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Objective. This study aimed to screen prognostic gene signature of glioblastoma (GBM) to construct prognostic model.Methods.
Based on the GBM information in the Cancer Genome Atlas (TCGA, training set), prognostic genes (Set X) were screened by
Cox regression. Then, the optimized prognostic gene signature (Set Y) was further screened by the Cox-Proportional Hazards
(Cox-PH). Next, two prognostic models were constructed: model A was based on the Set Y; model B was based on part of the
Set X. The samples were divided into low- and high-risk groups according to the median prognosis index (PI). GBM datasets
in Gene Expression Ominous (GEO, GSE13041) and Chinese Glioma Genome Atlas (CGGA) were used as the testing datasets
to confirm the prognostic models constructed based on TCGA. Results. We identified that the prognostic 14-gene signature was
significantly associated with the overall survival (OS) in the TCGA. In model A, patients in high- and low-risk groups showed
the significantly different OS (P = 7.47 × 10−9, area under curve (AUC) 0.995) and the prognostic ability were also confirmed in
testing sets (P=0.0098 and 0.037). The model B in training set was significant but failed in testing sets. Conclusion. The prognostic
model which was constructed based on the prognostic 14-gene signature presented a high predictive ability for GBM.The 14-gene
signature may have clinical implications in the subclassification of GBM.

1. Introduction

Glioblastoma (GBM) is the most aggressive diffuse and
lethal malignancy in malignant gliomas [1]. To date, surgical
resection followed by radiation therapy and chemotherapy
is the frequently therapeutic intervention for GBM [2].
However, the therapy and prognosis of GBM remain dismal
due to its invasive and aggressive behavior [3, 4]. GBM has a
poor prognosis with relatively low survival and the five-year
survival ratio is lower than 5% [5]. Therefore, it is important
to further reveal novel therapeutic methods and underlying
risk factors to improve the treatment and prognosis of GBM.

Poor prognosis with low relative survival rate is a major
challenge for the treatment of GBM, and many risk factors
have been identified to be associated with this outcome,
such as age, gender, gene mutation, usage of drugs, and
environment exposure [6]. Plenty of evidence indicates that
many molecular biomarkers are significantly associated with
the overall survival (OS) of GBMs and molecular features
have been taken into account for the classification of GBM
[7]. A centered classification of GBM based on the epidermal

growth factor receptor (EGFR-) and platelet-derived growth
factor receptor 𝛼 has been built [8]. Besides, methyla-
tion status of the gene promoter for O6-methylguanine-
DNA methyltransferase (MGMT), isocitrate dehydrogenase
enzyme 1/2 mutation, was the prognostic molecules that have
been fully confirmed [9, 10]. However, the prognostic model
of GBM is still rarely reported.

In the current study, GBM prognostic genes were
screened to construct a GBM prognostic model using the
bioinformatics methods. Meanwhile, two datasets were uti-
lized for validation. According to this, we aimed to explore a
useful prognostic model for GBM and provide some useful
insights in improving the prognosis of GBM patients.

2. Materials and Methods

2.1. Workflow of Construction of Prognostic Models. A work-
flow of this study is shown in Figure 1. The gene expression
profiles of GBM in the Cancer Genome Atlas (TCGA) were
obtained and defined as the training set. Differently expressed
genes (DEGs) between GBM and control groups were firstly
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Figure 1: Workflow of construction of prognostic models for GBM.

identified. Then, the prognostic genes (Set X) are selected
out by univariate and multivariate Cox regression analysis.
After that, least absolute shrinkage and selection operator
(LASSO) penalized Cox-Proportional Hazards (Cox-PH)
model was used to further optimize the prognostic genes
(Set Y). Next, two prognostic models were constructed based
on the training set. Model A was based on the optimized
prognostic genes (Set Y) which were identified by the Cox-
PH regression analysis. We assumed that the number of genes
used in model A was Q; Model B was based on the part
of Set X. While, the number of genes applied in this model
was Q rather than all the prognostic genes. GBM samples
from the Chinese Glioma Genome Atlas database (CGGA,
http://cgga.org.cn/) and GBM dataset GSE13041 were used to
verify the model A andmodel B along with the Kaplan-Meier
(K-M) survival analysis. Receiver operating characteristic
(ROC) curve analysis was used to assess the prognostic gene
signature.

2.2. Data Extraction and Grouping. Expression profiles of
GBM were downloaded from the Cancer Genome Atlas
database (TCGA, https://www.cancer.gov/about-nci/organi-
zation/ccg/research/structural-genomics/tcga), including 154
GBM tumor samples and 5 normal controls. All the samples
were sequenced on the platform of Illumina HiSeq 2000
RNA Sequencing and utilized as the training set. Meanwhile,
Chinese GBM expression profiles which are named as Part
A were downloaded from the CGGA. A total of 128 GBM
tissue samples involved in Part A were utilized as the testing
set 1. Moreover, another GBM dataset GSE13041 down-
loaded from the Gene Expression Omnibus database (GEO,
http://www.ncbi.nlm.nih.gov/geo/) was used as testing set 2.
GSE13041 containing 191 GBM tumor tissue samples and was
sequenced on the platform of Affymetrix Human Genome
U133 Array.

2.3. Data Preprocessing and Differently Expressed Genes
(DEGs) Screening. Based on the expression information
provided by TCGA, edgeR (version 1.0.8, https://biocon-
ductor.org/packages/release/bioc/html/edgeR.html) [11] in R

3.4.1 was utilized to screen DEGs between GBM and normal
control samples with the thresholds of false discovery rate
(FDR) <0.05 and |log fold change (FC)| >0.585. Meanwhile,
for the GSE13041, raw data contained in CEL files were
preprocessed by oligo (version 1.40.2, http://www.biocon-
ductor.org/packages/release/bioc/html/oligo.html) [12] in R
3.4.1, including background correction and normaliza-
tion. Then, according to the annotation information in
platform, probes were annotated to gene symbols. In
addition, for expression profiles in CGGA database pre-
sented in TXT format, genes were annotated using plat-
form annotation profile. The gene expressions were trans-
formed into logarithm of log2 by limma package (version
3.32.5, https://bioconductor.org/packages/release/bioc/html/
limma.html) [13] in R 3.4.1 and were normalized using the
median method.

2.4. Identification of Prognostic Genes. Basedon DEGs, sur-
vival package (version 2.41.3. http://bioconductor.org/pack-
ages/survival/) [14] in R 3.4.1 was applied to identify the
association between the genes and patient’s overall survival
time (OS) by the univariate and multivariate Cox regression
analysis. Genes were considered statistically significant when
the P logrank values <0.05 were named as Set X. Then, the
expression levels of prognostic genes were extracted from
TCGAdatabase. Bidirectional hierarchical clustering of these
genes were conducted using the centered Pearson correlation
method [15] provided by the heatmap package (version
1.0.8, https://bioconductor.org/packages/release/bioc/html/
pheatmap.html) [16] in R 3.4.1. In addition, survival
differences between the several clusters (based on the
bidirectional hierarchical clustering analysis) were estimated
by the K-M analysis with the log-rank test.

2.5. Further Analysis of the Prognostic Genes. Expression
levels of the identified prognostic genes (Set X) were utilized
as the input data to identify an optimal set of prognostic
gene signature (named Set Y, the number of genes defined
as Q) using the Cox-Proportional Hazards (Cox-PH) model
[17], whichwas based on the LASSO-penalized regularization
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Figure 2: (a)The density distribution curve of gene expression values before and after filteration. (b) Volcanomap. Red, green, and black dots
indicate genes are upregulated, downregulated, and nonsignificant differentially expressed genes, respectively. (c) A bidirectional hierarchical
clustering map based on 393 DEGs. Green and red sample bars represent normal control samples and tumor samples.

regression algorithm, provided by the penalized package
(version 0.9.50, http://bioconductor.org/packages/penalized/)
[18] in R 3.4.1. Lambda was used as the parameter in Cox-PH
and obtained from 1000 times of cross-validation likelihood
(CVL) cycle calculation. Besides, bidirectional hierarchical
clustering was conducted by the centered Pearson correlation
method, and survival difference between the several clus-
ters was estimated by the K-M analysis with the log-rank
test.

2.6. Construction and Verification of Prognostic Models

2.6.1. Model A Based on the Optimized Prognostic Gene
Signature (Set Y). Using the optimized prognostic gene
signature (Set Y) and coefficient of prognosis based on the
Cox-PHmethod,model Awas constructed and the prognosis
index (PI) of each sample was computed. According to the
median of PIs, the training dataset samples were divided
into the high- and low-risk groups. Then, K-M survival
curve analysis in R 3.4.1 survival package (version 2.41.3,
http://bioconductor.org/packages/survival/) [19] was used to
estimate the relations between model A and prognosis.
Subsequently, model A was further verified in the two testing
datasets and ROC curve analysis was used to assess the
prognostic model.

2.6.2. Model B Based on Part of the Prognostic Genes (Set X).
Based on logrank P value, the prognostic genes (Set X) were
ranked in an ascending order, and the top Q genes of Set
X were selected to calculate the coefficient of prognosis by
multivariate Cox regression analysis. Based on the median of
PIs, samples were divided into the high- and low-risk groups.
Similar to the above, K-M survival analysis, ROC curve, and
two testing datasets were also applied to assess and verify this
model.

3. Results

3.1. DEGs Identified Based on the TCGA. Gene expres-
sion levels of 159 GBM samples contained in TCGA were
filtered and a total of 14626 genes were obtained with
the median expression levels >1(Figure 2(a)). Based on
the selective criteria, a total of 393 DEGs were identified
between GBM and normal control groups, including 77
upregulated and 316 downregulated genes (Figure 2(b)).
The detailed information (logFC, p value, and FDR) of 393
DEGs was listed in Supplementary Table 1. Then, bidirec-
tional hierarchical clustering was conducted based on the
393 DEGs. Figure 2(c) showed that the identified DEGs
can significantly distinct tumor samples from the normal
controls.

3.2. Identification of Prognostic Genes. Based on the 393
DEGs between GBM and normal controls, univariate and
multivariate Cox regression analyses were performed, respec-
tively. As a result, a total of 43 DEGs (named Set X) were
significantly associated with the patient’s OS. Then, samples
were divided into cluster 1 (56 GBM samples,) and cluster
2 (96 GBM samples) according to the expression levels of
43 genes by bidirectional hierarchical clustering. In addition,
the K-M curves assessed the OS of TCGA patients, and no
significant difference was identified between cluster 1 and
cluster 2 (Logrank P = 0.15) (Figure 3(a)).

3.3. Identification of the Prognostic 14-Gene Signature. With
1000 times of CVL calculation, CVL obtained the maximum
value -491.6496 when 𝜆 = 9.42345 (Figure 4). The optimized
prognostic gene signature contained 14 genes (Table 1) and
the top 5 were CPNE9, GUCA1A, INSL3, KHDRBS2, and
KRT19, respectively. The coefficient distribution is shown in
Figure 3(b). The samples were divided into two significantly
different clusters with the logrank P = 0.029.
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http://bioconductor.org/packages/survival/


4 BioMed Research International

Cluster 1 / 2

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overall survival time (months)

Su
rv

iv
al

 ra
tio

Cluster 1
Cluster 2

LogRank p = 0.15

(a)

Cluster 1 / 2

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overall survival time (months)
Su

rv
iv

al
 ra

tio
Cluster 1
Cluster 2

LogRank p = 0.02858

(b)

Figure 3: Clusteringmaps andKaplan-Meier analysis based on the 43GBMprognostic genes (a) or the optimized 14 prognostic gene signature
(b). Cluster 1 is represented with black color, and cluster 2 is represented with white color. At the bottom, Kaplan-Meier curve analysis for
cluster 1 and cluster 2.

Table 1: The optimized prognostic 14-gene signature.

Features Coef in coxPH Hazard Ratio p values
Gene features
CCL7 0.4893 0.50749 0.011636
CPNE9 0.05016 3.33762 0.000737
GUCA1A 0.68468 2.74303 6.45E-07
HOXA11 -0.586 0.64545 0.030466
HOXC11 0.28422 2.47097 0.030154
HOXD11 0.50498 2.94223 0.042351
INSL3 0.21194 10.04671 7.48E-08
KHDRBS2 -1.4922 0.29589 0.000458
KRT19 0.4984 3.72613 7.20E-06
MEPE 0.26296 0.40042 0.001924
MLPH 0.21578 2.53208 0.00251
NELL1 0.8933 1.45172 0.025042
TBX5 0.18413 0.68823 0.022222
TMEM233 0.80243 2.97454 0.001871

3.4. Construction and Verification of Prognostic Models

3.4.1. Model A Based on the Optimized Prognostic Genes (Set
Y). According to the Cox-PH coefficient, samples in the
training set were divided into the high- (n = 76) and low-
risk (n = 76) groups by the median of PIs = 10.96. The K-M
survival analysis showed that the OS of patients in the low-
risk group (15.94 ± 12.46 months) was significantly longer

than that in the high-risk group (8.16 ± 5.89 months, P =
7.47 × 10−9, Figure 5(a) left). Moreover, this finding was also
validated in the testing sets. For CGGA set, OS of patients
with low PIs was significantly higher than that with high
PIs (16.45 ± 8.93 versus 12.34 ± 6.52 months, P = 0.0098,
Figure 5(b) left). Meanwhile, for GSE13041 set, the OS of
patients in low- and high-risk groups were 21.99 ± 20.55
and 16.72 ± 17.91 months, respectively, with the P = 0.037
(Figure 5(c) left). Using PI as the forecast factor, ROC curve of
PI was presented as Figure 5(d).The area under curve (AUC)
was 0.995, 0.974, and 0.953, respectively, indicating that this
model possessed a relative satisfied predicted ability.

3.4.2. Model B Based on Prognostic Genes (the Top 14 Genes
of Set X). According to the logrank P value, we selected the
top 14 genes of the 43 prognostic genes to construct model
B. PI of each sample was calculated using the Cox multiple-
factor regression analysis. Then, samples in the training set
were divided into the high- and low-risk groups according to
the median of PI = 5.87. K-M curves revealed that patients in
the low-risk group presented longer OS time than that in the
high-risk group (15.27 ± 11.22 versus. 8.86 ± 8.46, P = 3.98 ×
10−07, Figure 5(a) right). In the CGGA and GSE13041 testing
sets, patients were also divided into the high- and low-risk
groups according to median PIs, but there was no significant
difference in OS between the two groups (Figures 5(b) right
and 5(c) right, P>0.05). Considering the validated results,
model Bwas not suitable for the prognosis prediction ofGBM
despite the high AUC of ROC curves (Figure 5(d)).
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Figure 4: Screening the optimized prognostic genes by Cox-PH analysis. (a) 𝜆 value confirmation by CVL method. Cross of red pot line
represented the selected 𝜆 = 9.423457. (b) Coefficient distribution of the optimized prognostic genes with 𝜆 = 9.423457.

4. Discussion

In this study, 43 GBM prognostic genes were identified
based on the expression levels in TCGA by univariate and
multivariate Cox regression analysis. Then, 14 out of them
were further isolated as the optimized prognostic gene signa-
ture and to construct a prognostic model (model A), which
presented a relative highly forecast ability for GBM. Model B
was constructed based on the top 14 genes among of the 43
GBM prognostic genes. Compared with model B, model A
showed a better predictive ability for GBM prognosis.

The technological advances in high-throughput sequenc-
ing and bioinformatics have enhanced the mining of the
large volume of genetic data for disease. The gene expression
profiles were widely used to predict the OS of the patients.
Computationally, survival prediction is usually considered as
a regression problem to model patients’ survival time. The
most common method is Cox regression models. Univariate
and multivariate Cox regression were usually used to con-
struct the prognostic models [20–22]. However, in this study,
this method was not effective in CGGA and GSE13041. The
Cox-PH model based on the LASSO is a semiparametric
proportional hazards model where the covariates of the mod-
els explain the relative risks of the patients, termed hazard
ratios [23]. Recently, increasing evidence has confirmed the
availability of LASSO-Cox-PH model in survival analysis
[24–26]. In this study, the prognostic model constructed by
Cox-PH analysis showed a higher predictive ability both in
training and testing sets.

The top five of the prognostic 14-gene signatures were
CPNE9, GUCA1A, INSL3, KHDRBS2, and KRT19, respec-
tively. Specifically,KRT19 andKHDRBS2were two commonly
reported genes in cancer. KRT19 is the encoding gene of
Keratin 19 and has been reported to play an important role in
the development of cancer [27]. Saha et al. have identified that
KRT19 interacts with 𝛽-catenin/RAC1 complex to regulate
the properties of breast cancer cells, and knockdown of

KRT19 promotes the proliferation, migration, invasion, and
drug resistance [28]. Tang et al. have documented that KRT19
interacts with a novel biomarker linc00974 to promote the
proliferation andmetastasis of hepatocellular carcinoma [29].
Moreover, expression of KRT19 can be elevated by miR-
200 to promote the metastasis of lung adenocarcinoma [30].
These findings indicated that KRT19 might play important
roles in regulating the properties of cancer cells. However,
studies of KRT19 are rarely reported in GBM. Considering
this, it is important to reveal the mechanism of KRT19 in
GBM.

KHDRBS2, the coding gene of KH RNA binding domain
containing, signal transduction associated 2 (KHDRBS2), is
reported to involve in several carcinogenesis. KHDRBS2 is
muted in hepatitis B virus-induced hepatocellular carcinoma
and closely related to the prognosis of HBV-induced hepato-
cellular carcinoma [31, 32]. Passon et al. have identified that
KHDRBS2 is deleted in papillary thyroid carcinoma (PTC)
and associated with the advanced PTC [33]. Moreover, in
renal cell carcinoma, KHDRBS2 is reported to form fusion
part with TFEB, which is associated with the aggressive
behavior of renal cell carcinoma [34]. These findings indi-
cated that KHDRBS2 might play an important role in the
development of carcinogenesis andmight affect the prognosis
of cancerous patients. In GBM, KHDRBS2 is significantly
downregulated in two glioma cells lines LN229 and U373 cell
lines and can be re-upregulated with different concentration
of 5-aza-2-deoxycytidine, methylation inhibitor [35]. More-
over, a previous patent has demonstrated that the KHDRBS2
serves as a biomarker for the prognosis of GBM, and
methylation status of KHDRBS2 correlates with the clinical
survival outcome of GBM patients [36]. This might indicate
that downregulation of KHDRBS2 may be involved in the
development of GBM and could serve as a risk biomarker
for GBM. In this study, KHDRBS2 was also identified to
be associated with the prognosis of GBM. Combined with
the other 13 genes, the predictive ability (AUC) could be
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Figure 5: Continued.
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Figure 5: The K-M survival analysis and ROC curves of training and testing sets based on the prognostic model A and model B. (a) K-M
curves in TCGA training set bymodel A (left) andmodel B (right). (b) K-M curves in CGGA testing set bymodel A (left) andmodel B (right).
(c) K-M curves in GSE13041 testing set bymodel A (left) andmodel B (right). (d) ROC curves based on the PIs. In the figure, LASSO-Cox-PH
genomic represents model A while Cox regression genomic model represents model B.

achieved more than 0.95. These results indicated that this
model might serve as a promising prognostic model for
GBM.

The mutation of GUCA1A, guanylyl cyclase-activating
protein 1, would lead to a severe dominantly inherited
retinal degeneration (Cone dystrophy 3)[37]. INSL3 is an
insulin-like hormone produced mainly in gonadal tissues
and may be involved in the development of urogenital tract
and female fertility. The mutation of INSL3 was related to
the cryptorchidism [38, 39]. Besides, INSL3 increased the
motility of thyroid carcinoma cells and high plasma INSL3
level was found in metastatic ovarian cancer, indicating that
INSL3 was involved in the cancer development [40, 41]. The
roles of CPNE9, GUCA1A, and INSL3 on GBM were rarely
reported at present.

In conclusion, the prognostic model which was con-
structed by Cox-PH based on the prognostic 14-gene sig-
nature presented a relatively promising predictive ability for
GBM.The 14 prognostic genes may have clinical implications
in the subclassification of GBM.
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