of the interval across each time point.
For two models with equivalent PI coverage, a lower MIS
indicates narrower intervals.
2.4. Forecasting strategy
We evaluate short-term forecasts in real time using seven
dynamic models: four single-equation models of increasing
complexity, a multi-model approach and two sub-epidemic
wave models whose complexity depends on the temporal
pattern of the epidemic. Features such as number of par-
ameters, number of equations and ability to capture
varying dynamics are provided in table 1. A brief overview
of the models is provided below, and the electronic sup-
plementary material contains additional details to fully
define the models.

The two-parameter logistic growth model is useful as a
simple benchmark for comparing the performance of the
more complex models. The well-known three-parameter
Richards model extends the logistic growth model to include
an additional parameter to allow for asymmetry in the
decline of the epidemic curve [42,43]. If the data follow a
symmetric logistic trajectory, then the logistic model can accu-
rately fit the data. However, if the incidence is asymmetric,
then the Richards model will yield a better fit.

We also introduce and apply an extension of the Richards
model that consists of five parameters and an endemic state;
therefore, we denote this as the ‘endemic Richards’ model
[33]. If the epidemic declines to a steady state or endemic
level, rather than declining to extinction, the Richards
model will under-predict the future incidence. When this
happens, short-term forecasts derived using the endemic
Richards model tend to outperform the simple Richards
model.

The model is then extended to a six-parameter ‘double
logistic’ model that supports trajectories with double peaks
or temporary steady states followed by a secondary decline
(electronic supplementary material, figure S2) [33]. When
data points fall outside the PI coverage of the endemic state
assumed by the endemic Richards model, a decline greater
than the assumed level of statistical noise is indicated; this
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Figure 1. Schematic for the performance-based multi-model approach. The flow diagram describes the process of sequentially choosing models based on prediction
interval (PI) coverage to provide forecasts for each weekly projection, following the order: logistic, Richards, endemic Richards and double logistic. Here, h is the
length of the forecasting period.

Table 1. Structural characteristics of the seven dynamic models used for real-time forecasting. The multi-model approach encompasses 1–4 of the single-
equation models in the first four rows based on prediction interval coverage of the individual models (following the schematic in figure 1). For the two sub-
epidemic models, the number of differential equations is equal to the number of sub-epidemics estimated by the model (n).

no. of parameters
estimated

no. of differential
equations

supports endemic
state

supports two
peaks

supports
oscillations

logistic 2 1 no no no

Richards 3 1 no no no

endemic Richards 5 1 yes no no

double logistic 6 1 yes yes no

multi-model 2–6 1 yes yes no

sub-epidemic I 5 ≥1 (n) yes yes yes

sub-epidemic II 5 ≥1 (n) yes yes yes
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means that it is likely to be a true decline, rather than stochas-
ticity. Therefore, the endemic Richards model will overpredict
the incidence, and the double logistic model will be more
appropriate.

We introduce a multi-model approach (see next section)
that sequentially uses the four single-equation models men-
tioned above. For this purpose, we compare the models in
order of increasing complexity (table 1) and assess PI cover-
age to determine which model to employ for the forecast.
Our multi-model algorithm is summarized in figure 1.

The most flexible model we use is a sub-epidemic wave
model that supports complex temporal dynamic patterns,
such as oscillating dynamics leading to endemic states or
damped oscillations [30]. We incorporate two variations of
sub-epidemic decline: exponential decline, as presented in
[30], and a new extension with an inverse decline function;
each of the variations includes five fitting parameters. This
approach assumes that multiple underlying sub-epidemics
shape the aggregate reported epidemic curve, where each
sub-epidemic is modelled using a generalized logistic
growth model. These combine to create an epidemic wave
composed of n overlapping sub-epidemics modelled using
a system of n coupled differential equations.
2.5. Multi-model approach
For the multi-model approach, we compare the four single-
equation models in order of increasing complexity (table 1),
and we assess the PI coverage of the calibration period to
determine when/if to switch models, as summarized in our
schematic shown in figure 1.

We begin at the initial forecasting week by comparing the
calibration PI coverage between the logistic and Richards
models. When the calibration PI coverage of the logistic
model is greater than or equal to the PI coverage of the
Richards model, we provide forecasts with the logistic
model. When the PI coverage of the Richards model is
greater, we then switch to comparing the Richards model
with the endemic Richards, and the iterative process
continues as such (figure 1).

We define the forecasting phases as the time intervals corre-
sponding to the Situation Reports for which each model is
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Figure 2. Visual representation of the forecasting phases defined by the multi-model approach. Raw data from Situation Report 65 are shown with the periods for
which each model was used: logistic growth model (blue), Richards model (red), endemic Richards (yellow) and double logistic ( purple).

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200447

5

used. That is, each time the method switches to a new fore-
casting model, a new forecasting phase is initiated, and
there will be as many forecasting phases as models used.
Notably, any number of the four models could make up the
multi-model approach. For example, if the Richards model
provides higher PI coverage than the logistic model at time
tswitch and the endemic Richards model has higher PI cover-
age than the Richards model at time tswitch, then the
Richards model would not be used for any forecasts (figure 1).
The models are analysed in the explicit order reported, and
once a model is switched to, there is no switching back to
simpler models.
3. Results
We compare the calibration and real-time short-term forecast-
ing performance of the seven models in table 1 on the major
Ebola resurgence between 11 March 2019 and 23 September
2019. We further assess performance within each forecasting
phase, as defined by the multi-model approach. The elec-
tronic supplementary material contains additional figures of
the model fits (electronic supplementary material, figures
S3–S8).

3.1. Forecasting phases
As explained in the methods, we define our forecasting phases
by assessing the calibration PI coverage of the four single-
equation models as defined by the multi-model approach
(electronic supplementary material, figure S3). The following
forecasting phases were obtained: weekly forecasts with the
logistic model for 11 March–1 April 2019 (data from Situation
Reports 33–36), with the Richards model for 8 April–10 June
2019 (Situation Reports 37–46), with the endemic Richards
model for 17 June–22 July 2019 (Situation Reports 47–52)
and with the double logistic model for 29 July–23 September
2019 (Situation Reports 53–61) (figure 2). We will refer to
these consecutive forecasting phases as: incline, oscillating I,
oscillating II and decline, respectively. These break points
based on PI coverage are also consistent with the timing of
where the models begin to deviate with respect to each of
the other calibration performance metrics: MSE, MAE and
MIS (figure 3).

In general, the resulting forecasting phases obtained by
our multi-model approach are consistent with our rationale
for incorporating the dynamic models supporting different
dynamics. Data from 11 February–1 April represent the
early growth dynamics of the 2019 resurgence; thus, we
define the first phase (11 March–1 April) as the incline
phase, for which the simple logistic model is sufficient for fit-
ting the data (electronic supplementary material, figure S3).

In the next phase beginning 8 April, oscillating I, the out-
break begins to fluctuate, and the Richards model
outperforms the logistic model. As new observations are
added to the weekly incidence curve, the deviations between
the logistic model and data become more pronounced
(figure 3 and electronic supplementary material, figure S3).
The trajectory continues on a sustained oscillating pattern
through the next phase, oscillating II, so the endemic
Richards model provides a better model fit than the simple
Richards model.

On 29 July, the switch to the final model and the decline
phase is initiated (figure 3). From 29 July to 2 September
(Situation Reports 53–58), the endemic Richards and double
logistic model perform comparably in each of the calibration
metrics. However, the double logistic model outperforms the
endemic Richards model between 9 September and 23 Sep-
tember (Situation Reports 59–61). This is the point where
the trajectory falls outside the 95% PI obtained using the
endemic Richards model, suggesting a need for a model
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that can capture the declining trend (electronic supplemen-
tary material, figures S6 and S7). The double logistic model
outperforms the other single-equation models in capturing
the full national incidence pattern up to 23 September
(table 2 and figure 3).
3.2. Calibration performance
The calibration performance metrics across phases, based on
the last date of calibration within each of the four phases, are
given in table 2. For data through the incline phase, each of
the models provides 100% PI coverage and very similar
MIS, with the double logistic having the lowest (MIS =
27.1), followed by the endemic Richards (MIS = 27.2). The
endemic Richards model has significantly lower MSE and
MAE for the incline phase than the other models (table 2).

For data through oscillating I, the sub-epidemic model
type II has the highest PI coverage (94.1%) and lowest MIS
(70.9), while the endemic Richards and sub-epidemic type I
have the lowest MSE andMAE, respectively (table 2). For data
through oscillating II, the endemic Richards, multi-model
and the double logistic model have the highest PI coverage
(95.7%), while sub-epidemic types I and II have the lowest
MIS (49.7). The endemic Richards, which corresponds with
the multi-model approach for oscillating II, also has the
lowest MSE and MAE.

When fitting all the available data through 23 September,
or the decline phase, the double logistic, multi-model and
both sub-epidemic models perform best in terms of PI cover-
age (90.6%); however, the other metrics are split between
these models (table 2). The three simplest models perform
poorly on the full data, supporting the need for more flexible
models to capture the complex dynamics of the epidemic.
Weekly calibration performance across the entire inci-
dence curve using the double logistic model, the
performance-based multi-model approach and the two
sub-epidemic models is displayed in figures 4 and 5. Good-
ness-of-fit metrics do not point to a single winner or ‘best’
model (figure 4). In terms of mean model fit and error, the
models perform comparably with regards to MSE and
MAE. The models show variation in PI coverage and MIS;
however, the curves repeatedly overlap, suggesting that
there is not necessarily a clear best model across the full
epidemic trajectory.

3.3. Forecasting performance
The forecasting results by phase are presented in table 3. For
the incline phase, the endemic Richards model provides fore-
casts with substantially lower MSE and MAE than any other
model. The double logistic model has the highest PI coverage
(100%) and lowest MIS (207.3); however, the MSE is more
than 14 times higher than that of the endemic Richards
(table 3). Thus, the high coverage can be attributed to very
wide prediction intervals (electronic supplementary material,
figure S6).

For oscillating I, the endemic Richards model provides the
highest PI coverage of future data points (65.0%), while the
Richards model has the lowest MSE, MAE and MIS, which
correlates with the multi-model approach having the lowest
error and MIS as well (table 3).

As more complicated dynamics emerge, the simpler
models fail to predict the epidemic trajectory accurately. For
oscillating II, both the logistic and Richards models have PI
coverage of 0% with high error (table 3). The sub-epidemic
model type I outperforms all other models on PI coverage
(100%) and MIS (54.5) for this phase, indicating it has high



Table 2. Calibration performance of the seven dynamic models calibrated to the data through the last Situation Report (SR) of each time interval. The time
intervals are defined by the multi-model approach, where the switch in model/interval is driven by the prediction interval coverage of the model used. The
multi-model results are equivalent to the individual model used for that time interval (logistic, Richards, endemic Richards and double logistic, respectively).

PI coverage (%) MIS MSE MAE

1 April 2019 (SR 36)

logistic 100.0a 28.4 17.8 3.0

Richards 100.0a 29.4 15.2 2.9

endemic Richards 100.0a 27.2 6.4a 2.1a

double logistic 100.0a 27.1a 23.2 3.8

multi-model 100.0a 28.4 17.8 3.0

sub-epidemic I 100.0a 28.6 13.9 2.7

sub-epidemic II 100.0a 28.7 13.9 2.9

10 June 2019 (SR 46)

logistic 52.9 302.9 511.2 17.4

Richards 88.2 81.9 220.0 12.1

endemic Richards 88.2 84.2 199.9a 11.7

double logistic 82.4 85.7 200.7 11.7

multi-model 88.2 81.9 220.0 12.1

sub-epidemic I 82.4 74.7 213.8 11.1a

sub-epidemic II 94.1a 70.9a 213.2 11.4

22 July 2019 (SR 52)

logistic 34.8 696.0 1191.8 28.5

Richards 65.2 153.3 306.7 12.7

endemic Richards 95.7a 54.6 124.9a 8.6a

double logistic 95.7a 60.3 129.0 8.7

multi-model 95.7a 54.6 124.9a 8.6a

sub-epidemic I 87.0 49.7a 129.8 9.4

sub-epidemic II 87.0 49.7a 129.9 9.4

23 September 2019 (SR 61)

logistic 21.9 732.78 1281.7 30.6

Richards 71.9 139.1 312.0 14.1

endemic Richards 75.0 117.9 210.7 10.9

double logistic 90.6a 55.3 110.9a 7.8

multi-model 90.6a 55.3 110.9a 7.8

sub-epidemic I 90.6a 52.7a 126.6 8.9

sub-epidemic II 90.6a 61.5 122.2 7.5a

aBest performance with regards to the performance metric (column), i.e. highest prediction interval (PI) coverage and lowest mean interval score (MIS), mean
squared error (MSE) and mean absolute error (MAE).
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PI coverage without significantly higher error. The endemic
Richards, double logistic and multi-model approach yield
the lowest MAE and MSE for oscillating II.

For the final phase, the decline phase, the double logistic
and multi-model approach yield the highest forecast PI cover-
age (80.6%). Interestingly, the simple Richards model
provides forecasts with the lowest MIS, MSE and MAE for
the last phase; however, PI coverage is only 55.6% (table 4).
Further, if we had continued conducting forecasts past the
end of the study period, the Richards model would have
failed to capture the continued endemic state observed. The
double logistic and multi-model approach rank second in
MIS, MSE and MAE, so while there is not a clear best
model, the double logistic and multi-model approach
highly perform across all of the metrics.
4. Discussion
We conducted a systematic comparison of seven models for
short-term real-time forecasting of the ongoing 2018–2020
Ebola outbreak in the DRC. A well-defined performance-
based approach was used to identify distinct epidemic
phases for which to employ different models to capture the
complex trajectory of the epidemic. By using different
models for different phases of an epidemic, the approach
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can account for significant changes in transmission dynamics
over the course of the outbreak, ranging from a simple logis-
tic curve to incidence curves with oscillatory behaviour, as
observed in the DRC (figure 3).
The first defined phase, incline, covers the sharp increase
in cases observed in late February–early March, which fol-
lowed an increase in armed attacks, including the burning
of Ebola treatment centres in Katwa and Butembo [31].



Table 3. Average forecasting performance of four-week ahead forecasts across each Situation Report within the four distinct forecasting phases. The time
intervals are defined by the multi-model calibration results (corresponding with figure 2), where the switch in model/interval is driven by the prediction interval
coverage of the model used; therefore, the multi-model results are equivalent to the individual model used for their respective time intervals.

PI coverage (%) MIS MSE MAE

Situation Reports 33–36: incline

logistic 68.8 553.5 1857.5 37.5

Richards 81.3 428.5 2072.1 36.1

endemic Richards 81.3 247.9 580.0a 18.6a

double logisticb 100.0a 207.3a 8308.6 66.4

multi-model 68.8 553.5 1857.5 37.5

sub-epidemic I 56.3 672.3 3987.3 46.0

sub-epidemic II 56.3 646.1 4050.6 45.4

Situation Reports 37–46: oscillating I

logistic 37.5 859.2 1951.3 36.7

Richards 55.0 468.7a 1883.0a 33.9a

endemic Richards 65.0a 494.4 4613.2 51.1

double logistic 55.0 559.9 5922.6 56.2

multi-model 55.0 468.7a 1883.0a 33.9a

sub-epidemic I 42.5 794.3 4123.0 46.6

sub-epidemic II 45.0 889.1 4424.7 50.1

Situation Reports 47–52: oscillating II

logistic 0.0 2192.5 4039.0 62.9

Richards 0.0 684.4 1081.4 31.7

endemic Richards 87.5 71.3 131.6 8.7a

double logistic 87.5 68.7 129.8a 8.8

multi-model 87.5 71.3 131.6 8.7a

sub-epidemic I 100.0a 54.5a 208.1 12.6

sub-epidemic II 79.2 88.1 344.9 15.1

Situation Reports 53–61: decline

logistic 8.3 837.8 1026.4 27.8

Richards 55.6 115.1a 183.7a 11.9a

endemic Richards 16.7 784.1 1482.4 36.1

double logistic 80.6a 118.5 304.5 13.2

multi-model 80.6a 118.5 304.5 13.2

sub-epidemic I 63.9 401.4 747.0 20.4

sub-epidemic II 69.4 219.5 453.7 14.4
aBest performance with regards to the performance metric (column), i.e. highest prediction interval (PI) coverage and lowest mean interval score (MIS), mean
squared error (MSE) and mean absolute error (MAE).
bThe double logistic model averages are for Situation Reports 35 and 36.
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Specifically, February 2019 recorded the highest monthly inci-
dence of armed attacks, corresponding with the increase in
cases observed in the incline phase. The following two
phases represent oscillating dynamics, which correspond
with continued violent attacks and increasing community
resistance that deterred response activities [28,31]. As the inci-
dence of violent attacks decreased in July 2019, cases levelled
out and eventually showed a substantial decline for the final
decline phase.

The double logistic model and the sub-epidemic models
(types I and II) provide the best fit to the incidence trajectory
through the study period (table 2); however, in general, good-
ness of fit was not found to be correlated with forecasting
performance. While the sub-epidemic models often provide
the best fit to the calibration data (table 2), they were less suc-
cessful in forecasting short-term dynamics of the epidemic
(table 3). We observed that the sub-epidemic forecasts in
the decline phase perform poorly, as the trajectory is declin-
ing while the models are predicting another upturn in cases
or sub-epidemic waves (electronic supplementary material,
figures S7 and S8). The sub-epidemic model, with an inverse
decline function (type II), is more successful at capturing the
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future declining trajectory in Situation Reports 58–61,
whereas the version with the exponential decline (type I)
cannot predict the declining trend observed in the following
weeks (table 3; electronic supplementary material, figures S7
and S8).

The multi-model approach provides the most consistent
forecasts, in terms of average MSE and MAE, throughout
our study period (electronic supplementary material, table
S2). Even when broken into phases, the multi-model
approach performs best in at least one of the forecasting
metrics for each forecasting phase, which was not the case
for any other model (table 3). This general multi-model
approach can be adapted to other epidemic scenarios,
such as epidemics of emerging pathogens or those occur-
ring in regions with unstable sociopolitical climate, as the
models are phenomenological and do not require biological
information or knowledge of specific disease transmission
processes. However, the four models incorporated here
may not be appropriate for all outbreak scenarios.
For example, these models do not allow for a higher
second peak. This approach would also have failed to pre-
dict the February 2019 resurgence, like the other early
projections.

The general multi-model approach can be adapted to
incorporate any sequence of models. For disease outbreaks
with more epidemiological data, specific disease mechan-
isms can be incorporated in compartmental models that
increase in complexity as more outbreak characteristics are
elucidated. As model complexity increases, however, the
uncertainty of model estimates must be considered. Here,
the models build upon each other and have very similar esti-
mates for the early phase, so we rely on PI coverage as our
‘switch’ metric to remain at a simpler model while they all
have equivalent coverage. This could potentially be proble-
matic for more complex models, as very wide intervals,
such as (0, inf.), would perform ‘better’ in terms of PI cover-
age, leading to high uncertainty in forecasts. In this
situation, one may consider MIS to classify the phases,
rather than PI coverage.

Another modelling approach rapidly gaining traction in
epidemiological literature is ensemble modelling, which
involves incorporating multiple models in a complementary
manner [44–46]. Rather than a sequential multi-model
approach, future work could rely on an ensemble modelling
approach based on a combination of simple dynamic
models. With an ensemble approach, we would have the
option to base the contribution of each model on calibration
performance, rather than choose one model based on cali-
bration as we did here. Another option is to weight the
models based on the forecasting performance of prior
weeks; however, in this study, forecasting performance in
one phase is not clearly predictive of performance in the fol-
lowing phase (table 3). The use of an algorithm like that
presented here could supplement ensemble models to
define distinct epidemic phases, which may yield better
projections than separating data by standard intervals.

Reviews of real-time forecasting throughout the historic
2014–2015 Ebola epidemic found that forecasting uncertainty
is higher in the beginning stages of an outbreak and
decreases over time [16,17]; however, this was not observed
in the 2018–2020 Ebola epidemic. Fluctuations in error and
MIS do not reveal a declining pattern in forecast uncertainty
as the epidemic progresses. This highlights the challenge of
forecasting the complicated dynamics of this epidemic,
where increasing the amount of available data does not
necessarily decrease the uncertainty of estimates.

The unpredictable social components of the epidemic on
the ground in the DRC are major limitations to the study.
While we adjust the reported data in real time by the
week of symptom onset, we do not know the true stable
incidence pattern when forecasts are generated. Further,
we rely on phenomenological models, which are particu-
larly valuable for providing rapid predictions of epidemic
trajectory in complex scenarios; however, they do not incor-
porate disease-specific mechanisms or explicitly account for
interventions. Because the models do not explicitly account
for behaviour changes or interventions, projections from
the models should be assessed with caution and are only
suitable for short-term predictions. The sub-epidemic mod-
elling framework is the most flexible presented here, and
only the two sub-epidemic models are able to predict a
resurgence or second wave; however, the variations of the
model applied here can only predict constant or decreasing
sub-epidemic wave sizes, and thus cannot accommodate
larger subsequent waves, as observed in the DRC outbreak.
Therefore, none of the models employed here would have
anticipated the 2019 disease resurgence, but, when applied
from the start of the resurgence, they can be used to forecast
the following trajectory in real time.

In conclusion, while the forecasting models introduced
here are relatively simple, we are encouraged by the short-
term forecasting performance of the model extensions,
especially when applied to such a complex, non-traditional
epidemic trajectory. While longer term predictions may not
be feasible, short-term predictions like those presented
assist public health workers with decisions regarding tar-
geted interventions, resource allocation, and preparation for
healthcare settings, laboratories and more. This work
suggests that a multi-model framework, such as the one pre-
sented here, can identify distinct forecasting phases that
allow the model to adjust for changing dynamics. Further,
the general approach is flexible and can be adapted to
many different model combinations and outbreak scenarios.
Forecasting challenges during the DRC outbreak underscore
the need for more research into flexible real-time forecasting
approaches, especially when the dynamics exhibit complex
temporal patterns.
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