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AAbbssttrraacctt  More than 300 million people worldwide are chronically infected with 
hepatitis B virus (HBV). Considering the very short generation time for a 
virus, and the high error rate associated with the reverse transcription step of 
HBV replication, decades of HBV infection are probably equivalent to million 
years of human evolution. The most important selective force during the 
natural course of HBV infection appears to be the immune response. The 
development of anti-HBe antibody in hepatitis B patients usually correlates 
with reduction of HBV viremia. As a consequence, escape mutants of anti-
HBe are selected. The core promoter mutants express less HBe antigen 
(HBeAg) through transcriptional down regulation, while precore mutants 
express truncated products. We recently identified additional mutations that 
modulate HBeAg translation initiation, proteolytic cleavage, and secondary 
structure maintenance through a disulfide bond. The core promoter mutants 
have been associated with the development of fulminant hepatitis during 
acute infection and liver cancer during chronic infection. Consistent with 
their enhanced pathogenicity, core promoter mutants were found to replicate 
at up to 10-fold higher levels in transfected human hepatoma cells than the 
wild-type virus. Moreover, some core promoter mutants are impaired in 
virion secretion due to missense mutations in the envelope gene. These 
virological properties may help explain enhanced pathogenicity of core 
promoter mutants in vivo.  
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1. Serological markers of HBV infection 
Hepatitis B virus (HBV) chronically infects 300 million people worldwide, and increases their risk to develop hepatocellular 

carcinoma by a hundred fold [3]. The virus was first discovered as “Australia antigen”, later renamed HBsAg (for hepatitis B surface 
antigen), in patient blood [6]. HBeAg (hepatitis B e antigen) was identified several years later as a marker for patients at high risk 
for transmission of the disease [20]. Hepatitis B patients also contain circulating antibodies against HBcAg (hepatitis B core 
antigen), and will develop antibodies against HBeAg and HBsAg (anti-HBe and anti-HBs) at later stages of infection. Figure 1 
depicts the sequential appearance and disappearance of these five serological markers during a typical course of infection. The first 
stage is characterized by the presence of HBsAg, HBeAg, and IgM class of anti-HBc antibodies, and may last for decades. In the 
intermediate stage, patients lose HBeAg, develop anti-HBe antibodies, and often enter into clinical remission. Finally, loss of 
HBsAg and rise of the anti-HBs antibody indicate recovery from infection. With the cloning of the HBV genome, it became 
apparent that the viremia titer (number of infectious virus particles) is highest during the HBeAg phase of infection, declines by 
several logs during the anti-HBe phase, and disappears at the anti-
HBs phase (Fig. 1). 

Figure 1. Disappearance of HBeAg and rise of anti-HBe is 
associated with decline in viremia titer and replacement of wild-
type HBV by the core promoter mutants and/or precore mutants. 
However, the core promoter mutants become prevalent even before 
the rise of anti-HBe. 
 
2. Molecular structures and functions of the three viral 

antigens 
Molecular cloning and sequencing of the HBV genome led to 

the redefinition of the three HBV antigens as viral gene products 
endowed with specific functions in viral life cycle [for an in-depth 
review on the molecular biology of HBV, see ref. 13].The HBcAg 
and HBeAg are alternative translation products of the core gene, 
with HBeAg translation requiring an upstream precore region ATG 
codon (Fig. 2). 

The HBcAg (called “core protein” nowadays) assembles into 
viral nucleocapsid (core particle), which packages the pregenome (an RNA copy of viral DNA) and polymerase. Inside the core 
particle, the viral polymerase directs the synthesis of minus strand DNA from the RNA template. It then degrades the RNA 
pregenome and generates the plus strand DNA via the minus strand template. The HBsAg is the envelope protein of the virus, and 
actually comprises three co-terminal proteins (large, middle, and small) due to the presence of multiple transcripts and alternative 
translation initiation sites in the gene (Fig. 3). They contain preS1/preS2/S domains, preS2/S domains, and S domain, respectively. 
The small envelope protein, composed of S domain alone, is the most abundantly expressed. The envelope proteins interact with the 
nucleocapsid to initiate its envelopment, and the resultant virus particle (virion) is released into the bloodstream. Thus, HBcAg is not 
detectable in patient blood unless the envelope is removed. In addition to their incorporation into virus particles, the envelope 
proteins can be secreted alone as non-infectious subviral particles, which constitute the bulk of HBsAg as detectable in patient 
blood. 

Figure 2. Expression of core protein and 
HBeAg. Core protein is translated from 
pregenomic mRNA, using the ATG codon at 
1901 as initiation site. HBeAg is translated from 
the precore mRNA, using ATG at 1814. The 
primary translation product is cleaved at the N-
terminus by the signal peptidase and in the C-
terminus by a basic endopeptidase before 
secretion into the blood stream. The G1896A 
nonsense mutation in the precore region 
specifically prevents translation of HBeAg. 
 

 
The N-terminal 29 residues of the HBeAg precursor are specified by the precore region, the first 19 of which serve as the signal 

peptide to target the protein to the endoplasmic reticulum, where it is cleaved off. Further down the secretory pathway the arginine-
rich C-terminus of the molecule is removed, thus releasing mature HBeAg into blood stream (Fig. 2). Therefore, HBeAg differs 
from core protein by a longer N-terminus and shorter C-terminal tail. However, thanks to an intramolecular disulfide bond HBeAg 
has a secondary structure quite different from that of core protein [22, 35]. Only one of the two major B cell epitopes of HBeAg is 
shared with the core protein. HBeAg is not part of the virus particle, and its true function remains not fully understood. Expression 
of HBeAg is not required for virus replication in vitro [33]. Ablation of e antigen expression had no effect on the in vivo infectivity 
of the duck hepatitis B virus, but curtailed infection for the woodchuck hepatitis virus (which is more closely related to the human 
virus) [10, 11, 29]. It was proposed that expression of HBeAg during perinatal infection, the major mode of HBV transmission in 
Asia, induces immune tolerance. Another potential role of HBeAg in promoting persistent infection is to mimic core protein so as to 
buffer immune attack of the infected hepatocytes by the anti-HBc antibodies. For a recent review, see ref. [21].  
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Figure 3. Expression of three co-terminal 
envelope proteins of the HBV through three 
in-frame ATG codons and two subgenomic 
RNA species: 2.4 kb and 2.1 kb transcripts. 
The 2.4 kb RNA produces the large envelope 
protein, while the 2.1 kb RNA has 
heterogeneous 5’ ends to allow the expression 
of middle or small envelope protein. Both 
large and small envelope proteins have 
glycosylated and nonglycosylated versions, 
while the middle protein has 
monoglycosylated and doubly glycosylated 
forms. 
 
3. How does anti-HBe immunity clear HBV infection? 

Of the three antibodies against HBV, anti-HBc develops first, whereas anti-HBs antibody is detected last. The reason for this 
sequence remains unknown. The HBsAg is the most abundantly expressed protein of HBV, whereas core protein has probably the 
lowest abundance due to its location inside virus particles. Whether large excess of subviral particles, a unique feature of hepatitis B 
virus family, delays the development of anti-HBs antibody, has not been experimentally tested. Anti-HBc antibody rises soon after 
infection but is not associated with change in viremia titer. This could be related to the presence of HBeAg, the variant core protein, 
as a decoy. The anti-HBe antibody is not expected to directly neutralize viral infectivity, because virus particle does not contain 
HBeAg. The declined viremia following anti-HBe development could be attributed to loss of HBeAg, which unleashes the anti-viral 
effect of the anti-HBc immunity. Alternatively, anti-HBe antibodies could destroy infected hepatocytes by recognizing HBeAg on 
the cell surface, although this aspect remains more or less speculative. The anti-HBs antibodies are known to bind envelope proteins 
on viral surface to prevent infection. This is the basis for using HBsAg as preventive vaccine against HBV infection.  
4. Types of HBeAg variants 

The anti-viral effect of anti-HBe immunity may explain the frequent emergence of HBeAg variants in patients with anti-HBe. 
Since HBeAg expression is not essential for virus replication, the simplest way for the virus to evade the anti-HBe immunity is to 
switch off HBeAg expression altogether. The so-called “precore mutants” are the first discovered major immune escape mutants of 
HBV. These mutants are characterized by a G1896A nonsense mutation in the precore region that truncates the precore/core protein 
into a 28-aa peptide [7, 9, 32]. Other nonsense and frameshift mutations inside the precore region have also been found, although 
less frequently. Point mutations of the precore ATG codon have also been observed, which prevent initiation of translation. We 
recently found that triple mutation at the –5, -3, and –2 positions of the precore ATG codon, as occasionally found in some South 
African strains of HBV, greatly reduced translation efficiency [1]. The selective disruption of HBeAg expression through mutations 
affecting the precore region rather than the core gene can be easily understood in terms of the indispensable role of core protein for 
viral replication.  

The second common HBeAg variants are the core promoter mutants. They are characterized by point mutations in the promoter 
for both HBeAg mRNA and core protein mRNA (also called pregenomic RNA) [24]. These mutations were found by transfection 
experiments to down regulate HBeAg mRNA production, resulting in reduced protein levels [8, 28]. Core promoter mutants are the 
dominant viral species at not only the anti-HBe stage, but also the late HBeAg stage of infection (Fig. 1). It should be pointed out 
that the common core promoter mutations, A1762T/G1764A, reduced HBeAg expression by a mere 20% in a genotype A clone that 
we examined [26]. It is not clear why a moderate reduction in HBeAg expression offers survival advantage, and why the selection is 
in place well before the rise of anti-HBe. 

Considering the many steps required for the secretion of HBeAg, we have recently systemically tested other possible avenues 
whereby HBeAg expression can be regulated. A V17F missense mutation at the –3 position of the signal peptide cleavage site has 
been proposed to impair HBeAg production. However, our transfection experiments failed to find a major impact of this mutation on 
HBeAg secretion (Guarnieri et al., in preparation). On the other hand, naturally occurring mutations at the C-terminal cleavage site 
were found to reduce HBeAg secretion (Kim et al., in preparation). HBe antigenicity can also be abolished by mutation of one of the 
two cysteines implicated in the disulfide bond [22, 35]. While mutation of the core gene-derived cysteine into serine or 
phenylalanine did not interfere with viral replication or virion secretion, substitution of the precore-derived cysteine greatly 
compromised viral genome replication (Bang et al., Virology, in press). The relevant cysteine codon, when present at the 5’ end of 
pregenomic RNA, constitutes the loop of pregenome encapsidation signal. Finally, we observed an E77Q mutation in the core gene 
of many naturally occurring core promoter mutants of genotype A (but not from clones with wild-type core promoter sequence), 
which abolished recognition of both core protein and HBeAg by a rabbit polyclonal antibody (Kim et al., unpublished). This finding 
is consistent with the localization of the immunodominant epitope of the core protein within residues 77-84 [27, 5]. Whether the 
selection of this missense mutation is driven by the need to escape the anti-HBc or anti-HBe immunity is an open question. 
5. Infection with core promoter mutants is associated with more severe forms of liver diseases 

Among the HBeAg variants, the core promoter mutants deserve special attention. Many cases of fulminant hepatitis have been 
traced to infection with core promoter mutants. However, since fulminant hepatitis is a rare form of acute infection, most reports are 
descriptive. A case-controlled study is needed to rigorously test whether core promoter mutants are more likely to produce fulminant 
hepatitis than the wild-type isolates from the same region. Since HBV is considered a noncytocydal virus, the immune response 
plays a crucial role in generation of liver injury. Therefore, contribution of the genetic makeup of the host in fulminant hepatitis 
should not be overlooked. It is also necessary to point out that a core promoter mutant often contains many other genetic alterations 
within the viral genome. Thus, even when a core promoter mutant elicits fulminant hepatitis, mutations elsewhere in the viral 
genome could be responsible. In one well-documented case, transmission of a core promoter mutant resulted in outbreak of 
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fulminant hepatitis [18]. In another study, a core promoter mutant associated with fulminant hepatitis was found to induce more 
severe liver damage when experimentally inoculated into chimpanzees [23]. These observations provide compelling evidence for the 
intrinsic virulence of some core promoter mutants.  

During chronic infection, core promoter mutants have been linked to more severe forms of liver diseases including liver cancer. 
A study from South Africa revealed prevalence of core promoter mutations in 66% of HCC patients but only 11% of asymptomatic 
carriers matched in age and HBeAg / anti-HBe status [4]. Similarly, core promoter mutations were present in only 3% of Taiwanese 
inactive carriers but up to 64% of HCC patients [16]. Certainly, prospective epidemiological studies will be needed to demonstrate 
that rise of core promoter mutations precede cancer development. Another piece of evidence for the enhanced pathogenicity of core 
promoter mutants came from comparative studies of HBV genotypes. East Asian patients are primarily infected with genotype C or 
B of HBV, with a North to South transition. Interestingly, genotype C patients often suffer from more severe liver diseases, delayed 
HBeAg to anti-HBe seroconversion, and accelerated HCC development as compared with genotype B patients [reviewed in ref. 12]. 
Further analysis revealed that genotype C isolates are more likely to develop core promoter mutations than genotype B [16, 25, 30]. 
It has been recently suggested that core promoter mutations, rather than genotype C per se, are the primary risk factor for liver 
cancer [37]. Like core promoter mutations, the G1896A HBeAg-negative precore mutation develops late in the course of HBV 
infection. However, the prevalence of the precore mutation was not elevated in cancer patients relative to matched controls [37]. 
Thus, the association between core promoter mutations and liver cancer is genuine.  
6. Systems to study the biological properties of HBV variants  

Although molecular epidemiological surveys have provided circumstantial evidence for the increased pathogenicity of core 
promoter mutants, observations in patients are complicated by variables such as individual differences in susceptibility to virus 
infection or replication, the vigor of the immune response, and coexistence of viral quasispecies. Experimental approaches are 
required to validate the association between each viral genotype and certain biological / pathobiological phenotypes, and to map the 
responsible mutation within the genome. Unfortunately, due to the strict host specificity of hepatitis B virus only chimpanzees are 
susceptible to experimental infection. Moreover, chimpanzees typically do not reproduce the liver damage seen with human 
infection. In this regard, tupaias are susceptible to transient infection with HBV [34]. An alternative in vivo model is woodchuck 
hepatitis virus, which shares about 80% of sequence homology with HBV. However, it is not certain whether mutations introduced 
into the homologous position in the woodchuck hepatitis virus genome will reproduce the same biological effects. A simple system 
to study the biological (but not pathobiological) properties of HBV variants is human hepatoma cell lines such as Huh7 and HepG2. 
When transfected with certain forms of cloned HBV genomes (such as tandem dimer), these cells support one round of HBV gene 
transcription, protein translation, genome replication, and virion formation / secretion. When coupled with current techniques in the 
amplification of the full-length HBV genome from patient blood, cloning, mutagenesis, and efficient transient transfection reagents, 
this system provides a powerful tool to study the regulation of viral gene expression, genome replication, and virion assembly. 
Certainly, human hepatoma cells are different from primary human hepatocytes. In this regard, a differentiated human hepatocyte 
cell line has been established. Under appropriate conditions, this cell line can be rendered susceptible to HBV infection [14]. 
7. Core promoter mutations cumulatively enhance viral genome replication in vitro  

While a single nucleotide change or insertion/deletion is often present in precore mutants and sufficient to abolish HBeAg 
expression, the number and position of mutations in the core promoter vary. The mutations are clustered around nucleotides 1750—
1770, with the A1762T and G1764A being the most common. Therefore, the A1762T/G1764A double mutation has been chosen for 
further characterization through site-directed mutagenesis and transfection experiments. Many independent studies have been 
performed and the double mutation appears to reduce HBeAg expression (by only 20% in our hand) and double the genome 
replication capacity [8, 28, 31, 36]. From a different perspective, the HBV isolate implicated in fulminant hepatitis outbreak was 
found to replicate at least 10 times higher levels than a wild-type clone [15]. This genome is both a core promoter mutant and 
precore mutant. It contained A1762T, G1764A, C1766T, and T1768A mutations in the core promoter. Mapping experiments and 
site-directed mutagenesis revealed the 1766/1768 double mutation, rather than common mutations at 1762 and 1762, as responsible 
for the enhancement of viral replication [2].   

In collaboration with Dr. Zoulim from France, we recently searched for naturally occurring HBV genomes with high replication 
capacity. We chose HBeAg positive patients so as to avoid the effect of immune response on virus titers. Patients infected with 
genotype A of HBV, with either very high or very low viremia titers, were studied. Surprisingly, clones derived from highly viremic 
patients uniformly displayed low replication capacity, while some clones derived from low viremia patients had much higher 
replication levels [26]. Sequence analysis revealed core promoter mutations in the high replicating but not low replicating clones. 
The highest replicating clones contained T1753C/A1762T/G1764A/C1766T quadruple mutation or 1762/1764/1766 triple mutation, 
and the next highest replicating clone contained 1753/1762/1764 mutations. Site-directed mutagenesis of a wild-type clone revealed 
2-, 4-, 8-, and 8- fold enhancement of viral replication by the 1762/1764,1753/1762/1764, 1762/1764/1766, and 
1753/1762/1764/1766 mutations, respectively (Table 1) [26]. These mutations reduced HBeAg expression by 20%, 30%, 75%, and 
80%, respectively. These results provide compelling evidence that core promoter mutations enhance viral genome replication and 
reduce HBeAg expression in a cumulative manner. In this regard, the 1762/1764 mutations emerge first, followed by the less 
common mutations in the core promoter. Our findings suggest the gradual loss of HBeAg expression and enhancement of viral 
replication capacity over the course of chronic HBV infection. 
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Table 1. Cumulative effect of core promoter mutations 
on viral genome replication and HBeAg expression 
  

8.  Some core promoter mutants are 
impaired in virion secretion due to 
mutated envelope gene  
Clones 4B and 4C are derived from the same 

patient and both displayed extremely high replication 
capacity due to the 1753/1762/1764/1766 quadruple mutation in the core promoter region [26]. However, clone 4B secreted virus 
particles to culture medium very efficiently, while clone 4C was totally defective in virion secretion. It also failed to secrete HBsAg 
into culture supernatant despite its presence in cell lysate (Table 2). Another high replicating core promoter mutant, clone 3.4, was 
impaired in virion secretion and displayed low HBsAg levels in both the cell lysate and culture supernatant [26]. Extensive mapping 
experiments revealed an R169P mutation in the S gene of clone 4C as responsible for the block to the secretion of both viral and 
subviral particles [17]. For clone 3.4, a G119E mutation in the S gene impaired virion secretion. This mutation apparently also 
impaired HBsAg recognition by the monoclonal antibody used for the commercial assay, since residue 119 is in the vicinity of the 

 determinant, the dominant epitope in the S domain. Clone 4B actually contained a mutation (I110M) capable of block　 ing virion 
secretion. However, presence of an M133T mutation in this clone overrides the I110M mutation and confers efficient virion 
secretion [17]. Interestingly, the M133T mutation creates a consensus sequence for N-linked glycosylation (NST), which may 
facilitate proper protein folding or assembly through the disulfide bonds. 
Table 2. Effect of mutations in the envelope gene on secretion of viral and subviral particles as well as HBs antigenicity 

clone nt change S domain Env 
proteins 

RT domain 
polymerase 

Effect 

3.4 G510A G119E silent reduces both intra- and extra-cellular HBsAg; impairs 
virion secretion 

4B T484G I110M S466A blocks virion secretion 
4B T552C M133T silent suppresses G510A and T484G mutations; creates an N 

glycosylation site? 
4C G660C R169P silent abolishes HBsAg secretion; abolishes virion secretion 

9. Summary and Perspectives  
The development of anti-HBe immunity can be regarded as a turning point in the battle between HBV and its host. Whatever 

the mechanism, the anti-HBe antibody helps control viral replication to a much reduced level. Certainly, complete clearance of HBV 
replication would await the rise of anti-HBs antibody, which prevents spread of virus infection. The unusual observation that some 
Mediterranean patients maintain high viremia titers despite the presence of anti-HBe antibody provided impetus for studies that led 
to the discovery of the precore mutants with defective HBeAg expression [9, 32]. It is now clear that emergence of G1896A precore 
mutants is a common feature for most viral genotypes, since it improves rather than disrupts a base pair in the pregenome 
encapsidation signal [19]. However, in most patients the viremia titer declines markedly despite the emergence of such “immune 
escape mutants”. The reason for the reduced viral replication in most patients despite precore mutation remains unknown.   

Although the core promoter mutants were initially identified as HBeAg variants, they have been associated with fulminant 
hepatitis and liver cancer in vivo and found to display enhanced replication and sometimes impaired virion secretion in vitro. It is 
tempting to suggest that the enhanced replication capacity and reduced virion secretion may increase viral load in the liver, thus 
triggering liver damage either directly or indirectly through the immune response. When massive liver damage occurs during acute 
infection, fulminant hepatitis may ensue. When such damage occurs during chronic infection, it increases hepatocyte turnover, 
induces fibrosis, and enhances the chance of hepatocellular transformation and malignancy. This hypothesis is best examined in an 
in vivo model, such as HBV transgenic mice, although we don’t know whether the high replication phenotype of core promoter 
mutants will be preserved in the mouse liver. We also need to characterize more naturally occurring core promoter mutants to 
determine whether impaired virion secretion is a common feature of such mutants.  
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