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SUMMARY

Cell-cycle arrest and polarized growth are commonly used to characterize the response of yeast to pher-
omone. However, the quantitative decision-making processes underlying time-dependent changes in cell
fate remain unclear. In this study, we conducted single-cell level experiments to observe multidimensional
responses, uncovering diverse fates of yeast cells. Multiple states are revealed, along with the kinetic
switching rates and pathways among them, giving rise to a quantitative landscape of mating response.
To quantify the experimentally observed cell fates, we developed a theoretical framework based on
non-equilibrium landscape and flux theory. Additionally, we performed stochastic simulations of biochem-
ical reactions to elucidate signal transduction and cell growth. Notably, our experimental findings have
provided the first global quantitative evidence of the real-time synchronization between intracellular
signaling, physiological growth, and morphological functions. These results validate the proposed under-
lying mechanism governing the emergence of multiple cell fate states. This study introduces an emerging
mechanistic approach to understand non-equilibrium cell fate decision-making in response to pheromone.

INTRODUCTION

Facing a variety of external stimuli, cells integrate information from various sources and initiate appropriate stress responses, such as survival

or death, division or differentiation, and shape change or migration.1–7 To better understand the cellular response to external stimuli, we

chose the pheromone pathway of Saccharomyces cerevisiae, which is a classical model of the mitogen-activated protein kinase (MAPK)

signaling pathway.8–11 S. cerevisiae has two modes of reproduction, sexual mating reproduction and asexual budding reproduction.12–16

These two reproductive modes can be converted either with or without the assistance of external pheromone stimulation from a partner.17

For sexual reproduction, mating to form a diploid cell is the natural behavior of heterothallic haploid S. cerevisiae to cope with an unfavorable

environment and to improve their survival rate for generations.18–20 Pheromones, a type of sex hormone secreted by S. cerevisiae, serve as the

yeast’s mating signal, informing its partner to prepare for the beginning of cell fusion.18–24What will happen to the yeast cell if its partner does

not arrive and this normal stimulation continues? Frommicroscopic gene network (Figure 1), external signals are transmitted to Fus3 through a

series of internal proteins such as prototype heterotrimeric GTP binding protein and the MAPK kinase cascade.25,26 Then, Fus3 shuttles back

and forth across the nuclear membrane, directly or indirectly activating genes for cell-cycle arrest (Far1) and polar growth (Bni1).27–35 Thus, the

current understanding of the pheromone-induced fate of yeast cells can be qualitatively summarized as the occurrence of cell-cycle arrest and

polarized cell growth.36–38

In the context of exploring cell fate, previous studies have highlighted the significant role of cellular decision-making in determining the

ultimate outcome of cells when exposed to various external stimuli.39–48 It is important to note that while some of these studies primarily

focused on quantifying binary outcomes, our study takes a comprehensive approach by quantifying multiple aspects of cell behavior over

time. From a biological perspective, cell fate decisions can be conceptually characterized as the cascading transmission of signals along a

static causal pathway.49–53 However, the quantitative dynamics of cell fate decision-making over time during global responses at both the

mesoscopic and microscopic levels remain poorly understood. Recent advances in live cell fluorescence imaging platforms have led to

increasing focus on studying the dynamics of biological processes and the underlying molecular mechanisms in living cells.48,54–66 Neverthe-

less, disruptions in the external environment can perturb the delicate balance of cellular activities and exacerbate internal imbalances in yeast

cells, as living cells are complex non-equilibriummicrosystems.67–75 Therefore, quantifying these underlying cell fate decisions in response to

external stimuli remains a significant challenge.
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Indeed, from a microscopic perspective, the cellular decision-making of yeast in response to mating information is accomplished through

multiple feedback loops, not only including the positive feedback regulation mediated by Fus3 but also through certain negative feedback

regulation that can effectively reduce the transcriptional output of this pathway.76–81 After pheromone stimulation, there are two pathways

that can lead to polar growth of the cells (Figure 1). The first path (P1) is ‘‘Fus3 / Far1/Cdc24 / Cdc42 / Bni1’’.37,82–84 This is realized

by Fus3 entering the nucleus to activate Far1, which can escape from the nucleus to activate Bni1 indirectly. The second path (P2) is direct

activation by Fus3 of Bni1 in the cytoplasm, ‘‘Fus3/ Bni1’’.28,85 In the process of these two polar growth pathways acting alone or in concert,

the pheromone-induced self-activation of Fus3 (‘‘Fus3 / Fus3’’) facilitates the rapid transmission of the signals.86–89 Activation of the pher-

omone pathway also induces multiple negative feedback loops, such as I1 (Sst2 and Gpa1)79–81,90–92 and I2 (Msg5 and Bni1)28,77–81,93–95 in the

pathway. Only at high-dose pheromone levels is the negative feedback of the downstreamMsg5 upregulated77 and only at high concentra-

tions of Bni1 is the activity of Fus3 indirectly reversed by Bni1.9,28,85,96,97

Here, by observing themulti-dimensional response at the single-cell level, we discovered the non-equilibrium steady states, which demon-

strate the cell fates quantitatively, in response to different concentrations of pheromone. These steady states or cellular destinies include two

gene expression levels, four growth rates, and four morphological fates. We quantified these responsive fates of the yeast cells in real time

from various dimensions, including expression levels of Fus3 inside and outside of the nucleus, cell morphology, cell growth rate, and the

concentrations of pheromone stimulation. Multiple states, as well as switching kinetic rates and pathways among them, were revealed, giving

rise to a quantitative landscape of the mating response. The applications of landscape and flux theory to this biological system enabled us to

quantify the non-equilibrium dynamics of the yeast cell mating responses. Our results established a global and physical framework for under-

standing cell fate decision-making and mating dynamics. Importantly, the logical links between molecular interactions and signal transduc-

tion proposed by our landscape model were validated experimentally, further supporting the robustness of our hypothesized molecular

mechanisms governing the formation of these states. These molecular mechanisms establish the links between molecular events to cellular

characteristics across scales. They allow for the real-time synchronization of intracellular signaling with their physiological growth and

Figure 1. Schematic diagram of the mating signal pathway of the yeast cell pheromone pathway

The red horizontal line represents the inhibition of negative feedback; the green arrow represents the activation of positive feedback; the dashed arrow

represents a shift in localization; I1 and I2 represent different negative feedback adjustment pathways; and P1 and P2 represent the two polar growth

signaling pathways that are connected by light green arrows. The outline of the pathway is as follows: The binding of a-factor to its transmembrane receptor

Ste2 leads to activation of the heterotrimeric G protein complex consisting of Gpa1 (Ga), Ste4 (Gb), and Ste18 (Gg). This causes dissociation of the Gbg

dimer (Ste4/Ste18) from Ga (Gpa1). The released Gbg then recruits the PAK kinase Ste20 to the membrane and activates it. Ste20 initiates the MAPK

cascade by phosphorylating the MAPKKK Ste11. Activated Ste11 phosphorylates the MAPKK Ste7, which then phosphorylates the MAPK Fus3. The activated

Fus3 has two downstream effects: First, Fus3 directly phosphorylates and activates the formin Bni1, which nucleates actin cables for polarization. Second,

Fus3 enters the nucleus and phosphorylates Ste12, a transcription factor that induces mating-specific genes. Fus3 also phosphorylates Far1, which inhibits

the G1–S transition by binding to Cdc28-Cln2 complex. The Fus3-Far1 complex exits the nucleus and binds to Cdc24, promoting the activation of the Rho-

GTPase Cdc42. Activated Cdc42 in turn stimulates Bni1.

ll
OPEN ACCESS

2 iScience 26, 107885, October 20, 2023

iScience
Article



morphological functions, bridging microscopic mechanisms and mesoscopic functions. To further elucidate these microscopic mechanisms,

we conducted biochemical reaction simulations to demonstrate the emergence of these states. These findings shed new light on the global

signaling mechanisms that govern how yeast determines its cellular fate in response to pheromone.

RESULTS

Quantifying the cellular decision-making threshold

Studies have shown that yeast, for which mating decisions are an all-or-none switch-like response, can automatically filter out very low-dose

pheromone signals and only respond near a critical concentration or higher.92,98,99 This is due to the fact that very low doses of pheromone

induce insufficient accumulation of intracellular signals, such as Fus3, which are incapable of initiating the mating-readiness project.100–102 To

determine a pheromone concentration capable of arresting the cell cycle, we measured the fluorescence intensity of FUS3-GFP by flow cy-

tometry in yeast cells incubated for 24 h with varying pheromone concentrations (Figures 2A and S1). According to the fitted statistics, the

expression of Fus3 at a pheromone dose of 0.01–0.4 mM showed unimodal distribution of the fluorescence intensities, indicating a homoge-

neous population of cells with similar expression levels of Fus3. However, at a pheromone concentration of 0.6 mM, a bimodal distribution

representing the bistable states gradually began to appear.

In order to comprehend the correlation between gene expression levels of Fus3 and the threshold of cellular response, the fluorescence

intensity trajectories of Fus3 expression in single cells were associatedwith themicroscopy-based cellular response under various pheromone

concentrations over time. Amicrofluidic device was used to culture yeast under constant temperature conditions in real time. Usingwide-field

fluorescencemicroscopywith total internal reflection capabilities, we captured the real-time survival status and fluorescent signals of the yeast

cells (Videos S1, S2, S3, S4, S5, S6, and S7). Compared to 0.7 mMpheromone, the expression of Fus3 in the yeast cells did not fluctuate signif-

icantly at 0.2 mM, resulting in its inability to inhibit cell budding reproduction (Figure 2B). However, the expression of Fus3 at a pheromone

concentration of 0.7 mM exhibited four stages: the initial stage (0–b1), the adaptive stage (b1–b2), the stable stage (b2–b3), and the recovery

stage (b3–b4), corresponding to the biological behavior of yeast cells at different stages. Therefore, the unimodal distribution of 0.01–0.4 mM

pheromone occurredwhen only the initial cells (0–b1) were present in the flow cytometer sample. This very low dose of pheromonewas unable

to arrest the cell cycle from the beginning in yeast. If the pheromone had arrested the cell cycle of yeast cells from the beginning, but not for

more than 24 h, some yeast cells would have resumed budding at a later stage. As demonstrated by the bimodal distribution of 0.4–1.5 mM

pheromone, the sample contained yeast cells in two distinct states (b2–b3 and b3–b4).

To validate the presence of bistability at the critical pheromone concentration (0.6 mM), we analyzed the scatter data obtained from flow

cytometry, specifically the forward scatter (FSC) and side scatter (SSC). By visualizing the 3D scatterplot of FSC and SSC data (Figures 2C and

S2), we gained insights into the cell size and granularity characteristics. At pheromone concentrations ranging from 0.01 to 0.4 mM, the scat-

terplot showed a consistent cell size pattern, supporting the presence of a single-cell state. However, at concentrations between 0.6 and

1.5 mM, the scatterplot exhibited distinct clusters, indicating the coexistence of different cell states characterized by different cell sizes.

This observation directly supports our previous findings and reinforces the notion that the bistable states are a result of the presence of

deformed cells and newly budding cells.

The results measured by flow cytometry were only rough estimates of critical mating decision thresholds, whereas microscopy of indi-

vidual cells cultured in microfluidics revealed more precise cellular decisions. During culturing with varying concentrations of pheromone,

we found that the time required for yeast cells to arrest their cell cycle was directly proportional to the pheromone concentration (Fig-

ure 2D). To further quantify the relationship between pheromone concentration and the duration of cell-cycle arrest, we conducted addi-

tional analysis by studying the time distribution during which cells remained arrested after surpassing the threshold volume until they

resumed budding (Figure S3). The data clearly demonstrate that as the pheromone concentration increases, the yeast cells exhibit a longer

duration of cell-cycle arrest. This distribution plot provides direct evidence to support the notion that higher pheromone concentrations

lead to prolonged cell-cycle arrest in yeast cells. Furthermore, we observed another phenomenon: the duration of G1 cell-cycle arrest

induced by different concentrations of pheromone had a limit. Although the use of microfluidic devices ensured a constant concentration

of stimuli in the yeast cell’s external environment, the cells were still able to regulate their response to external signals through gene

expression levels, protein activity, and other mechanisms. As a result, even after being stimulated for a certain period, the yeast cells

were capable of resuming budding reproduction.

Two cell fate decision states reflected in the expressions of Fus3

To explore the yeast cell fate decision-making during the stable stage (b2–b3 in Figure 2B), the fluorescence intensity trajectories of Fus3 in-

side and outside the nucleuswere plotted over time (Figures S3A, S4, and S5). The trajectories demonstrated that after approximately 600min

of yeast cell cultivation, Fus3 entered a stable stage where its fluorescence fluctuated around a certain value. In non-equilibrium statistical

physics, the fluorescence intensity curve in this stable stage can be interpreted as a non-equilibrium steady state, whereas the rising phase

of the first 600min can be interpreted as a non-equilibrium non-steady state or the relaxation process of the response. To visualize the cell fate

of yeast at the level of gene expression, the three-dimensional statistical distribution of Fus3 (cytoplasmic and nuclear fluorescent signals) was

plotted during the non-equilibrium steady-state phases (Figures 3B and S6–S8). Clearly, the landscape of Fus3 displayed two peaks, which

correspond to the two cell fates that existed both inside and outside the nucleus.

To comprehend the logical relationship between the cell fate at expression levels of Fus3 andpheromone-influenced signaling in the trans-

duction process, we explored the biological mechanism underlying the emergence of these two Fus3 fates. We proposed that the two fates of
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Fus3 expression observed in signaling could be explained by a logical sequence involving functional depletion and feedback loops. First, func-

tional depletion means that when the amount of Fus3 in the nucleus was sufficient to arrest the cell cycle and activate the mating protein

(‘‘Outer P1/Far1 & Ste12’’), the excess Fus3 was transported out of the nucleus for polar growth (‘‘Outer P1/Inner P1’’ and ‘‘Inner P2/

Outer P2’’) (Figure 3C). Second, the feedback loop means that yeast actively regulated Fus3 expression by activating or inhibiting signals.

Figure 2. A non-equilibrium biological model for cellular responses

(A) The fluorescence intensity of FUS3-GFP wasmeasured using flow cytometry. The yeast cells were cultured in YPDmedium containing different concentrations

of pheromone for 24 h. The x axis represents the logarithmic scale (base 10) of fluorescence intensity, specifically the FL1-A parameter in flow cytometry; FL1-A is a

measurement channel in flow cytometry that captures the fluorescence emission of a specific fluorochrome or fluorescent protein; it reflects the intensity of FUS3-

GFP fluorescence. The y axis represents the normalized probability density, indicating the relative frequency of intensity values within each histogram bin.

Normalized method:
R
PðxÞdx = 1. The black curve represents the overall fluorescence intensity statistics, and the green and red curves represent the two

fitted statistical peaks. The sample size for each pheromone concentration test was 105,000 yeast cells.

(B) Fus3 gene expression was observed microscopically in response to 0.2 mM and 0.7 mM pheromone. The x axis represents the duration of exposure to the

pheromone-containing medium. The y axis represents the fluorescence intensity of FUS3-GFP; and images a1–a3 and b1–b3 depict the living states of yeast

cells as observed through a microscope at their corresponding times. For the 0.2 mM fluorescence trajectory, the specific yeast cell it belongs to has been

indicated with a red arrow.

(C) A 3D top view of the probability density distribution for dual-angle scattering data. The x axis represents the logarithmically transformed values of FSC-A,

while the y axis represents the logarithmically transformed values of SSC-A. FSC-A (Forward Scatter-Angle) refers to the intensity of light scattered at a

forward angle in flow cytometry; it reflects the size and complexity of cells or particles. SSC-A (Side Scatter-Angle) represents the intensity of light scattered

at a side angle in flow cytometry; it provides information about the internal structure and complexity of cells. The z axis represents the probability density

distribution, indicating the density of probability at each data point.

(D) The microscopically captured living state of yeast at various pheromone concentrations. The green fluorescence in cells represents the expression of FUS3-

GFP; 60 min on the x axis represents the time when yeast cells were switched to a culture medium containing pheromone.
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Figure 3. The two steady states of expression levels of Fus3

(A) Trajectories of fluorescence intensity of Fus3 at 0.7 mM inside and outside the nucleus (only a portion shown). The red vertical line at 600 min was used to

approximate the time node at which all cell fluorescence trajectories had entered a non-equilibrium steady state.

(B) Three-dimensional distribution graph of Fus3 fluorescence intensity inside and outside the nucleus of yeast cells in the stationary phase under different

pheromone concentrations. On the left is the 3D distribution of fluorescence or the 3D population landscape, in the middle is the 2D histograms or the 2D

underlying potential landscapes U in exponential scale (defined as p � e�U), which is also the population landscape; on the right is the 2D underlying

potential landscapes U (U = � ln P). The sample sizes at steady state for each pheromone concentration are as follows: 0.7 mM was equivalent to 21,335

cells, 0.8 mM to 18,408 cells, 1.0 mM to 23,041 cells, 2.0 mM to 36,886 cells, and 3.0 mM to 18,276 cells.

(C) Diagram illustrating the molecular mechanism by which yeast cells respond to pheromone. The Outer P1 represents the indirect pathway taken by Fus3 from

the cytoplasm to the nucleus in order to inhibit the cell cycle; Inner P1 represents the indirect pathway by which Fus3 in the nucleus promoted polar growth;

Outer P2 represents the direct pathway of Fus3 in the cytoplasm for polar growth; Inner P2 represents the direct pathway for the transfer of Fus3 from the

nucleus to the cytoplasm for polar growth; I1 and I2 represent the inhibitory effects of the negative feedback regulation; and the two gray dashed lines

represent the cell membrane and the nuclear membrane. ‘‘a’’ stands for a-factor pheromone. The signaling cascade follows the following logic: Upon

receiving sufficient external signals (a-factor), yeast cells activate Fus3, leading to a significant increase in phosphorylated Fus3 levels. Subsequently,

activated Fus3 translocates into the cell nucleus (Outer_P1), initially engaging the branch involved in cell cycle inhibition, namely, Fus3 / Far1. Once the cell

cycle is inhibited, activation of mating-specific proteins like Ste12 ensues. Within the nucleus, the activated Far1 not only contributes to cell-cycle arrest but

also facilitates the activation of the first polarity growth pathway (Inner_P1) upon exiting the nucleus. As the nuclear Fus3 reaches a threshold level, excess

Fus3 exits the nucleus and triggers Bni1 activation to facilitate polarized growth (Inner_P2). Concurrently, cytoplasmic Fus3 initiates the second polarity

growth pathway (Outer_P2).

(D) Schematic representation of two negative feedback models for regulating Fus3 gene expression. A and B represent, respectively, two different types of

proteins that interact with Fus3 in the signaling pathway; ‘‘a’’ stands for a-factor pheromone.

(E) Fluorescence intensity trajectories of Fus3 inside and outside the nucleus over time under non-equilibrium steady state. The red line represents the fitting by

the hiddenMarkovmodel to distinguish high- and low-expression states. Arrows indicate spontaneous state switching events between the high state (HI/HO) and

low state (LI/LO). The x axis is shared between the two panels to optimize figure clarity. The high and low states were distinguished by hiddenMarkovmodeling of

the fluorescence trajectories, with iterative optimization of model parameters to ensure global convergence. The expression fate at each time point was

determined by the relative probability and transition dynamics between the two expression states.
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Previously, experimentally validated feedback loops were categorized into two models: ‘‘A / Fus3 x A’’ focuses primarily on the pathways

involving Gpa1 and Sst2, whereas ‘‘Fus3 / B x Fus3’’ focuses primarily on the pathways involving Ste12 and Msg5 (Figures 1 and 3D).

This dynamic sequential mechanism results in two behaviors: the highly coordinated expression levels of Fus3 inside and outside the nu-

cleus, and the alternation of the two fates. As experimental evidence for our proposed molecular mechanism, we observed the existence of

two behaviors. We revealed a correlation between intra- and extra-nuclear fluorescence intensities using Pearson’s coefficient. A linear cor-

relation of approximately 0.80 between these two types of fluorescence trajectories at various pheromone concentrations indicated a strong

synergy between them (Table 1). In addition, using a hidden Markov chain model, we characterized the two cellular fates using gene expres-

sion levels by fitting the fluorescence trajectories into high states (HI;HO) and low states (LI;LO) (Figure 3E). The fitted red line in Figure 3E

demonstrates that the two trajectory fates (high and low states) inside and outside the nucleus could switch to each other, supporting our

logical interpretation of the state switching above.

Uncovering the physical characteristics of cellular decision-making landscapes

To uncover the physical characteristics of the underlying bistable landscapes, we employed a hidden Markov chain model to compute the

transition probability, transition rate, and residence time between the two gene expression fates. In the non-equilibrium steady state, the

steady-state probability can be used to quantify the population landscape P or the potential landscape U68,103–105, where U is defined as

the negative logarithm of the steady-state distribution P of gene expression,U = � ln P. As can be seen, the population and potential land-

scapes (P and U) at various pheromone concentrations have two basins of attractions that are separated by barriers (Figures 3B and S6–S8).

The transition probabilities and residence times of the two expressions of FUS3, high state (HI;HO) and low state (LI;LO), can be determined

through the statistical analysis of the experimental data fitted by the hiddenMarkov chain model. The transition rate can be derived from the

transition probability, whereas the barrier height is determined by fitting two peaks into the landscape. The barrier height is determined by

the depth of the basin on the potential energy landscape (U = � ln P) obtained directly from the statistical histogram (P) of the fluorescence

signals of the gene expressions (Table 2).

At pheromone concentrations between 0.7 and 0.8 mM, the barrier heights of the low state (LI;LO) were less than those of high state (HI;HO),

whereas the opposite was true between 1.0 and 3.0 mM (Figure 4A). In physics, the transition between steady states becomes harder as the

barrier height increases, resulting in a longer residence time.103,104 Based on the statistical analysis of experimental data, it was observed that

the distribution of barrier heights between high and low states at different pheromone concentrations was consistent with the distribution of

their corresponding residence times (Figures 4A and 4B). The correlation coefficient between barrier heights and residence times for all con-

centrations was 0.8806, indicating that they were significantly positively correlated (Figure 4C). This substantiates the statistical non-equilib-

rium physics claims regarding barriers and residence time. From a statistical physics perspective, the quantified barrier heights directly corre-

late with the relative stability and kinetic transition rates between the two expression states, providing a physically grounded characterization

of the multi-stability.

To explore the biological implications of the landscape physical characteristics, we calculated the distribution of their ratios for two gene

expression fates as a function of pheromone concentration. The opposite trend of the transfer rate ratio (kHL/kLH) relative to the barrier height

ratio or the residence time ratio (high/low, H/L) in response to changes in pheromone concentration indicated that transition rates were lower

the deeper the attraction basin (Figure 4D). To better comprehend this relationship, the potential landscape topographies under varying

pheromone concentrations were illustrated (Figure 4E). Compared to a pheromone concentration of 0.7 mM, 0.8 mM had a deeper attraction

basin for its high state than for its low state, making the transition from low to high states easier than that from high to low states. The yeast’s

cellular decision-making at the level of gene expression was consequently more likely to remain in the high state than in the low state. At

1.0–3.0 mM, the attraction basin of the low state was deeper than that of the high state, leading to the yeast’s preference to remain in the

low state. In general, as pheromone doses increase from low to high, the basin of the high-potential state gradually becomes shallower,

whereas the basin of the low potential state gradually becomes deeper. The increased height of the low-state potential barrier is due to

the negative feedback regulation that is able to inhibit the expression of Fus3, resulting in a greater number of yeast cells in a low-expression

state. This supports the biological notion that high-dose pheromone elicits a stronger negative feedback response compared to the low-dose

pheromone. In summary, the opposite trend of barrier heights and residence times of the high and low states validated that the experimen-

tally observedmulti-stability originates from the inherent interactions of the signaling network, giving rise to the emergence of the underlying

non-equilibrium landscape, which encodes the robustness and inter-transition dynamics of each expression state.

Quantifying the cellular deformation rate in polar growth

During the time-dependent deformation of the cell, we observed that not only did the top, representing the region along the cell’s elongation

axis or polarized growth direction, exhibit growth, but other parts of the cell also underwent slight widening as the yeast stretched forward

Table 1. Correlation coefficients of fluorescence trajectories

Pheromone doses (mM) 0.7 0.8 1.0 2.0 3.0

Correlation (inside & outside) 0.8321 0.8647 0.8446 0.7752 0.8879

The ‘‘Pearson correlation coefficient’’ between the intranuclear and extranuclear fluorescence intensity trajectories at various pheromone concentrations.
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(Videos S1, S2, S3, S4, S5, S6, and S7). To accurately measure the spatiotemporal change rate of the cell morphology, we used a circular filling

pattern to segment the yeast cells (Figure 5A). To quantify the various cell deformations that occur during cell growth, we considered a value

(Hn) comparable to the harmonic mean to characterize the cell morphology. Hn equals the sum of the reciprocal radii of the filled circles multi-

plied by the number of filled circles, i.e.,Hn = n
�

1
R1

+ 1
R2

+ ::: + 1
Rn

�
. The significant advantage of this parameter is that it is particularly sensitive

to small morphological changes at various locations of the cell, allowing differential non-directional normal growth and directional polar

growth (i.e., lateral growth and longitudinal growth) to be characterized in real time.

From the real-time trajectory of the changes in the cell morphology, as measured by the Hn of the cell-filled circles, we found that there

were roughly four types of cell shape changes. According to the definition of Hn describing the cell morphology, the rising phase (t1 � t2) of

the curve primarily represents the change in cell length, whereas the falling phase (t3 � t4) primarily represents the change in cell width. At the

(t2 � t3) and (t4 � t5) phases, the slopes of the two curves are close to zero, indicating that cell morphology changes were minimal or nonex-

istent (Figure 5B). We collected the statistics on the distribution of the cell growth rates or deformation rates (Figures 5C and S9). When the

positive and negative values were differentiated, it was evident that the cell growth rate could be divided into four states: the lateral-fast rate,

the longitudinal-fast rate, the lateral-slow rate, and the longitudinal-slow rate. Among them, L andW represented the presence and absence

of direction in cell deformation, or the length and width, respectively. F and S represent the magnitude of the ‘‘driving force’’ in cell defor-

mation, or the fast and slow growth rates, respectively.

To explore the molecular mechanisms underlying these four growth rates, we took both the direction (L and W) and force (F and S) of cell

growth into account. Many studies have shown that Fus3 and Far1, which determine the direction of cell growth along its long axis, are essen-

tial genes for bud formation during polar cell growth, and their absence results in mis-localization of shmoo projections.82,83,85,106 Thus, the

indirect pathway (P1: ‘‘Fus3/ Far1/Cdc24/ Cdc42/ Bni1’’), which is more directional than the direct pathway (P2: ‘‘Fus3/ Bni1’’), is the

leader signaling pathway for longitudinal cell growth. Given that the P1 pathway requires the sequential activation of multiple proteins and

that proteins such as Fus3, Far1, and Cdc24 must be transported into or out of the nucleus, we proposed that the P2 pathway had a quicker

response speed to stimulate cell growth than did the P1 pathway (Figure 5D). Consequently, the temporal delay in the actions of these two

pathways resulted in P2-dominated undirected growth (model W: P2), followed by the two growth pathways co-stimulating the cell’s polar

growth (model L: P1 +P2) once the P1 pathway was fully functional. In addition, we proposed that F and S corresponded to the high and

low states in Fus3, respectively. When Fus3 was at a high state (HI;HO), there was enough Fus3 to stimulate growth (model F). Following entry

into the low state (LI;LO), only a relatively small amount of Fus3 was available for polar growth (model S).

To confirm that there was indeed a time lag in multi-level protein signaling, we constructed a dual-fluorescence system (CDC24-

GFP_FUS3-RFP strain), in which CDC24 was linked to the green fluorescent protein (S65T) and FUS3 was linked to the red fluorescent protein

(yomCherry) (Figure 5E, Videos S8, and S9). Taking into account the order of signal transduction in yeast in response to pheromone, the

expression levels of Fus3 and Cdc24 would achieve the highest degree of correlation or match after a certain time lag. We employed

cross-correlation analysis to compare the lag times of various activation sequences between different combinations of fluorescence trajec-

tories: intranuclear Fus3 and intranuclear Cdc24, intranuclear Fus3 and extranuclear Cdc24, extranuclear Fus3 and intranuclear Cdc24, and

extranuclear Fus3 and extranuclear Cdc24 (Figure 5F). The concept of cross-correlation allows us to examine how the sequence of fluctuations

in Fus3 intensity aligns with Cdc24 intensity over time, indicating potential lag times or delays in their activation sequences. The figure shows

that the lag timebetween Fus3 in the nucleus andCdc24 (red curve) reaching amaximum correlation was approximately 120min, while the lag

time between Fus3 outside the nucleus and Cdc24 (blue curve) reaching a maximum correlation was approximately 300 min. The fact that the

lag time of Fus3_in and Cdc24_in/out (red curve) in the figure was shorter than that of Fus3_out and Cdc24_in/out (blue curve) confirms

the existence of a temporal delay effect in multi-level signaling and provides direct evidence for the temporal distinction in the functioning

of the two growth pathways.

Table 2. Physical characterization of gene expression landscapes

Pheromone doses (mM) 0.7 0.8 1.0 2.0 3.0

Transition probability P =

�
PLL PLH

PHL PHH

�
PLL 0.69 0.74 0.5369 0.5502 0.6143

PLH 0.31 0.26 0.4631 0.4498 0.3857

PHL 0.3711 0.4251 0.5053 0.445 0.3686

PHH 0.6289 0.6289 0.6289 0.6289 0.628

Transition rate kLH 0.0623 0.0717 0.1803 0.112 0.0687

kHL 0.052 0.0439 0.1652 0.1132 0.0718

Residence time (min) Low (LI, LO) 357.43 270 691.5 947.98 750.74

High (HI, HO) 498.17 941.84 539.63 301.44 212.3

Barrier height Low (LI, LO) 0.1131 0.0997 0.1323 0.2175 0.1716

High (HI, HO) 0.1371 0.1657 0.1125 0.0285 0.0451

The transition probability, transition rate, residence time, and barrier height between the high and low states at various pheromone concentrations.
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By taking the growth rate absolute value, we divided the four states into fast growth rate and slow growth rate categories (Figures 5G and

S10). To confirm that the two forces (F and S) corresponded to the high and low states of Fus3, respectively, the cell growth rate states and

Fus3 gene expression states weremeasured as the cell polar growth changed over time. According to the proportion of statistics in the figure,

the high (expression) state was primarily contained within the fast (growth) state, whereas the low (expression) state was primarily contained

within the slow (growth) state (Figure 5H and Table 3). Consequently, this also provided quantitative experimental evidence for the cellular

growth rate molecular mechanism.

Quantifying the four morphological fates and the phase transition trend

The morphological trajectory of the cell shape over time as described by Hn fluctuated continuously within a given range (Figure 5B). Using a

hidden Markov chain model to fit the time-varying trajectories of cell morphology, yeast cells at different pheromone concentrations ex-

hibited four distinct morphological fates. These four morphological fates corresponded statistically to the four peaks in the distribution of

all cell shapes (F1–F4) (Figures 6A and S11). Due to the fact that Hn is a parameter that is extremely sensitive to changes in the size and number

of filled circles within the cell, minute variations in the length or width of a portion of the cell observed through a microscope can result in the

cell being classified as having a differentmorphological fate (Figure 6B).Weproposed, on the basis that cell morphology is an accumulation in

Figure 4. The physical characteristics of cellular decision-making landscapes

(A) Trends in the statistical distribution of barrier heights for high and low states at varying pheromone concentrations.

(B) Trends in the statistical distribution of residence time for high and low states at varying pheromone concentrations. The residence time represents the average

duration the system stays in a particular state among all trajectories simulated using Markov chain modeling. The residence time is measured in minutes.

(C) Correlation analysis between residence time and barrier height. The red circles are the data points; the blue line is the fitted line of the data.

(D) The ratio of the physical characteristics of high and low states at various concentrations. The kLH is the transition rate from a low state to a high state; kHL is the

transition rate from a high state to a low state.

(E) Simple schematic diagram of the potential landscape topography under different pheromone dosages. L stands for the low state, H stands for the high state;

kLH and kHL are the transition rates between the low state and the high state, respectively; hL and hH represent the respective barrier heights of the low and high

states, respectively.
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Figure 5. Quantification of the deformation of yeast cells during polar growth

(A) A simple diagram of cell shapes with circle filling patterns. The image on the left depicts a yeast cell cultured for 1,020 min in a medium containing

0.7 mM pheromone; the red line indicates the contour of the cell; the image on the right is the filling model for the image on the left; R1 � R4 are the radii

of the circle.

(B) Real-time trajectory of the cell morphology (Hn) at 0.7 mM under non-equilibrium steady state. F1–F4 indicate the four distinct cell morphological fates. The

horizontal dashed linesmark the approximate centers of the fates. Arrows highlight spontaneous state switching events between fates F3 to F2 (green) and F2 to F4
(red). The inset shows a magnified view of the trajectory over time points t1–t5. Cell morphologies during the initial non-equilibrium non-steady-state period

before 600 min are omitted.

(C) The distribution statistics of the cell growth rate at 0.7 mM. The red dashed line serves as the dividing line between positive and negative data. WF and LS

represent the lateral-fast and lateral-slow rates, respectively; LF and WS represent the longitudinal-fast and longitudinal-slow rates, respectively.

(D) Schematic illustration of the molecular mechanism underlying the formation of the four growth rates. Model W indicates that the polar growth pathway P1 is

not yet connected, so only the P2 pathway operates; Model L depicts the cooperative operation of polar growth pathways P1 and P2. Models F and S describe the

polar growth patterns of the two growth forces, which correspond to the high and low states of Fus3, respectively.

(E) Dual fluorescent protein system in yeast. The three images on the left, from top to bottom, depict bright field cells, cells excited at 488 nm, and cells excited at

561 nm. The white circle within the cell represents the nucleus boundary; S65T and yomCherry are the fluorescent proteins that were linked to CDC24 and FUS3,

respectively.
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growth, that the molecular mechanisms underlying the formation of the four morphological fates were dependent on the different capacities

of cells to grow laterally and longitudinally. To test the claim that four morphological fates were formed, the synergistic effect of growth ability

in both directions was calculated. The lateral growth capacity of cells was expressed by the rate of change of the average radius of the filled

circle within the cell, whereas the longitudinal growth capacity was expressed by the rate of change of the sum of the radii of the filled circle.

The existence of four distinct states in the cooperative distribution of the two data, as depicted in the figure, strongly suggested that the ca-

pacity to grow in different directions is a crucial factor in determining cell morphology (Figures 6C and S12).

Notably, a phase transition trend from four states to a dominant state in the cell morphology distribution between 0.7 and 3.0 mM was

revealed (Figure 6A). Moreover, the morphology of the cells observed under a microscope at a concentration of 3.0 mM was significantly

smaller than that observed at other concentrations (Figure 6B). By measuring the average cell length, it is possible to conclude that a

high-dose pheromone concentration (3.0 mM) disrupted the monotonic linear trend observed at low doses (0.7–2.0 mM) (Figures 6D and

Table 4). The microscopic explanation of this phase transition trend is the enhancement of negative feedback regulation under high doses

(I2), suppressing the second polar growth pathway (P2) (Figures 1 and 3C). Under high pheromone concentration (3.0 mM), there was a signif-

icant accumulation in state F2, while the morphologies of the other three cell fates (F1, F3, and F4) decreased abruptly. This change is likely

attributed to impaired P2 function (Figures 6A and S11).

To explain the underlying physical mechanism of the observed phase transition trend, where the four morphological fates undergo a tran-

sition toward a dominant fate in state F2, we employed net flux analysis to quantify the degree of nonequilibrium in the cellular morphological

system (Tables 5, 6, 7, 8, and 9). From the cell morphological trajectories analyzed by the hidden Markov chain model, we determined the

transition probability between various cell morphologies. The sum of the three net fluxes, which was obtained by decomposing the proba-

bility loops in the transition matrix, was used to represent the degree of the detailed balance collapsed in the cellular morphological system

(Figure 6E). As the concentration of pheromone increased, the intensity of the net flux decreased first and then increased, exhibiting a sig-

nificant phase transition trend at 3.0 mM. Since the net flux is rotational due to its steady-state nature under local probability conservation, it

tends to destabilize the point attractors. Therefore, the significant changes in net flux can lead to the instability of the cell attractor states,

giving rise to possible phase transition trend. The quantification of this non-equilibrium dynamic explains the physical mechanism by which

the phase transition trend in amorphological systemwas caused by the enhanced capability of the yeast cells negative feedback regulation at

high doses.

Simulations for the signal transduction and the cell growth

Based on the functional and quantitative regulation obtained from databases, such as KEGG (Kyoto Encyclopedia of Genes and Genomes,

https://www.kegg.jp/), SGD (the Saccharomyces Genome Database, https://www.yeastgenome.org/), and EVEX (http://evexdb.org/), we

developed a simplified model of signal transduction in the context of global gene regulatory networks. This model simulated a series of

biochemical reactions with the Gillespie algorithm107–109 (Tables S1–S3). By simulating the biochemical reactions associated with the pher-

omone pathway in yeast cells, the expression levels of Fus3 and the distribution of cell morphology were determined. Fus3 gene expression

obtained from biochemical reaction results displayed a two-state distribution inside and outside of the nucleus, validating our understanding

of the molecular mechanism underlying the bimodal fluorescence state within the context of the global response (Figure 6G). Meanwhile, the

Bni1 producedby the reactions simulated the dynamic process of cell growth. Althoughboth the growth pathways (P1 and P2) were involved in

the process of cellular length and width growth, the relative weights of the pathways that grew in the two directions were significantly

Figure 5. Continued

(F) Cross-correlation of two levels of gene expression at distinct positions. Gene_in and gene_out represent the gene expression levels inside and outside the

nucleus, respectively. The red curve represents the cross-correlation between Fus3_in and Cdc24_in/out, while the blue curve corresponds to the cross-

correlation between Fus3_out and Cdc24_in/out.

(G) Statistical graph of the distribution statistics of the absolute value of the cell growth rate at 0.7 mM.

(H) The proportion of high-state and low-state data present in high and low states at various pheromone concentrations.

Table 3. The proportional distribution of high state (HI;HO) and low state (LI;LO) in two growth rates

Pheromone doses (mM)

FH

ðFH+FLÞ
FL

ðFH+FLÞ ðFH +FLÞ
SH

ðSH+SLÞ
SL

ðSH+SLÞ ðSH + SLÞ
0.7 0.6847 0.3153 13888 0.1433 0.8567 7447

0.8 0.8500 0.1500 5027 0.2879 0.7121 13381

1.0 0.6782 0.3218 1157 0.2872 0.7128 21884

2.0 0.7266 0.2734 2249 0.1353 0.8647 34637

3.0 0.9530 0.0470 1679 0.0244 0.9756 16597

‘‘FH’’ denotes the ‘‘High state’’ in the ‘‘Fast growth rate’’; ‘‘FL’’ denotes the ‘‘Low state’’ in the ‘‘Fast growth rate’’; ‘‘SH’’ denotes the ‘‘High state’’ in the ‘‘Slow

growth rate’’; ‘‘SL’’ denotes the ‘‘Low state’’ in the ‘‘Slow growth rate’’; ‘‘FH+ FL’’ and ‘‘SH+ SL’’ represent fast and slow growth rate data volumes.
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different. Therefore, we simply defined Bni1_in produced by the P1 pathway that plays a major role as the longitudinal growth and Bni1_out

produced by the P2 pathway as the lateral growth.

In this simulation, a denotes the longitudinal length of the yeast cell, while b denotes the lateral length of the yeast cell (Figure 6F). Each

iteration increased the longitudinal and lateral lengths of the yeast cells by Da and Db, respectively. Da is proportional to ‘‘PBni1 in’’ and

inversely proportional to b; Db is proportional to ‘‘PBni1 out’’ and inversely proportional to a, that is, Da = raðPBni1 inÞ
b , Db = rbðPBni1 outÞ

a .

The value N corresponds to the rounding operation of a
b, i.e.,

�
a
b

�
, and c represents the amount remaining after rounding. The Hn is

ðN + 1ÞðN =b + 1 =cÞ. As predictedby the simulation of the cell growth process, the distribution of cell morphology revealed four distinct fates,

which corresponded to the experimental observations (Figure 6H).

Figure 6. The interpretation of the different cell morphological fates

(A) Statistical distribution of the cell morphology at 0.7 and 3.0 mM. The red dashed lines roughly correspond to the boundary between distinct cell morphological

fates; F1–F4 represent the four cell morphological fates.

(B) Photographs taken with a fluorescence microscope of cells exhibiting four distinct morphological fates in response to varying pheromone concentrations.

(C) The synergistic effect of both lateral and longitudinal cell growth capabilities at a pheromone concentration of 0.7 mM. The x axis represents the ability of the

cells to grow longitudinally, as indicated by the rate of change in the sum of the radii of the filled circles within the cells, i.e., ðR1+R2+.+RnÞ0; the y axis represents

the ability of cells to grow laterally, as indicated by the rate of change in the average radius of the filled circles within the cells, i.e.,
�
R1+R2+.+Rn

n

	0
.

(D) Changes in the average cell length as a function of pheromone concentration.

(E) The sum of the net fluxes among the four cell morphologies at various pheromone concentrations.

(F) The scheme for the simulated cell growth; a represents the length of the cell; Da is the increased length of the cell; b represents the width of the cell; and Db is

the increased width of the cell; the scheme of the Hn calculation; c is the remainder of the cell length divided by b; N represents the number of b.

(G) Distribution graph of the negative log of the value of the Fus3 fluorescence intensity inside and outside the nucleus of yeast cells in the stationary phase using

simulation.

(H) The distribution of the cell morphology (Hn) using simulation.

Table 4. The average length of yeast cells at different pheromone doses

Pheromone doses (mM) 0.7 0.8 1.0 2.0 3.0

Average length 31.98 32.27 32.99 33.99 25.01
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DISCUSSION

In this study, we quantitatively uncovered and interpreted the yeast cell fate decision-making in response to pheromone using biological and

physical methods. Using flow cytometry, we examined the induction of yeast cells by different concentrations of pheromone to determine the

critical threshold for eliciting a cellular response. The purpose of the fitting curve in Figure 2A was to estimate the pheromone dose by deter-

mining at what concentration the expression of Fus3 exhibited double peaks. Continuous microscopy observations of FUS3-GFP strain yeast

cells provided us with a microscopic and mesoscopic view of how the cells responded to pheromone. The four stages of Fus3 expression

Table 5. The quantitative parameters in the net flux theory

Pheromone dose (mM) 0.7

Number of transitions

Nð0:7mMÞ =

0
BB@

13536 373 0 254
229 0 0 140
232 0 274 2834
64 0 3137 57

1
CCA

Transition probability

Mð0:7mMÞ =

0
BB@

0:9557 0:0263 0 0:0179
0:6206 0 0 0:3794
0:0695 0 0:0820 0:8485
0:0196 0 0:9629 0:0175

1
CCA

Probability of the four states Pð0:7mMÞ = ð0:6079 0:0160 0:1925 0:1835Þ
Asymmetric matrix

Cð0:7mMÞ =

0
BB@

0 0:0030 �0:0067 0:0036
�0:0030 0 0 0:0030
0:0067 0 0 �0:0067
�0:0036 �0:0030 0:0067 0

1
CCA

Symmetric matrix

Dð0:7mMÞ =

0
BB@

0:5810 0:0130 0:0067 0:0073
0:0130 0 0 0:0030
0:0067 0 0:0158 0:1700
0:0073 0:0030 0:1700 0:0032

1
CCA

Net fluxes value

Jð0:7mMÞ =

0
@ J1ðstate1; state2; state3; state1Þ = 0:0061

J2ðstate1; state4; state3; state1Þ = 0:0073
J3ðstate2; state4; state3; state2Þ = 0:0061

1
A

Following the master equation, parameters of net flux are determined by fitting the real-time trajectories of cell morphology at 0.7 mM to hidden Markov chain

models.

Related to Figure 6E.

Table 6. The quantitative parameters in the net flux theory

Pheromone dose (mM) 0.8

Number of transitions

Nð0:8mMÞ =

0
BB@

11957 328 0 140
218 4427 0 101
52 34 584 68
131 6 167 6

1
CCA

Transition probability

Mð0:8mMÞ =

0
BB@

0:9623 0:0264 0 0:0113
0:0459 0:9328 0 0:0213
0:0705 0:0461 0:7913 0:0921
0:4226 0:0194 0:5387 0:0194

1
CCA

Probability of the four states Pð0:8mMÞ = ð0:6447 0:2905 0:0467 0:0181Þ
Asymmetric matrix

Cð0:8mMÞ =

0
BB@

0 0:0018 �0:0016 �0:0002
�0:0018 0 �0:0011 0:0029
0:0016 0:0011 0 �0:0027
0:0002 �0:0029 0:0027 0

1
CCA

Symmetric matrix

Dð0:8mMÞ =

0
BB@

0:6204 0:0152 0:0016 0:0075
0:0152 0:2709 0:0011 0:0033
0:0016 0:0011 0:0370 0:0070
0:0075 0:0033 0:0070 0:0004

1
CCA

Net fluxes value

Jð0:8mMÞ =

0
@ J1ðstate1; state2; state3; state1Þ = 0:0037

J2ðstate1; state4; state3; state1Þ = � 0:0004
J3ðstate2; state4; state3; state2Þ = 0:0058

1
A

Following the master equation, parameters of net flux are determined by fitting the real-time trajectories of cell morphology at 0.8 mM to hidden Markov chain

models.

Related to Figure 6E.
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levels at a 0.7 mMpheromone concentration accurately depicted themesoscopic cell behavior of cell-cycle arrest andpolar growth (Figure 2B).

Among them, the Fus3 expression levels in the stable stage (b2–b3) fluctuate around a fixed value, which was considered a non-equilibrium

steady-state period. As our subsequent analysis centered on the non-equilibrium steady-state phase, we chose five pheromone concentra-

tions as stimuli that allowed the yeast cells to maintain a stable-state phase for a sufficient amount of time.

To explore the fate of Fus3 gene expression in a non-equilibrium steady state, we chose data that, after 600 min, brought all the cell fluo-

rescence trajectories into stable-state phase (Figure 3A). The two fates of Fus3 that resulted from cellular decision-making were separated by

the Markov fitting of the trajectories (Figure 3B). The criterion for data fitting is the probability that the fluorescence intensity at a particular

moment in the trajectory belonged to a high state (HI; HO) or a low state (LI; LO) multiplied by their respective transition probabilities

Table 7. The quantitative parameters in the net flux theory

Pheromone dose (mM) 1.0

Number of transitions

Nð1:0mMÞ =

0
BB@

61 0 10956 41
0 0 24 0

10989 0 338 0
11 24 0 380

1
CCA

Transition probability

Mð1:0mMÞ =

0
BB@

0:0055 0 0:9908 0:0037
0 0 1:0000 0

0:9702 0 0:0298 0
0:0265 0:0578 0 0:9157

1
CCA

Probability of the four states Pð1:0mMÞ = ð0:4830 0:0012 0:4945 0:0212Þ
Asymmetric matrix

Cð1:0mMÞ = 1:0e � 03 �

0
BB@

0 0 �0:6140 0:6140
0 0 0:6140 �0:6140

0:6140 �0:6140 0 0
�0:6140 0:6140 0 0

1
CCA

Symmetric matrix

Dð1:0mMÞ =

0
BB@

0:0027 0 0:4792 0:0012
0 0 0:0006 0:0006

0:4792 0:0006 0:0148 0
0:0012 0:0006 0 0:0194

1
CCA

Net fluxes value

Jð1:0mMÞ =

0
@ J1ðstate1; state2; state3; state1Þ = 0:0000

J2ðstate1; state4; state3; state1Þ = � 0:0012
J3ðstate2; state4; state3; state2Þ = � 0:0012

1
A

Following the master equation, parameters of net flux are determined by fitting the real-time trajectories of cell morphology at 1.0 mM to hidden Markov chain

models.

Related to Figure 6E.

Table 8. The quantitative parameters in the net flux theory

Pheromone dose (mM) 2.0

Number of transitions

Nð2:0mMÞ =

0
BB@

67 0 0 1
2 96 59 2212
0 7 31075 474
0 2284 382 1

1
CCA

Transition probability

Mð2:0mMÞ =

0
BB@

0:9853 0 0 0:0147
0:0008 0:0405 0:0249 0:9337

0 0:0002 0:9848 0:0150
0 0:8564 0:1432 0:0004

1
CCA

Probability of the four states Pð2:0mMÞ = ð0:0040 0:0699 0:8480 0:0781Þ
Asymmetric matrix

Cð2:0mMÞ = 1:0e � 03 �

0
BB@

0 �0:0295 0 0:0295
0:0295 0 0:7763 �0:8058

0 �0:7763 0 0:7763
�0:0295 0:8058 �0:7763 0

1
CCA

Symmetric matrix

Dð2:0mMÞ =

0
BB@

0:0040 0:0000 0 0:0000
0:0000 0:0028 0:0010 0:0661

0 0:0010 0:8351 0:0120
0:0000 0:0661 0:0120 0:0000

1
CCA

Net fluxes value

Jð2:0mMÞ =

0
@ J1ðstate1; state2; state3; state1Þ = � 0:0001

J2ðstate1; state4; state3; state1Þ = � 0:0001
J3ðstate2; state4; state3; state2Þ = � 0:0016

1
A

Following the master equation, parameters of net flux are determined by fitting the real-time trajectories of cell morphology at 2.0 mM to hidden Markov chain

models.

Related to Figure 6E.
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(Figure 3E). Consequently, there was a chance that the value of the fluorescence intensity in the low state was greater than the value of the

fluorescence intensity in the high state. We proposed that the two fates of Fus3 expressions observed in signaling were explained by a logical

sequence of point-to-point feedback regulation between proteins. Notably, even though the protein-to-protein feedback regulation

described previously had been validated by previous biological experiments,77–81,86–95 our claims focused primarily on establishing a dynam-

ical logical connection between these isolated regulatory processes from a global perspective. For the purpose of validating this dynamic

molecular mechanism, one may wonder why the (LI;HO) and (HI;LO) states did not appear in this scheme. We know from experimental evi-

dence that the absence of the (LI;HO) and (HI;LO) states was due to the strong correlation between intra- and extra-nuclear fluorescence in-

tensities. If the four fates emerge on the landscape of intra- and extra-nuclear fluorescence intensities of Fus3, the Pearson correlation coef-

ficient between these two types of trajectories would be zero.110 Moreover, the feedback model of forward activation and negative inhibition

favored the formation of two states from a physical standpoint (Figure 3D).

Between steady states, the cellular decision-making is primarily reflected by the transition rate, transition probability, residence time, and

potential barrier height. Due to the relative nature of the high and low states at each pheromone concentration, their physical characteristics

can be compared directly, but not at different concentrations. To compare the relative significance of these physical characteristics at different

concentrations, a similar normalized approach (high/low) was used. At 0.7–0.8 mM, a slight increase in barrier height significantly lengthened

the residence time of the high state. At 1.0–3.0 mM, the residence time also decreased gradually as the barrier height decreased (Figure 4D). In

our biological system, the positive correlation statement regarding barrier height and residence time was confirmed (Figure 4C). Certainly,

such physical characteristics that quantify cellular decision-making have significant biological implications for the study of yeast response

behavior. Positive feedback regulation in the gene network (‘‘Pheromone/ Fus3’’ and ‘‘Fus3/ Fus3’’), for example, increased the potential

barrier height on the gene expression landscape, whereas negative feedback regulation decreased it (I1, I2) (Figures 1 and 3C). The residence

time at various pheromone concentrations revealed which gene expression fate yeast cells preferred in response to the pheromone.

Some studies believe that the establishment of polarity helps organisms to survive better in nature.111,112 Due to the inability of yeast’s

chemotactic response to swim as that of E. coli, its polar growth could only grow in the direction of a high concentration of pheromone,

achieving mutual contact and fusion between heterothallic yeasts 2,4,25. To quantify the mesoscopic behavior of yeast cells in polar growth,

which grew and stopped intermittently, the yeast cells were characterized as a combination of filled circles. The white edge of the yeast cell

image was the cell wall (Figure 5A). Therefore, the cell-filling circles were based on the outermost edge of the cell wall as the cell boundary.

Rather than using the cell area, the total length, or the arithmetic mean of the length, we chose to describe the cell morphology using the

reciprocal of the radius in the cell-filled circle multiplied by the number of filled circles, i.e., Hn = n
�

1
R1

+ 1
R2

+ ::: + 1
Rn

�
. This method has the

following advantages: first, it could reflect the deformation of different parts of the cell; and second, Hn is a statistic that can reflect both

the process and outcome of the cell polarity growth. It was important to note that when a cell grew laterally, its length also increased, so

the terms lateral growth and longitudinal growth were relative rather than absolute descriptions of length and width.

The cell growth rate primarily characterized the process of cell polar growth, whereas the cell morphology primarily characterized the

outcome. Specifically, the cell growth rate is actually the cell deformation rate. To verify themolecular mechanism of the growth rate for direc-

tional (model L) and non-directional (model W) growth, we constructed a dual-fluorescence system (CDC24-GFP_FUS3-RFP) to demonstrate

Table 9. The quantitative parameters in the net flux theory

Pheromone dose (mM) 3.0

Number of transitions

Nð3:0mMÞ =

0
BB@

0 0 0 870
0 13609 48 296

861 286 0 471
9 1 1628 48

1
CCA

Transition probability

Mð3:0mMÞ =

0
BB@

0 0 0 1:0000
0 0:9753 0:0034 0:0212

0:5321 0:1768 0 0:2911
0:0053 0:0006 0:9656 0:0285

1
CCA

Probability of the four states Pð3:0mMÞ = ð0:0552 0:7385 0:1027 0:1037Þ
Asymmetric matrix

Cð3:0mMÞ =

0
BB@

0 0 �0:0273 0:0273
0 0 �0:0078 0:0078

0:0273 0:0078 0 �0:0351
�0:0273 �0:0078 0:0351 0

1
CCA

Symmetric matrix

Dð3:0mMÞ =

0
BB@

0 0 0:0273 0:0279
0 0:7203 0:0103 0:0079

0:0273 0:0103 0 0:0650
0:0279 0:0079 0:0650 0:0030

1
CCA

Net fluxes value

Jð3:0mMÞ =

0
@ J1ðstate1; state2; state3; state1Þ = � 0:0000

J2ðstate1; state4; state3; state1Þ = 0:0546
J3ðstate2; state4; state3; state2Þ = 0:0156

1
A

Following the master equation, parameters of net flux are determined by fitting the real-time trajectories of cell morphology at 3.0 mM to hidden Markov chain

models.

Related to Figure 6E.
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that there was a time lag in the multi-level protein signaling behavior. Due to the different maturation times of the two fluorescent proteins

(GFP and RFP), the lag timebetween Fus3 andCdc24was only a relative quantity. Nonetheless, the delay time of the dual-fluorescence system

at different positions was used to quantify the practical significance of multipolar signal transduction. Notably, the non-directional growth

(model W: P2) did not consist solely of the polar growth pathway of P2, but rather a relative weight simplification to differentiate it from

the directional growth (model L: P1 +P2). To confirm that the fast growth rate (model F) and slow growth rate (model S) corresponded to

the high and low states of Fus3, we explored the association between growth rates and dual-fluorescent gene expression states. The high

state (HI;HO) was primarily included in the fast growth rate, whereas the low state (LI;LO) was primarily included in the slow growth rate, con-

firming the molecular mechanism of F and S (Figures 5H and Table 3). In addition, there must be a lag between the expression of Fus3p and

the observed cell growth, resulting in a low fluorescence state during fast cell growth and a high fluorescence state during slow cell growth.

For statistical analysis of different cell morphologies, we distinguished four cell morphological fates roughly as F1–F4 to provide a more

intuitive description (Figure 6A). Nevertheless, the division of actual cell morphological fate was determined by fitting the trajectories, and

not arbitrarily by the size of Hn. Given that Hn is extremely sensitive to changes in length and width in different parts of the cell, the area

of cells that were morphologically divided into the four categories did not differ significantly from their overall appearance (Figure 6B).

Our justification for proposing the molecular mechanisms of the four cell morphological fates is that morphology is the accumulation of a

growth process. Due to the fact that the cell morphology described by Hn resembled the relative length and width of a cell, the capacity

to grow in both directions can explain the emergence of cell morphologies (Figure 6C). In addition, in the statistical graph of cell morphology,

other fates tended to disappear, with the exception of the increase in the proportion of F2. This indicated that the intracellular phase transition

trend occurred at 3.0 mMas a result of enhanced negative feedback regulation (I2 in Figure 1). The coordinates of the cell morphology statistics

chart at 3.0 mMwere deviated from those of other concentrations due to the phase transition trend in the system, which altered the measure-

ment scale of the four morphological fates. To explain the physics of the phase transitions in the biological system, we quantified the degree

to which the detailed balance collapsed by employing the net flux characterizing the non-equilibrium statistical physics. The results demon-

strated that the non-equilibrium dynamics of the biological system was supported by the significant increase in net flux of the morphological

system at high pheromone dose (3.0 mM), causing the instability and phase transition.

Finally, we developed a simplifiedmodel of the gene regulatory network for signal transduction in order to confirm the global rationality of

the dynamic sequential mechanism. Thus far, we have established the logical links between the functions of regulated proteins in the pher-

omone pathway for mating through the underlying signal transduction process. While our validation method differs from the conventional

approach of constructing yeast mutants, it has been successful in observing realistic cellular response behavior. Our future research will focus

on utilizing fluorescent labels to enable real-time visualization of the dynamics of signaling pathways. Specifically, we plan to construct amulti-

dimensional fluorescent system to elucidate the temporal and spatial dynamics of cellular responses, including potential crosstalk between

different signaling pathways. This approach will provide a more comprehensive and quantitative understanding of how cells respond to

various stimuli, and how these responses are integrated at the molecular level. Furthermore, we will explore how pheromone modulates

cell fate dynamics by regulating the depth of basins on the landscape, as analogous modulation of a transcriptional parameter was shown

to impact cell state transitions.113 These future investigations will establish a more thorough characterization and mechanistic understanding

of cell fate decision dynamics.

Limitations of the study

There are some potential limitations in the current study. First, due to the technical constraints on real-time tracking in live cells, we could not

distinguish phosphorylated Fus3 and unphosphorylated Fus3p in vivo, nor quantify the amount of Fus3p involved in specific biochemical re-

actions. Only the total amount of Fus3 was observed as a proxy. Second, experimental variations could arise if different batches of pheromone

were used, as minor differences in pheromone purity and stability may affect the induced responses. Thus, experiments for each concentra-

tion were preferably performed using pheromone solutions prepared in the same batch. Third, larger sample sizes could facilitate building a

more comprehensive landscape model that captures the global dynamics. Future investigations with improved technical capabilities, tighter

experimental controls, and larger datasets are warranted to address these limitations and gain a deeper mechanistic understanding of the

signaling systems.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast strain

The budding yeast Saccharomyces cerevisiae strain S288C (ATCC 201388:MATa his3D1 leu2D0met15D0 ura3D0) was used in this study.114,115

The key experimental strain was a FUS3-GFP fusion strain, where green fluorescent protein (GFP) was fused to the C-terminus of the FUS3

gene (Systematic Name: YBL016W) to generate a FUS3-GFP fusion protein. This fusion strain originated from the Yeast GFP Fusion Locali-

zation Database initially constructed by the O’Shea and Weissman labs at UC San Francisco to systematically analyze protein localization
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in budding yeast and currently hosted by SGD. The database covers over 6000 S. cerevisiae strains based on the S288C background. This

strain has auxotrophic markers including deletions of HIS3 and other genes involved in amino acid biosynthesis, resulting in nutritional de-

ficiencies and auxotrophy. In the FUS3-GFP fusion strain, theMAP kinase Fus3 is fluorescently labeled with GFP, enabling real-time tracking of

Fus3 in live cells. We selected this strain due to its representativeness and the controllability of genetic manipulation.

METHOD DETAILS

Preparation of pheromone culture medium

The chosen stimulant for our experiments was a peptide hormone called pheromone, specifically an a-factor peptide hormone with a mo-

lecular weight of 1683.98 and a molecular formula of C82H114N20O17S. The a-factor pheromone arrests a-type yeast cells in the G1 phase

of their cell cycle, induces the expression of mating genes, and guides cell growth toward mating partners. The pheromone peptide powder

used in our study was sourced from GenScript (10 mg, purity >95%).

Different concentrations of pheromone were prepared as follows: Initially, a specified quantity of the pheromone peptide powder was

weighed and dissolved in liquid culture medium YPD (Yeast extract 10 g/L, Peptone 20 g/L, Dextrose 20 g/L, Agar 10 g/L) or YNB (Yeast Ni-

trogen BaseWithout Amino Acids 6.8 g/L, Dextrose 5 g/L, Uracil 76 mg/L, 503MEMAmino Acids 20mL/L) to create a 1000 mMstock solution

of pheromone culture medium, which was stored at�80�C or�20�C. Before the initiation of microscopic observation experiments, the pher-

omone culture medium was serially diluted to the desired experimental concentrations within a clean bench. It’s important to note that while

solid pheromonepowder is commonly stored at�20�C, pheromone culturemediumprepared using YPDor YNB as solvents should be stored

for a limited duration to prevent degradation and accuracy discrepancies.

Flow cytometry analysis

To determine the critical concentration of pheromone, we employed flow cytometry as a preliminary screening method. Yeast cells were

cultured in YPD medium with varying pheromone concentrations (0.01 mM, 0.05 mM, 0.1 mM, 0.2 mM, 0.4 mM, 0.6 mM, 1.0 mM, 1.5 mM) for

24 h. The yeast cells were cultured in a shaker at 250 rpm and 30�C to ensure consistent growth conditions throughout the experiment. After

incubation, 105,000 yeast cells were collected from each sample for subsequent analysis. The flow cytometry analysis was performed using a

BD Accuri C6 Flow Cytometer to measure the fluorescence intensity of FUS3-GFP and the cell size. The flow cytometry measurements were

performed using the FL1-A channel, which represents the fluorescence intensity of cells following excitation at 488 nm. The resulting data

were analyzed by fitting the fluorescence intensity histograms using a Gaussian function with two peaks. The parameters of the fitted curves

were determined using the nonlinear least squares method (nlinfit) in MATLAB. The fitted curves were then plotted along with the original

histogram to visualize the distribution of fluorescence intensities. The x axis represents the logarithmic scale (base 10) of fluorescence inten-

sity, showing the range of intensity values. By taking the logarithm, the data with a wide range of scales were transformed into a more easily

comparable and interpretable linear scale. On the other hand, the y axis represents the probability density distribution. In our calculations, we

utilized the ‘‘hist’’ function, a data analysis tool in MATLAB, to compute the histogram of the data. The parameter ‘‘n’’ corresponds to the

frequency (or frequency count) of each histogram bin. By dividing the frequency count by the total sample size of 105,000, the frequency

was converted to probability density. Therefore, the y axis represents the probability density distribution of each histogram bin, reflecting

the relative frequency of corresponding intensity values. The resulting bar plots depict the distribution of cell scattering signal intensity under

different pheromone concentrations.

The 3D top view of the probability density distribution illustrates the base-10 logarithmic transformation of FSC-A on the x axis and

the logarithmic transformation of SSC-A on the y axis. These parameters are commonly used in flow cytometry. FSC-A (Forward Scatter-

Angle) measures the intensity of light scattered at a forward angle, which reflects the size and complexity of cells or particles. Typically, larger

or more complex cells exhibit higher forward scatter intensity, enabling estimation of cell size or particle complexity. SSC-A (Side Scatter-

Angle) captures the intensity of light scattered at a side angle, providing insights into the internal structure and complexity of cells. The mea-

surement of SSC-A is influenced by the scattering properties of cellular components and particles, facilitating evaluation of cell morphology,

particle complexity, and cell viability.

Microfluidic platform for yeast cell cultivation and operational procedure

For the cultivation of yeast cells, we employed the CellASIC ONIX Y04C-02 microfluidic platform designed by CellASIC. This platform,

coupled with the CellASICONIXmicrofluidic temperature control system, offers temperature-controlled and dynamically controllable micro-

environments for yeast cells. The platform consists of four independent well units labeled A to D, each containing six sample wells (e.g., A1-

A6) for introducing media or drugs, one waste well (e.g., A7) for collecting waste, and one inoculation well (e.g., A8) for introducing yeast cells

(Figure S16). Each well unit has capture regions with three different heights: 3.5 mm, 4.0 mm, and 4.5 mm, allowing long-term confinement of

cells in a specific region.

Our specific operational procedure is as follows: First, we adjusted the temperature for yeast cell cultivation to 30�C. Then, we introduced

the yeast cells into the microfluidic platform through the inoculation well (A8) using a programmed flow rate of 5 psi (pounds per square inch)

for 5 s. Next, we incubated the yeast cells in the microfluidic environment with regular YNBmedium at a flow rate of 1 psi for 1 h in well A2 to

facilitate their adaptation. Subsequently, we cultured the yeast cells in YNB medium containing a specific concentration of pheromone at a
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flow rate of 1 psi for 15 h in well A3. Finally, in well A4, which has the same concentration of pheromone as well A3, we continued culturing the

yeast cells at a flow rate of 1 psi for an additional 20 h.

Microscopy measurements

The fluorescence values of the single cells were measured using an inverted fluorescence microscopy (Ti-E, Nikon) with automated stage and

focus, equipped with a high NA oil-immersion objective (1.45NA, 1003). We applied 488 nm laser and set the output power at 30mW (only

10% of the laser beam into themicroscope objective), the fluorescence signals were collected by a cooled EM-CCD camera (897U, Andor). All

images were acquired using both bright field imaging and fluorescent field imaging. These images were acquired by Nikon software. Data

analysis were accomplished through a combination of manual and automated analysis using custom MATLAB code. Many trajectories were

taken from a time-lapse microscopy. The fluorescent images were periodically captured and recorded every 10 min. The fluorescent data of

each cell at each time point were collected for the following discussion.

Basis of fluorescent protein and interval choices

GFP (S65T) is a variant of green fluorescent protein (GFP) containing a serine to threonine mutation at position 65. This mutation results in

faster chromophore maturation compared to wild type GFP. The maturation half-life of GFP (S65T) is around 10–15 min at 37�C.116,117 In
contrast, wild type GFP has a longer maturation half-life of 25–30 min at 37�C.116 The faster maturation of GFP (S65T) makes it better suited

for studying dynamic processes in living cells.115 The mCherry is a red fluorescent protein optimized from mRFP1 derived from the coral Dis-

cosoma sp. yomCherry is a yeast-optimized variant of mCherry.118 At 37�C, the maturation half-life of mCherry is around 15 min.119 Some

studies have reported a maturation time of around 20 min for mCherry,118 likely due to subtle differences in experimental conditions. This

is faster than wild typeGFP but may be different for yomCherry due to codon optimization and other factors affecting protein folding in yeast.

The A206K mutation can further accelerate the maturation of mCherry to around 5 min at 37�C.120

In this study, we choseGFP (S65T) andmCherry (yomCherry) as the fluorescent tags. Based on previous reports, thematuration half-lives of

GFP (S65T) and mCherry at 37�C are around 10–15 min116,117 and 15 min,119 respectively. Considering that the maturation kinetics of both

fluorescent proteins are on the order of 5-fold multiples of minutes, and to ensure that sufficient fluorescent proteins have matured between

image acquisitions, we selected a time interval of 10 min between frames for time-lapse microscopy imaging experiments. This imaging in-

terval ensures that newly synthesized GFP (S65T) and mCherry/yomCherry fusion proteins can complete maturation and become fluorescent

before the next image is acquired. Thereby, we can visualize the real-time dynamics and capture biologicallymeaningful events without being

limited by the fluorescent protein maturation kinetics. The 10 min interval provides a reasonable balance between capturing rapid dynamic

processes, allowing fluorescent protein maturation, and minimizing photobleaching over long-term imaging. Specifically, the 10 min interval

allows detection of faster dynamics compared to longer intervals, provides sufficient maturation time based on the half-lives of GFP and

mCherry, acquires higher temporal resolution data, and was verified experimentally to show no artifacts of immature fluorescence.

Background signal processing

In our study, we acknowledge the presence of background signal in the fluorescence imaging, with an intensity range of 90–182. However, we

would like to emphasize that the measured average fluorescence signal intensity within the cell nucleus was 13000 at the non-equilibrium

steady state, while the fluorescence intensity outside the nucleus was measured as 5400. Given the substantial difference in magnitude be-

tween the fluorescence signal and background signal, we carefully evaluated the impact of the background signal on our fluorescence mea-

surements. After thorough consideration, we concluded that the influence of the background signal on the fluorescence signal is minimal and

can be disregarded in our analysis. Therefore, we made the decision not to employ a specific background subtraction method.

It is important to note that our decision was based on the significant difference in intensity levels between the fluorescence signal and

background signal, along with the experimental conditions under which our study was conducted. We took into account the specific charac-

teristics of our samples and the fluorescence probe used, which contributed to the robustness and reliability of our measurements. While we

acknowledge the potential for background signal variations over time, we conducted further analysis and confirmed that such variations have

minimal impact on the correlation between nuclear and cytoplasmic fluorescence. Our data indicate that the observed correlation primarily

arises from the localization of the target protein and the specificity of the fluorescent probe.

Data collection and sample sizes

Our data collection involved the analysis of time-series sequences, wheremany independent samples were observedmultiple times, resulting

in a combination of hundreds of cells observed hundreds of times. For each pheromone concentration, the total number of cells in the time-

series dataset is as follows (the total cell counts here refer to cells across all frames of the trajectories, from the first frame to the last frame):

0.7 mM has 33,538 cells, 0.8 mM has 29,614 cells, 1.0 mM has 36,009 cells, 2.0 mM has 50,277 cells, and 3.0 mM has 27,067 cells. Additionally, the

number of trajectories or single-cell observations for each concentration is as follows: 0.7 mM has 207 trajectories, 0.8 mM has 190 trajectories,

1.0 mM has 221 trajectories, 2.0 mM has 227 trajectories, and 3.0 mM has 149 trajectories. Due to variations in the number of frames observed

per trajectory, it is not possible to list them individually.

To provide amore accurate description, wewant to highlight that the data analyzed at the steady state consists of the frames from the 60th

frame of each trajectory to the final frame. At the steady state, the sample sizes for each pheromone concentration are as follows: 21,335 cells
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at 0.7 mM, 18,408 cells at 0.8 mM, 23,041 cells at 1.0 mM, 36,886 cells at 2.0 mM, and 18,276 cells at 3.0 mM. It’s important to note that tominimize

errors arising from differences in cell environment and individual variations, the observed yeast cells were cultured in identical media contain-

ing different pheromone concentrations.

Estimation of uncertainty and interpretation of results

In order to estimate the uncertainty of our measurements, we employed the bootstrap resampling method. The original dataset, denoted as

‘‘tra’’, consisted of ‘‘k’’ trajectories. We performed ‘‘num_bootstraps’’ iterations to generate bootstrapped samples for analysis. For each iter-

ation, we created a bootstrapped sample by randomly sampling, with replacement, a subset of the original dataset for each trajectory. We

ensured that the length of each bootstrapped sample was at least 60 frames, as this was our minimum requirement for analysis. The inner

intensity values of the selected frames were extracted from each trajectory and stored in the ‘‘bootstrapped_sample’’ variable.

Next, we analyzed the bootstrapped samples by calculating the mean inner intensity value for each sample. To account for variations in

sample size, we calculated the sum of the inner intensity values and the total length of the bootstrapped sample. The mean was then

computed as the sum divided by the total length. By repeating this process for ‘‘num_bootstraps’’ iterations, we obtained a distribution

of mean inner intensity values. From this distribution, we computed the 95% confidence interval using the prctile function, with percentiles

set to [2.5, 97.5]. This confidence interval provides a range within which we can be 95% confident that the true population mean falls. Addi-

tionally, we calculated the standard error of the mean as the standard deviation of the bootstrapped results. This provides a measure of the

precision of our estimates.

Based on our analysis, the calculated confidence interval, [CI_1, CI_2], represents the range within which we can be 95% confident that

the true population mean inner intensity falls. The standard error, ‘‘standard_error_inner’’, provides an estimate of the variability of the

mean estimates across different bootstrapped samples. It is important to note that the validity of our results relies on the assumption that

the bootstrap samples accurately represent the underlying population. The robustness and reliability of our findings are supported by the

large number of bootstraps performed (num_bootstraps = 1000) and the careful selection of frames for analysis (Table S4).

Dual fluorescence system construction

The yeast strain used in this experiment is Saccharomyces cerevisiae S288C (ATCC 201388:MATahis3D1 leu2D0met15D0 ura3D0).114,115 For

constructing the dual-color strains, we employed the strain YAL041W (CDC24-GFP) from the Huh et al. Yeast GFP collection as the parental

strain for our gene editing. To create the FUS3-yomCherry strains, we performedgene editing on YAL041W strain. According toHuh et al., the

yeast strains with chromosomally GFP-tagged ORFs were constructed using his3D auxotrophic selection. Therefore, for strain construction,

we employed a similar approach, using uracil-deficient (URA3D) medium for selection for constructing yeast strains with chromosomally RFP-

tagged ORFs.

Before gene editing of FUS3, we designed the recombinant vector by referencing the sequence of the plasmid ‘‘pFA6a-link-yomCherry-

CaURA3’’.118 The core sequence ‘‘yomCherry-CaURA3’’ from this plasmid was integrated into the homologous recombination target frag-

ment that we designed (Figure S17). The recombinant vector consists of the left and right homology arms (F/R) of the FUS3 gene, a flexible

chain (linker) connecting FUS3 and the red fluorescent gene (yomCherry), and a screening gene (CaURA3) that compensates for uracil defi-

ciency-induced lethality in yeast. To create the homologous arms (F/R) within the FUS3 sequence, we selected 300 bp regions before and after

the stop codon (TAG) of the FUS3 gene as the left and right homologous long arms (F’/R0). Next, we chose a flexible chain (6aa [GS]x linker) to

act as a structural buffer, ensuring the proper fusion of the red fluorescent reporter gene (yomCherry) to the 30 end of the FUS3 gene without

disrupting the protein structure between the two groups. The final recombinant vector containing ‘‘yomCherry-CaURA3’’ was then introduced

into yeast cells.

The designedDNA sequencewas synthesized by Shanghai Biotech and ligated into the plasmid ‘‘pUC57’’. The purified target plasmidwas

used as a template for PCR cloning. PCR amplification of the target fragment was performed using ‘‘TransStart FastPfu Fly DNA Polymerase’’

(TaKaRa). Purified PCR products were used as templates for further cloning (Table S5). The yeast strains ‘‘CDC24-GFP’’ were transformed with

the ‘‘FUS3-yomCherry’’ fragments using the lithium acetate method. Yeast transformants were screened on URA-deficient solid media (YPD

supplemented with 5-fluoroorotic acid) and incubated at 30�C for 3–5 days. Genomic DNAwas extracted using the ‘‘GeneJETGenomic DNA

Purification Kit’’ (Thermo). Colony PCR was performed using GFP-specific and gene-specific primers to confirm the insertion of the

‘‘FUS3-yomCherry’’ fragment. After purification using the ‘‘GeneJETGel Extraction Kit’’ (Thermo), the successful PCRproducts were subjected

to sequencing for final validation.

Quantifying fluorescent tag photobleaching

Due to the continuous uptake of energy from the environment, gene expression levels within cells are subject to fluctuations. It is crucial to

ensure that the gene of interest can achieve stable expression within a controlled range when quantifying photobleaching rates. In this study,

we selected the CDC28-GFP_SIC1-yomCherry strain as our experimental model, with both Cdc28 and Sic1 being cell cycle-related proteins.

The controlled condition we chose was the yeast cell’s own cell cycle. Tomaximize the resemblance to the actual experimental conditions, we

employed the same microscope illumination settings used for capturing the fluorescence intensities of Fus3 and Cdc24 when exciting the

fluorescence proteins (GFP and yomCherry). The same microfluidic media conditions were applied except without alpha-factor induction.

Due to continuous budding, the observation period for each cell under the microscope was limited by available space. In total, we collected

single cell data for 92 cells, with each cell observed for approximately 1340 min.
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By recording the bud emergence time points, the fluorescence intensity time course data was divided into segments, with each segment

representing one cell cycle. The first segment was chosen frombud point 1 to bud point 2, as the data from 0 to bud point 1may not constitute

a full cycle. The last segment was chosen similarly between the final two bud points. We extracted the expression trajectories of Cdc28 and

Sic1 for each full cell cycle segment, calculated the mean intensity for each segment, and thereby converted the trajectories into discrete

points. Finally, we computed the non-zero average trajectory across the 92 cells according to time order as the final time course data repre-

senting cellular expression levels. The exponential decay function used to model the photobleaching of CDC28-GFP and SIC1-yomCherry

can be represented as follows. For CDC28-GFP,

FðtÞ = Fð0Þ � e� l1�t :For SIC1-yomCherry:

FðtÞ = Fð0Þ � e� l2�t :

Where FðtÞ is the fluorescence intensity at time t. Fð0Þ is the initial fluorescence intensity at t = 0. l1 represents the photobleaching rate of

CDC28-GFP in units of per 10min (min⁻1). l2 represents the photobleaching rate of SIC1-yomCherry in units of per 10min (min⁻1). l1 = 0.02415

per 10min, l2 = 0.015358 per 10min for SIC1-yomCherry. These quantified rates suggest that photobleaching is still within a reasonable range

after 1340 min, and its effects on the experimental results can be initially ignored.

Real time image analysis

Bright-field images obtained using widefield fluorescence microscopy with total internal reflection (TIRF) capabilities were segmented,

aligned, and labeled using a custom MATLAB routine. We segmented the cells according to bright field images to obtain the outlines of

the individual cells, and assigned each cell accordingly. Then we can collect the trajectories of the generations by the assigned id when

the cells grow and divide, and obtain cell lineages. All the cell boundaries of yeast weremanually corrected. The cell nuclei were distinguished

by contouring the fluorescence images. Fluorescence intensity is the average of all fluorescence intensity within the cell boundary. The real-

time trajectories were obtainedby automatic tracking, based on the cell overlaps between the adjacent frames. All trajectories requiremanual

correction.

Steady-state image analysis

In order to explore the underlyingmechanism of the bimodality, we collected the real time fluorescence intensity trajectories (Figures 3A, S4,

and S5), which show that the yeast response is in a steady state after about 600 min. This state means that the fluorescence intensity of the

yeast inside and outside the nucleus does not increase or decrease significantly. The histograms of inner and outer fluorescence intensity were

obtained by the steady-state fluorescence trajectories (Figures 3B and S6–S8). The shape characteristics of the yeast are described by the Hn

in the yeast. The growth rate of the yeast is the numerical differentiation of the Hn. All the trajectories can be used to provide the quantitative

analysis through Hidden Markov Chain Model (HMM). During the HMM fitting, the parameters of the fluorescence state were fixed. The dis-

tribution of high fluorescence state and low fluorescence state in two growth rates can be obtained by counting the state points on the

trajectories.

Cell fate identification using Hidden Markov Model

We employed a Hidden Markov Chain Model (HMM) to fit the time trajectories of cell morphology. HMM is a probabilistic model that esti-

mates unknown hidden states (cell fate categories) based on observed data (time trajectories of cell morphology). In this context, the hidden

states represent different cell morphologies or states, while the observed data comprises the time trajectories of cell morphology. During the

exploratory analysis, we observed multiple peaks in the histogram plot of cell morphology, suggesting the presence of distinct cell fate cat-

egories. The number and distribution of peaks provided an initial estimate of the potential different cell fate categories. These peaks likely

corresponded to various cell states or morphologies. We initialized the HMMmodel by specifying the number of hidden states (representing

the presumed different cell fate categories) and setting initial parameters. These initial parameters could include transition probabilities be-

tween hidden states and probability distributions corresponding to each state. Next, we fed the time trajectories into the HMM model, al-

lowing the model to estimate the probabilities of cells being in different morphology states at each time point. We used the Baum-Welch

algorithm to iteratively optimize theHMMmodel’s parameters, aligning themodel’s fit with the observed data. This iterative process involved

adjusting the model’s parameters to enhance its explanatory power concerning the known data. To ensure finding the global optimum, we

performed multiple iterations of the HMM analysis, each time using different random initial parameters. After several iterations, the HMM

model outputs the probabilities of cells being in different morphology states at each time point. Using these probabilities and applying

certain thresholds or criteria, we categorized the cell morphologies into distinct cell fate states. For instance, we determined the time points

with higher probabilities of specific cell morphology states, thus assigning them to corresponding fate categories. Overall, our goal was to fit

the time trajectories of cell morphology using the HMMmodel and classify cell fate based on the model’s probability outputs. This approach

enables us to understand cell behavior in different states and investigate the underlying mechanisms of cell state transitions.
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Distinguishing the boundaries of the nucleus

When yeast cells are stimulated by pheromones, two responses occur: first, the cell cycle is arrested in the G1 phase, and second, mating-

related genes are activated. To ensure both responses, large amounts of Fus3 are delivered to the nucleus, causing Fus3 to form fluorescent

clusters in the nucleus.27–35 Previous articles have employed the fluorescent cluster region as the nucleus.51,55,121 When we observed cell

budding and division under the microscope, the fluorescence clusters split in half, which corresponds to the separation of the daughter cell’s

nucleus from themother cell’s nucleus, indicating that it is feasible to use the fluorescence cluster as the nucleus. We use an algorithm similar

to contour lines to divide each pixel in a cell into four distinct calculation levels. Then, the fluorescent spots at the same contour level are

joined into closed regions. By comparing each level individually, it was determined that the outer edge of the highest level, which serves

as the boundary between the nucleus and the cytoplasm, is best able to encompass intracellular fluorescent clusters (Figure S18). Therefore,

we propose that fluorescence above this threshold is localized within the nucleus, whereas fluorescence below this threshold is localized

outside of the nucleus.

Filled circle model in cell shape

After identifying the boundary of the cell shapewith ‘‘MATLAB’’, we filled it in with circles along the cell’s long axis in turns, with the area of the

circle filled in each time being guaranteed to be the largest area of the remaining unfilled part. To ensure the accuracy of the cell morphology

(Hn) at various stages, we set a minimum circle diameter (5 pixels) to avoid significantly increasing the shape’s internal gap.

Characterizing the deformation behavior of yeast cells

To quantify the behavior of yeast cells of which deformation rate did not vary uniformly over time, we characterized various cell components

using a circular fill pattern (Figure 5A). The largest circle represents the initial main part of the cell, while the smallest circle represents the

newly formed portion at the top of the cell. For example, there are two filled circles denoted by the letters R0 and R1 within the yeast cell.

R0 is the larger of the two circles, whereas R1 is the smaller (Figure S19). If the filled circle R1 of the cells grows uniformly in size from small

to large (model-1: ‘‘R1 1/R1 2/R1 3/R1 4’’), then the ratios of the smallest circle to the largest circle in the cell will be uniformly distributed.

If, on the other hand, the cell grows as in model-2 (‘‘R1 1/R1 2/R1 3/R1 3/R1 4’’) with the growth temporarily halted at R1 3, then R1 3 will

be observed repeatedly, increasing the probability of the R1 3=R0. When the size ratio of the smallest and largest circles was used as an

observable value, we noticed that the statistical result was mostly around 0.27 at 0.7 mM (Figure S13). This clearly demonstrated that when

the size ratio was 0.27, the cell was growing more slowly or was temporarily not growing, and thus there were more opportunities to observe

this ratio distribution during cell polar growth. That is, the rate of deformation or the capacity for growth at various locations within a cell were

not exactly identical.

To quantify the various cell deformations that occur during cell growth, we considered a value (Hn) comparable to the harmonic mean to

characterize the cell morphology, i.e., Hn = n
�

1
R1

+ 1
R2

+ ::: + 1
Rn

�
. The significant advantage of Hn is that it is particularly sensitive to small

morphological changes at various locations of the cell. For example, we set the radius of the filled circle in the cell as R1, R2, and R3 in advance.

If the cell grew longitudinally (in length), a new filled circle (R4) was added to the cell; consequently, the value of Hn increased as the number of

elements in parentheses increased from three to four. In contrast, as cells expanded laterally (in width), the values of Hn decreased regardless

of whether the filled circle’s radius increased.

Derivation of the transition rates

The master equation can be written as

d

dt

�
P1

P2

�
=

�
k11 k12
k21 k22

��
P1

P2

�
=

�� a b
a �b

��
P1

P2

�
:

Here P1 and P2 are the probabilities of the low expression state and high expression state, respectively, while kij (i, j = 1, 2) is the transition rate

from Pi to Pj. We can write down the solution as follows with the initial conditions P1ð0Þ = 1, P2ð0Þ = 0,

P1ðtÞ =
b+ae�ða+bÞt

a+b
; P2ðtÞ = � a

�� 1+e�ða+bÞt	
a+b

:

Then the transition probability between the low expression state and the low expression state is P11 = P1ðdtÞ = b+ae�ða+bÞdt
a+b , where dt is the

observational time window for each time, here dt = 10min. With the initial conditions P1ð0Þ = 0, P2ð0Þ = 1,

P1ðtÞ = � b
�� 1+e�ða+bÞt	

a+b
;P2ðtÞ =

a+be�ða+bÞt

a+b
:

Then the transition probability between the high expression state and the high expression state is P22 = P2ðdtÞ = a+be�ða+bÞdt
a+b , where dt is the

observation time window for each time, here dt = 10min.

According to the HMM analysis, when the pheromone dose is 0.7 mM, the transition matrix is P =

�
P11 P12

P21 P22

�
=

�
0:6900 0:3100
0:3711 0:6289

�
. So

we can get the transition rate as: a = 0.052017 (1/min), b = 0.062270 (1/min).
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Calculating residence and switching times in multi-stable systems

To calculate the residence time of multi-stability, we first employ aMarkovmodel to fit the real-time trajectory data, allowing us to discern the

states to which the data points belong at different time points. Subsequently, we systematically analyze various indicators for each trajectory

during the non-equilibrium steady state period (from the 60th frame until the last frame). These indicators include the number of occurrences

of different fates and the number of regions associated (or the number of state changes) with different fates. The division of regions for

different fates is defined as follows: continuous segments of identical fates are considered as one region, and isolated individual occurrences

of a fate are also counted as separate regions. Having obtained the relevant statistics for each trajectory, we aggregate the counts of the same

fates across all trajectories. This cumulative count is then divided by the total count of regions for the same fates across all trajectories. The

resulting quotient is multiplied by the interval between consecutive image frames taken by the microscope. The outcome of this calculation

represents the average residence time of cells in various fates. By employing this rigorous statistical approach, we gain insights into the dy-

namics of multi-stability in our system, capturing the average duration that cells spend in specific fates under the influence of pheromone

concentrations.

To quantify the temporal dynamics of cellular state transitions within our multi-stability framework, we employ a systematic approach akin

to our residence time calculation. Iterating through each pair of states (state_from and state_to) while excluding self-transitions, we quantify

the number of switches from state_from to state_to using the num_switches array. Simultaneously, we track the number of continuous occur-

rences of state_from leading to the transition to state_to, recorded in the num_continuous_states array. Subsequently, the total number of

switches (total_switches) across all trajectories is computed, and if transitions are present (total_switches >0), the average number of contin-

uous states preceding each switch is calculated. This average is multiplied by the microscope interval to estimate the average switching time.

The resulting switching times are aggregated in a transitionmatrix, offering a quantitative depiction of temporal transitions between different

states.

The statistical physics connection between cell state switching and residence time

In physics, the cell state switching timebetween initial and target state is equal to the residence times of the starting state in two state systems.

In other words, the switching time is equal to the waiting time for the switching to occur in this case. The cell fates and the associated decisions

involve states and the transitions between distinct phenotypic states, which emerge from the underlying interactions leading to the formation

of the landscape. Specifically, the kinetic transition rates between different cell states often depend on the potential barriers separating them.

The cells prefer to stay in the valleys of the landscape, corresponding to the phenotypic steady states. The depth of the valley often deter-

mines the stability of the associated steady state. Quantitatively, themean residence time of a state is the same as the inverse of the transition

rate escaping that state for the two states system. In other words, the lower the transition rate out of a steady state due to high potential

barriers, the longer the average residence time in that state will be before switching. Therefore, residence times provide a meaningful quan-

tification of the relative stability. However, when the number of states is three or more, there is no direct and simple relationship between

residence time and switching time. The switching time depends not only on the barrier heights but also on all the possible channels available

from the initial state to the other states it can escape to.

From this statistical physics perspective, the emergentmulti-stability in biological systems is rooted in the inherent underlying interactions,

giving rise to the emergence of the landscape topography endowed by the relative stability of the steady states. This relative stability is quan-

tified by the residence times extracted from real-time experimental traces. The kinetic transition rates between different states also depend

on the potential barriers separating them, ultimately contributing to the observed multistage dynamics. Importantly, the residence time

serves as a crucial metric bridging experimental observations and theoretical models, providing a statistically meaningful measure to char-

acterize the stability of distinct states. The extracted residence times, alongside the transition rates, offer valuable experimental validation for

the predicted multi-stability on the non-equilibrium landscape originated from the inherent interactions.

Unraveling the interplay of duration, pheromone concentration, and cell state switching

In our microscopic observations of yeast cells responding to pheromone, we discovered roughly a linear correlation between pheromone

concentration and the prolonged duration of cell-cycle arrest. By statistically analyzing the average time yeast cells were arrested in G1 phase

under different concentrations (Figure S3), we observed that the duration increased progressively with higher pheromone concentrations

(except 3.0 mM). We note that the 3.0 mM data point is inaccurate due to our inability to capture the specific budding recovery nodes during

observations. This was partly due to overlooking the need to monitor budding recovery, and partly due to the limited liquid volume in the

microfluidic device. To further quantify the correlation, we calculated a Pearson coefficient of 0.8194 between duration and concentration

(Figure S14), indicating a highly positive relationship.

To elucidate the relationship between cell state switching and concentration as well as duration, we analyzed the residence times of multi-

stability or cell state switching under different pheromone concentrations and durations (Tables S6, S7, and S8). From physics perspective, the

emergence of cell state and associated state switching from one to another originates from the underlying interactions among the genes,

which give rise to distinct stable states with different associated residence times, which collectively shaping the emergent landscape topog-

raphy. Cell state switching time is closely related to the residence times of different steady states in two-state systems. The relative stability of

the steady states is reflected in the residence times, with longer times indicating higher stability. In the bistability of Fus3, we described how

the residence times of gene expression fates (or cell state switching) vary as a function of signal gradient and duration (Figure S15). We

found the relationship between duration and cell state switching and that between concentration and switching. Different pheromone
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concentrations as stimuli prolonged the G1 phase stall time of the cell cycle. Thus, the pheromone concentration can be seen as the cause,

while the stall time and cell state switching are the consequences. However, when the number of states is three or more, there is no direct

quantitative relationship between the residence time and switching time. The switching time depends not only on the barrier heights but

also on all the channels between the initial state and other states it can escape to.’’

Decomposing of the flux in the cell morphology

The kinetics of the cell morphological can be modeled by a four-state Markov process. The transition probability (Mij) can be calculated by

counting the number of transitions in the state trajectories. Therefore, the master equation can be shown as follows:

dPi

dt
=

X
j

MijPi (Equation 1)

Where Pi represents the probability of state i, and the transition probabilityMij represents the transition probability from state i to state j. For

steady state, we set the left term of themaster Equation 1 to zero, then we obtain the steady state solution PS
i , which is the long time limit. The

steady state flux between state i and j can be defined as: Fij = � MijP
S
i +MjiP

S
j . If the steady state of the system is in equilibrium state, the flux

between any two nodes in the system is zero, that is the detailed balance condition. For the general biological system, it does not necessarily

satisfy the detailed balance condition (Fijs0), the system is in non-equilibrium steady state, there will be at least one net flux among states.

In order to study the non-equilibrium steady states, we can separate the dynamical process into two parts, one is the detailed balance part

and the other is the detailed balance-breaking kinetic process. To describe the detailed balance breaking, we decompose the probability

matrix. The component of the rate matrixMP can be decomposed into two parts, one being the symmetric matrix and the other cycle matrix,

that is

MP = C +D (Equation 2)

WhereD is the symmetricmatrixDij = ðMijP
S
i +MjiP

S
j Þ=2,C is the asymmetric matrixCij = ðMijP

S
i � MjiP

S
j Þ=2. Since the system contains four

states, the asymmetric flux is not unique and contains three net cycle fluxes. Meanwhile, in order to ensure the consistency of decomposition

for various pheromone concentration systems, the given base sets of flux decomposition were selected. Here, the base sets we selected are

‘‘State1 –State2 –State3 –State1’’, ‘‘State1 –State4 –State3 –State1’’, ‘‘State2 –State4 –State3 –State2’’, the corresponding net fluxes are J1, J2 and

J3. The asymmetric matrix C can be rewritten as follows:

C =

0
BBBBBBBBBBBB@

0
J1
2

� J2
2

� J1
2

J2
2

� J1
2

0
J1
2

� J3
2

J3
2

J1
2
+
J2
2

� J1
2
+
J3
2

0 � J2
2

� J3
2

� J2
2

� J3
2

J2
2
+
J3
2

0

1
CCCCCCCCCCCCA

The linear equations can be obtained by corresponding the numerical results of the above matrix C and the experimental statistics (Ta-

bles 5, 6, 7, 8, and 9). For example, three linearly independent parameters of C1;4;C1;3;C2;3 are selected for the linear equations originated

from the underlying master equations.

The linear equations (0.7 mM) are

0
BBBBBB@

C1;4 =
J2
2

= 0:0036

C1;3 = � J2
2

� J1
2

= � 0:0067

C2;3 =
J1
2

� J3
2

= 0

1
CCCCCCA
. Then, solving these linear equations one can get the net flux values of

the non-equilibrium system.

Gillespie algorithm-based simulation

To investigate the dynamics of the pheromone pathway and its impact on Fus3 expression level and cell morphology distribution in yeast

cells, we employed the Gillespie algorithm to simulate the underlying biochemical reactions (Tables S1–S3). This algorithm allowed us to

model the stochastic nature of the reactions and capture their temporal evolution. We constructed a simplified model of the pheromone

pathway based on the functional and quantitative regulation obtained from databases such as KEGG, SGD, and EVEX, incorporating the

known biochemical reactions involved in the pheromone signaling cascade and the feedback mechanisms associated with Fus3 expression.

The reaction network consisted of species representing various molecular entities, with reaction rates defined based on available experi-

mental data, kinetic constants, and literature information. Using the Gillespie algorithm, a stochastic simulation method, we simulated the

time evolution of the reaction network, accounting for the discrete and probabilistic nature of the reactions.

The simulation procedure began with initialization, where the initial concentrations and simulation time were set to zero. Reaction rates

were calculated based on species concentrations and kinetic constants. The total reaction rate was computed as the sum of individual rates.

The next reaction was selected using a random number generator and propensity-based probabilities. Time was updated using the
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exponential distribution and total reaction rate. The selected reaction was executed, leading to concentration updates. This entire process

was iteratedmultiple times. Each iteration involved a cyclic execution of the aforementioned steps. The iterations continued until the desired

simulation timewas reached or the stopping criteria were satisfied. Throughout the simulation, we recorded Fus3 expression levels andmoni-

tored changes in cell morphology, determining expression levels by analyzing relevant species concentrations. This allowed us to characterize

the distribution of Fus3 expression levels and correlate them with observed changes in cell morphology. By implementing the Gillespie al-

gorithm and simulating the biochemical reactions of the pheromone pathway, we successfully determined the expression level of Fus3 and

obtained insights into the distribution of cell morphology. This computational approach allowedus to study the dynamic behavior of the pher-

omone pathway and its impact on Fus3p regulation, as well as the calculation of cell morphology based on Bni1p concentration.

The comprehensive description of the biochemical reactions in stochastic simulations

The biochemical reactions in our signal transduction model were derived from the preexisting gene regulatory network. These biochemical

reactions include the processes of gene translation into the proteins, the phosphorylation of the proteins, the degradation of the proteins, the

interaction between the proteins, and the transfer of the proteins within the nucleus and the cytoplasm of the cells. The following is an un-

derstanding of each chemical reaction (Table S3):

Reaction 1 depicts a portion of the gene FUS3 being translated into a cytoplasmic protein at a certain rate. Reaction 2 depicts the gene

FUS3 generated by the indirect pheromone induction in addition to the known gene regulation. Reaction 3 is the reverse reaction of the re-

action 2. Reaction 4 depicts the process of the phosphorylation of the protein produced by the gene FUS3 induced by the pheromones

outside the cell nucleus. Reaction 5 represents the gene FUS3 produced by the self-activation of the phosphorylated protein Fus3 outside

the cell nucleus. Reaction 6 is the reverse reaction of the reaction 5. Reaction 7 represents the process of the phosphorylation of a protein

generated outside of the nucleus by the self-activating gene FUS3. Reaction 8 represents the transport of the phosphorylated Fus3 from

the outside of the nucleus to the inside of the nucleus. Reaction 9 is the reverse reaction of the reaction 8.

Reactions 10 and 11 represent the degradation of the phosphorylated Fus3 both outside and inside the nucleus. Reaction 12 represents

the translation of the gene STE12 into the phosphorylated protein Ste12. Reaction 13 represents the impact of the gene STE12 on the nuclear

protein Fus3. Reaction 14 is the reverse reaction of the reaction 13. Reaction 15 represents the activation of the gene STE12 by the nuclear

Fus3. Reaction 16 represents the process of the translation of the geneMSG5 into the phosphorylated protein Msg5. Reaction 17 represents

the interaction between the phosphorylated protein Ste12 and the geneMSG5. Reaction 18 is the reverse reaction of the reaction 17. Reaction

19 represents the process of the translation of the gene MSG5, which is activated by the phosphorylated protein Ste12.

Reaction 20 represents the interaction between the phosphorylated proteinMSG5 and the gene FUS3. Reaction 21 is the reverse reaction

of the reaction 20. The reaction 22 represents the inhibition of the gene FUS3 expression by the phosphorylated proteinMSG5. Reactions 23

and 24 represent the degradation of the proteins Ste12 andMsg5, respectively. Reaction 25 represents the process of the phosphorylation of

protein Far1 generated by the gene FAR1. Reaction 26 represents the interaction between the Fus3 in the nucleus and the gene FAR1. Re-

action 27 is the reverse reaction of reaction the 26. Reaction 28 represents the process of the transcription of the gene FAR1, regulated by the

Fus3, into the protein. Reaction 29 represents the degradation of the protein Far1.

Reaction 30 represents the process of the gene BNI1 generating the protein Bni1. Reaction 31 represents the interaction between the

cytoplasmic Fus3 and the gene BNI1. Reaction 32 is the reverse reaction of the reaction 31. Reaction 33 represents the process of the indirect

inhibition of the Fus3 expression outside of the nucleus by Bni1. Reaction 34 represents the interaction between the nuclear gene BNI1 and

the phosphorylated Far1. Reaction 35 is the reverse reaction of the reaction 34. Reaction 36 represents the process of the phosphorylated

Far1-activated generation of the phosphorylated protein from the gene BNI1. Reaction 37 represents the interaction between the nuclear

Fus3 and the gene BNI1. Reaction 38 is the reverse reaction of the reaction 37. Reaction 39 represents the process of the generation of phos-

phorylated protein from the gene BNI1 activated by the phosphorylated Fus3 outside of the nucleus.

Reactions 40 and 41 denote the degradation of the phosphoproteins Bni1 both in the cytoplasmic and nuclear compartments.

QUANTIFICATION AND STATISTICAL ANALYSIS

The fluorescence intensity of FUS3-GFP and cell size were quantified using a BD Accuri C6 flow cytometer. Microscopy images were pro-

cessed and analyzed using MATLAB (Mathworks). Single-cell segmentation, tracking, and quantification of fluorescence intensity were per-

formed using custom MATLAB scripts. Sample sizes and number of replicates are indicated in the corresponding figure legends. All graphs

were generated using MATLAB. Statistical analyses were performed in MATLAB. Statistical significance was determined using Student’s

t-test, ANOVA, or non-parametric tests. p values are indicated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001). Error bars depict standard

error of mean (SEM).
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