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Acetobacter pasteurianus 386B is a candidate functional starter culture for the cocoa 
bean fermentation process. To allow in silico simulations of its related metabolism in 
response to different environmental conditions, a genome-scale metabolic model for 
A. pasteurianus 386B was reconstructed. This is the first genome-scale metabolic 
model reconstruction for a member of the genus Acetobacter. The metabolic network 
reconstruction process was based on extensive genome re-annotation and comparative 
genomics analyses. The information content related to the functional annotation of 
metabolic enzymes and transporters was placed in a metabolic context by exploring 
and curating a Pathway/Genome Database of A. pasteurianus 386B using the Pathway 
Tools software. Metabolic reactions and curated gene-protein-reaction associations 
were bundled into a genome-scale metabolic model of A. pasteurianus 386B, named 
iAp386B454, containing 454 genes, 322 reactions, and 296 metabolites embedded 
in two cellular compartments. The reconstructed model was validated by performing 
growth experiments in a defined medium, which revealed that lactic acid as the sole 
carbon source could sustain growth of this strain. Further, the reconstruction of the 
A. pasteurianus 386B genome-scale metabolic model revealed knowledge gaps 
concerning the metabolism of this strain, especially related to the biosynthesis of its 
cell envelope and the presence or absence of metabolite transporters.

Keywords: acetic acid bacteria, Acetobacter pasteurianus, cocoa bean fermentation process, genome-scale 
metabolic model, genome annotation

INTRODUCTION

Acetic acid bacteria (AAB) are obligately aerobic bacteria that play an important role in 
several food fermentation processes, such as vinegar production and cocoa pulp-bean 
mass fermentation, although they are undesired in wine, cider, and most beer fermentation 
processes (De Roos and De Vuyst, 2018). AAB can be  found in carbohydrate-rich 
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environments, but also in acidic and alcoholic niches 
(Mamlouk and Gullo, 2013). Their typical metabolic trait 
is the incomplete oxidation of substrates using a specific 
respiratory chain. That way, ethanol is converted into acetic 
acid. Depending on species and strain, also sugar alcohols 
can be  converted, such as glycerol into dihydroxyacetone, 
D-mannitol into D-fructose, or D-sorbitol into L-sorbose. 
Even organic acids can be  oxidized, such as acetic acid 
into carbon dioxide and water, which is in fact an 
overoxidation (Mamlouk and Gullo, 2013).

The cocoa bean fermentation process is fundamental to 
obtain well-fermented dry cocoa beans, from which cocoa 
products, such as chocolate, can be made (De Vuyst and Weckx, 
2016). Next to two other groups of key microorganisms present 
during cocoa bean fermentation processes, namely yeasts and 
lactic acid bacteria, AAB are crucial to produce the necessary 
acetic acid that contributes to the death of the cocoa bean 
embryo and subsequent formation of cocoa flavor precursors 
inside the beans (De Vuyst and Weckx, 2016).

Acetobacter pasteurianus is an AAB species that has been 
isolated consistently from cocoa bean fermentation processes 
around the world (Camu et  al., 2007; Lefeber et  al., 2011; 
Meersman et  al., 2013; Papalexandratou et  al., 2013; Miescher 
Schwenninger et  al., 2016; Visintin et  al., 2016; Ozturk and 
Young, 2017). Its apparent adaptation to this fermentation 
process has been explained by its high ethanol, acid, and 
heat tolerance (Camu et  al., 2007; Illeghems et  al., 2013). 
The strain A. pasteurianus 386B has been isolated from a 
spontaneous cocoa bean fermentation process performed in 
Ghana (Camu et al., 2007), and has subsequently been selected 
as a candidate functional starter culture because of its rapid 
co-consumption of ethanol and lactate, the production of 
acetate and acetoin, and the achievement of high cell densities 
upon fermentation (Lefeber et  al., 2010; Moens et  al., 2014). 
To gain more insight into its metabolic potential and niche 
adaptations, the A. pasteurianus 386B genome has been 
sequenced and annotated, resulting in a genome encompassing 
a 2.8-Mb chromosome and seven plasmids with 2,875 protein-
encoding genes (Illeghems et  al., 2013). Several characteristic 
metabolic pathways of AAB have been identified in the genome 
of this strain, for example an incomplete Embden-Meyerhof-
Parnas (EMP) pathway, a modified tricarboxylic acid (TCA) 
cycle, and a truncated respiratory chain. Whereas genome 
annotation combined with in vitro experiments (Lefeber et al., 
2010; Illeghems et  al., 2013; Moens et  al., 2014), have led 
to a first general view on the central carbon metabolism of 
A. pasteurianus 386B, the macromolecule biosynthesis pathways 
of this strain in particular and of AAB in general are still 
largely unknown.

Defined media have been used successfully in different 
microbiological studies to reveal the specific growth requirements 
of microorganisms and eventual metabolic adaptations to changes 
in medium composition, unraveling their biosynthesis capacities 
(Verduyn et  al., 1992; van Niel and Hahn-Hägerdal, 1999; 
Richards et al., 2014). A complementary strategy is to reconstruct 
the metabolic network of a particular microorganism in silico 
and assess the accuracy of this reconstruction by comparing 

the outcome of in silico and in vitro growth experiments in 
defined media (Teusink et  al., 2005). This metabolic network 
reconstruction process is based on cataloging a set of functionally 
annotated enzymes and transporters encoded in the genome 
and coupling them to their respective biochemical reactions 
via gene-protein-reaction (GPR) associations (Francke et  al., 
2005; Pitkänen et  al., 2010; Thiele and Palsson, 2010). In 
addition, a (species-specific) biomass reaction has to be  added 
to the model to be  able to simulate the biomass production, 
which is used as a proxy for the specific growth rate of the 
bacterial cell population (Feist and Palsson, 2010).

So far, genome-scale metabolic models (GEMs) have been 
reconstructed for many organisms, ranging from bacteria and 
archaea to fungi, plants, and even human cell lines (Ruppin 
et  al., 2010; Yilmaz and Walhout, 2017). For AAB, the only 
GEMs that are currently available are those for Gluconobacter 
oxydans 621H, an industrially important bacterium due to its 
property of oxidizing a wide range of carbohydrates, and for 
Komagataeibacter nataicola RZS01, a bacterial cellulose producer 
(Wu et  al., 2014; Zhang et  al., 2017). The current study aims 
to perform a reconstruction of a GEM for A. pasteurianus 386B, 
which is the first GEM for a species of the genus Acetobacter. 
Enzymes and transporters related to the consumption of substrates 
present in the cocoa pulp-bean mass and metabolites produced 
thereof were specifically targeted. It is expected that this GEM 
will be  useful to perform in silico metabolic flux simulations 
of A. pasteurianus 386B in response to different environmental 
conditions to improve the cocoa bean fermentation process.

MATERIALS AND METHODS

Acetobacter pasteurianus 386B Genome 
Re-annotation and in silico Genome-Scale 
Metabolic Reconstruction
The complete genome of A. pasteurianus 386B was sequenced 
and annotated previously, using a local installation of the 
bacterial genome annotation system GenDB v2.2 (Meyer, 2003; 
Illeghems et al., 2013). Since then, different genome annotations 
of this strain became publicly available in different databases. 
To perform a thorough re-annotation of the A. pasteurianus 
386B genome and to be  able to assess differences between the 
annotation sources, the annotation data were collected in a 
MySQL database that was built in-house (Figure  1). Publicly 
available genome annotation sources included the Carbohydrate-
Active enZYmes database (CAZy; Lombard et  al., 2014), the 
Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa 
et  al., 2017), the Integrated Microbial Genomes platform of 
the Joint Genome Institute (JGI IMG; Markowitz et  al., 2012), 
the RefSeq database of the National Center for Biotechnology 
Information (NCBI; O’Leary et  al., 2016), the Pathosystems 
Resource Integration Center database (PATRIC; Wattam et  al., 
2017), the proGenomes database (Mende et  al., 2017), and 
TransportDB (Elbourne et  al., 2017). The latter database relies 
on the TC system for annotation, providing a defined ontology 
to describe transporter functions in analogy to the EC system 
for enzyme annotation (Saier et  al., 2016). Two annotation 
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versions were used in the case of the NCBI RefSeq annotation 
source, one published in April 2015 (further referred to as 
NCBI 2015) and one published in April 2017 (further referred 
as NCBI 2017). Differences in these genome annotations reflect 
improvements made in the NCBI prokaryotic genome annotation 
pipeline (Tatusova et al., 2016). Furthermore, the A. pasteurianus 
386B genome was re-annotated in-house, using the subcellular 
localisation predictor CELLO (Yu et al., 2004), eggNOG-mapper 
(Huerta-Cepas et al., 2017), the enzyme annotation tool PRIAM 
(Claudel-Renard, 2003), and the tools embedded in InterProScan 
5.22-61.0 (Figure  1; Jones et  al., 2014).

As a reference set of predicted protein-encoding genes, the 
NCBI 2015 genome annotation was used, containing 2,854 
protein-encoding genes, as it is the same that was used by 
SRI International to reconstruct the A. pasteurianus 386B 
Pathway/Genome Database (PGDB) available on BioCyc (Caspi 
et  al., 2016). Subsequently, for each protein-encoding gene, 
functional annotations from the different annotation sources 
were added to the MySQL database. In addition, the A. 
pasteurianus 386B PGDB was manually curated in the Pathway 
Tools software, assisted by different automatic refinements using 
the Pathologic tool inside this software (Figure  1; Karp et  al., 
2016). Features associated to a predicted MetaCyc pathway 
(Caspi et  al., 2016), such as the taxonomic range, pathway 
score, pathway variants and pathway description, were manually 
assessed and compared to information available in the literature 
to decide whether the pathway in question should be  omitted.

Also, comparative genomics was performed using OrthoFinder, 
allowing to predict orthogroups from protein-encoding genes 
in whole genomes (Figure  1; Emms and Kelly, 2015). Protein 
sequences of a selection of bacterial species obtained from 
NCBI RefSeq were compared, namely A. pasteurianus 386B, 
A. pasteurianus IFO3283-01, A. aceti NBRC 14818, A. senegalensis 
108B, A. ghanensis LMG 23848T, Gluconobacter oxydans 621H, 

Komagataeibacter nataicola RZS01, and Escherichia coli str. K-12 
substr. MG1655 (further referred to as E. coli). For the latter 
three bacterial strains, genome-scale metabolic models have 
been reconstructed before (Orth et  al., 2011; Wu et  al., 2014; 
Zhang et  al., 2017).

Finally, based on the information contained in the in-house 
built MySQL database, the A. pasteurianus 386B PGDB, and 
the outcome of the comparative genomics analysis, the A. 
pasteurianus 386B GEM was reconstructed and manually curated 
using the MNXref 3.0 namespace as a biochemical reaction 
repository (Figure 1; Bernard et al., 2014; Moretti et al., 2016). 
Characterized enzymes and associated protein sequences available 
in the literature were used to perform sequence alignment 
searches using blastp (Altschul et  al., 1990). The best blast 
hits in the A. pasteurianus 386B genome are indicated by their 
percentage similarity, percentage identity, and percentage coverage 
(Supplementary Table S1).

MetaCyc reaction components and GPR associations of 
biosynthesis pathways in the curated A. pasteurianus 386B 
PGDB were transferred to the A. pasteurianus 386B GEM by 
mapping the MetaCyc reaction components to MNXref 3.0 
reaction identifiers. Reactions described in the literature but 
not present in the MNXref 3.0 reaction repository were manually 
added to the model. Enzyme names and enzyme commission 
(EC) numbers were assigned to each reaction, based on the 
ExplorEnz database (McDonald et  al., 2009). The mass and 
charge balances were checked for all reactions in the resulting 
A. pasteurianus 386B GEM. The co-factor specificity of these 
reactions was manually curated, based on functional annotations 
and literature sources. Reaction reversibility constraints were 
manually curated, taking into account the directionality defined 
in the MetaCyc database, and to prevent reaction flux cycles 
from occurring in the GEM. The list of GPR associations  
was saved in a spreadsheet file (Supplementary File S2).  

FIGURE 1 | Schematic overview of the metabolic network reconstruction process. Genome re-annotation of A. pasteurianus 386B was performed using a 
combination of several databases (e.g. KEGG, PATRIC) and tools (e.g., PRIAM, InterProScan). Functional annotations were stored in a MySQL database. 
Comparative genomics using OrthoFinder allowed to identify orthogroups of protein sequences between A. pasteurianus 386B and other phylogenetically related 
bacterial species. Pathway Tools was used to predict metabolic pathways as well as the reactions and gene-protein-reaction associations that constitute these 
pathways. This information was stored in a Pathway/Genome database (PGDB). Edges entering the human curator node represent the information sources that 
were used to guide manual curation. Using additional information from the literature, the A. pasteurianus 386B PGDB was curated and its information transferred to 
a new genome-scale metabolic model of A. pasteurianus 386B, iAp386B454, using the MNXref 3.0 namespace of reactions and metabolites.
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The A. pasteurianus 386B GEM, named iAp386B454, was 
reconstructed and analyzed using the COBRAPy package version 
0.11.3 (Ebrahim et  al., 2013). Next, it was exported in the 
Systems Biology Markup Language (SBML) level 3 format 
(Supplementary File S3) and validated using the online SBML 
Validator (Bornstein et  al., 2008). Reconstructed metabolic 
pathways were visualized using Escher (King et  al., 2015).

Evaluation of the Manual Curation Process 
and Comparison to Other Reconstructions
The presumed increase in functional annotation quality of the 
genes included in iAp386B454 was evaluated based on the EC 
numbers of enzyme-encoding genes, as the EC system provides 
a defined enzymatic reaction classification (McDonald et  al., 
2009). EC numbers of reactions associated to 304 selected 
genes in the A. pasteurianus 386B GEM were compared to 
the EC numbers of the genes in the original annotation sources 
stored in the MySQL database. A number of classes were 
defined based on the hierarchical EC system that expressed 
the agreement between the EC number of a gene in the GEM 
and that in the annotation source. Then, for each annotation 
source, genes were assigned to the predefined classes. Preference 
was given to assign a gene to a more precise class if at least 
one of the EC numbers of the gene in the annotation source 
did fulfill the requirement set upon that class. Enzyme systems, 
for which the reaction is catalyzed by a complex containing 
more than one enzyme (e.g., pyruvate dehydrogenase), were 
excluded from the analysis, as these reactions inherited different 
EC numbers from their gene constituents.

The manually reconstructed A. pasteurianus 386B GEM was 
compared to GEMs obtained from a number of automatic 
GEM reconstruction tools. These included the RAST and 
ModelSEED tools in the KBase software (Henry et  al., 2010; 
Overbeek et  al., 2014; Arkin et  al., 2018), CarveMe (Machado 
et  al., 2018), MetaNetX (Ganter et  al., 2013), and Pathway 
Tools (Karp et  al., 2016). The NCBI 2015 annotation version 
of A. pasteurianus 386B was used for the reconstructions, which 
were performed without reaction gap-filling. COBRAPy was 
used to parse the SBML files of the reconstructed GEMs, except 
for SBML files obtained from Pathway Tools, which were parsed 
using CBMPy version 0.7.19 (Olivier et  al., 2005). Model 
properties were inferred from the reconstructions and compared 
to iAp386B454.

Biomass Reaction
A biomass reaction was defined for A. pasteurianus 386B, using 
a combination of genomic and literature data (Supplementary 
File S4; Supplementary Figure S1). Protein, DNA, RNA, lipid, 
fatty acid, peptidoglycan, and carbohydrate mass fractions were 
taken from a GEM of K. nataicola RZS01 (Zhang et  al., 2017). 
Stoichiometric coefficients of the biomass reaction were obtained 
by converting the mass fraction of the different macromolecules 
into a molar fraction, using their estimated molar masses. For 
each macromolecule, a separate biosynthesis reaction was defined. 
Stoichiometric coefficients of these reactions resulted from 
estimations of the molar fractions of the macromolecule building 

blocks. Molar fractions of amino acids for proteins and of 
nucleotides for DNA and RNA were estimated using the genome 
sequence of A. pasteurianus 386B, as proposed before (Thiele 
and Palsson, 2010). For DNA, molar fractions of building blocks 
were estimated using the G  +  C percentage of the genome 
(in casu 52.86%). For RNA, molar fractions of building blocks 
were estimated using their respective frequencies in rRNA-, 
tRNA-, and mRNA-encoding genes. RNA mass fractions were 
taken from E. coli (Milo and Phillips, 2016). The fatty acid 
and phospholipid compositions were taken from studies on 
related Acetobacter species (Yamada et  al., 1981; Hanada et  al., 
2001). The average molar mass of a generic fatty acid was 
used to estimate the average molar mass of a generic phospholipid. 
Molar masses of macromolecule building blocks were queried 
in PubChem and ChEBI (Hastings et  al., 2016; Kim et  al., 
2019). Energy requirements for protein, DNA, and RNA 
biosyntheses were taken from E. coli (Neidhardt et  al., 1990). 
Genes were manually assigned to the different macromolecule 
biosynthesis reactions for cellular processes that were not explicitly 
included in the model, among which tRNA loading, protein 
elongation, replication, transcription, and translation.

Growth Experiments
Growth experiments were performed with A. pasteurianus 386B 
in a modified defined medium (Verduyn et  al., 1992). This 
medium contained (per liter): (NH4)2SO4, 5  g; KH2PO4, 1.375  g; 
MgSO4.7H2O, 0.5  g; EDTA, 15  mg; ZnSO4.7H2O, 4.5  mg; 
CoSO4.7H2O, 0.35 mg; MnCl2.4H2O, 1.0 mg; CuSO4.5H2O, 0.3 mg; 
CaCl2.2H2O, 4.5 mg; FeSO4.7H2O, 3.0 mg; MoO3, 0.24 mg; H3BO3, 
1.0  mg; KI, 0.1  mg; and 30  mM phosphate buffer (pH 6.0). 
The pH of the medium was set to 5.0. A filter-sterilized vitamin 
mixture was added after heat sterilization (121°C, 2.1 bar, 20 min) 
of the medium. The final vitamin concentrations were (per liter): 
biotin, 0.0005 mg; calcium pantothenate, 0.01 mg; nicotinic acid, 
0.01  mg; myo-inositol, 0.25  mg; thiamine-HCl, 0.01  mg; 
pyridoxine-HCl, 0.01 mg; and para-aminobenzoic acid, 0.002 mg. 
Eight different carbon sources (glucose, fructose, mannitol, citric 
acid, glycerol, lactic acid, ethanol, and sodium acetate) were used 
at a final concentration of 60 mM to assess if they could sustain 
growth. The pH of the citric acid, lactic acid (both by using 
NaOH to increase the pH), and sodium acetate (using HCl to 
decrease the pH) stock solutions was set to 5.0. To prepare the 
inocula, A. pasteurianus 386B was grown overnight at 30°C in 
10  ml of an undefined medium (pH 5.5), which contained (per 
liter): lactic acid, 5  g; sodium acetate, 10  g; granulated yeast 
extract, 5  g; MgSO4.7H2O, 1  g; NH4H2PO4, 20  g; and K2HPO4, 
10 g. The stirring rate was set to 160 rpm. The overnight culture 
was centrifuged (4,000 × g, 20  min, 4°C) and washed with a 
filter-sterilized saline solution (0.85%, m/v, NaCl). The cells were 
resuspended in the sterile saline solution and inoculated in 2 ml 
of the defined medium mentioned above at an optical density 
at 600  nm (OD600) of 0.01  in triplicate in test tubes with a total 
volume of 20  ml. A. pasteurianus 386B was allowed to grow at 
30°C without shaking for 48  h as the test tubes contained only 
2  ml culture medium, resulting in a relatively large surface to 
medium ratio. A threshold value for the OD600 of 0.1 was used 
to identify whether or not the strain had grown.
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Model Validation
In silico growth experiments were performed using flux balance 
analysis (FBA). With FBA, an optimization of the flux distribution 
of a GEM can be performed to maximize an objective function, 
typically the biomass reaction, thus predicting the specific 
growth rate of a bacterial cell population (Gottstein et  al., 
2016). FBA was performed with the A. pasteurianus 386B 
GEM, setting the biomass reaction as the objective of the 
simulation. Parameter values of this GEM included the 
consumption flux values of the different nutrients. Here, the 
consumption of ammonium as nitrogen source, sulfate as sulfur 
source, and phosphate as phosphate source were allowed without 
constraints. For aerobic respiration, an oxygen influx was allowed 
without constraint. D-glucose, D-mannitol, glycerol, D-lactate, 
ethanol, and acetate were tested as carbon sources separately 
to be  able to compare the in silico results with the in vitro 
growth experimental data. The maximum exchange flux of the 
carbon source was set to 60 C-mmol/gCDW/h for each simulation. 
This value corresponded with a consumption of 10  mmol/
gCDW/h of glucose for E. coli (Varma et  al., 1993).

RESULTS AND DISCUSSION

Genome Re-annotation
An extensive re-annotation of the genome of A. pasteurianus 
386B was performed, based on a combination of several databases 
and tools, comparative genomics analyses, and manual curations 
using different software packages (Figure  1). Of a total of 2,875 
protein-encoding genes in the original genome annotation of A. 
pasteurianus 386B (Illeghems et  al., 2013), 2,854 genes (NCBI 
2015) were re-annotated in the current study, of which 454 genes 
were included in the A. pasteurianus 386B GEM based on their 
involvement in the metabolic pathways discussed below. In what 
follows, metabolic reactions in different parts of the A. pasteurianus 
386B metabolism are discussed, based on the evidence that the 
enzyme-encoding genes were present in the genome.

Central Carbon Metabolism
The incomplete EMP pathway (Supplementary Figure S2) and 
the pentose phosphate pathway (Supplementary Figure S3) of 
A. pasteurianus 386B were reconstructed, as described previously 
(Illeghems et  al., 2013). Periplasmic oxidation of D-glucose 
could be  assigned to a pyrroloquinoline quinone (PQQ)-
dependent glucose 1-dehydrogenase (EC 1.1.5.2) (Figure  2A). 
Based on the re-annotation effort of the current study, different 
gene candidates could be  linked to this reaction (e.g., 
APA386B_2133, Supplementary Table S1), among which genes 
with a previously unknown function (Illeghems et  al., 2013). 
No transporter could be  identified for D-gluconate uptake. 
However, since the gene encoding cytoplasmic gluconokinase 
was present in the genome (locus tag APA386B_1158), the 
D-gluconate transport reaction was nonetheless added to the 
A. pasteurianus 386B GEM. Cytoplasmic oxidation of D-mannitol 
could be  assigned to a cytoplasmic mannitol 2-dehydrogenase. 
However, the possibility of periplasmic oxidation of D-mannitol 
to D-fructose was included in the GEM as well, since extracellular 

fructose formation from mannitol has been reported previously 
(Moens et  al., 2014).

A gene encoding a lactate permease (TC 2.A.14), more 
precisely a lactate:H+ symporter, was identified in the genome, 
which was homologous to the LctP transporter in E. coli (Dong 
et al., 1993; Núñez et al., 2002). Most probably A. pasteurianus 
386B oxidizes D-lactate using a D-lactate dehydrogenase that 
is dependent on quinone (EC 1.1.5.12) or cytochrome c (EC 
1.1.2.4), thus linking this reaction directly to the respiratory 
chain (Figure  2B). Overflow of lactate to acetoin has been 
found and metabolic flux analysis has revealed that acetoin is 
solely produced by decarboxylation of (2S)-2-acetolactate (Adler 
et  al., 2014; Moens et  al., 2014). Therefore, this metabolic 
route, for which the genes were present, and containing the 
enzymatic reactions of acetolactate synthase (EC 2.2.1.6) and 
acetolactate decarboxylase (EC 4.1.1.5), was added to the A. 
pasteurianus 386B GEM (Supplementary Figure S4). Finally, 
an acetoin dehydrogenase complex (EC 2.3.1.190) was identified 
that could be  involved in the oxidation of acetoin. A glycerol 
uptake transporter (TC 1.A.8) was identified in the genome 
that was homologous to the GlpF transporter of E. coli (Fu 
et al., 2000). Similarly as for lactate, oxidation of glycerol could 
feed electrons to the respiratory chain (Figure 2B); alternatively, 
glycerol may be  used for glycerolipid biosynthesis.

A. pasteurianus 386B could oxidize ethanol to acetic acid 
in the periplasm by means of a membrane-bound PQQ-dependent 
alcohol dehydrogenase or in the cytoplasm by means of NAD(P)+-
dependent dehydrogenases (Figure 2C). Periplasmic acetate could 
be  imported by an acetate/succinate:H+ symporter, for which 
the encoding gene was identified (APA386B_1116) and which 
was homologous to the E. coli SatP transporter (Sá-Pessoa et al., 
2013). Alternatively, excess cytoplasmic acetate may be exported 
by a primary active ABC transporter (TC 3.A; APA386B_103) 
(Nakano et  al., 2006). A reaction cycle that regulates acetate 
overflow metabolism, involving acetic acid, acetyl phosphate, 
and acetyl-CoA, has been described in E. coli (De Mey et  al., 
2007; Valgepea et al., 2010). Putative orthologs for these enzymes 
were retrieved in A. pasteurianus 386B, namely genes encoding 
acetate kinase (EC 2.7.2.1), phosphate acetyltransferase (EC 
2.3.1.8), and acetate CoA ligase (EC 6.2.1.1).

A major metabolic adaptation of acetic acid-resistant Acetobacter 
species is their modified tricarboxylic acid (TCA) cycle 
(Supplementary Figure S4), containing succinyl-CoA:acetate 
CoA-transferase (EC 2.8.3.18) and malate:quinone oxidoreductase 
(EC 1.1.5.4) (Mullins et  al., 2008). Two enzymes involved in 
anaplerotic reactions were encoded in the genome, namely a 
reversible NAD+-dependent malic enzyme (EC 1.1.1.38), 
interconverting malate and pyruvate, and phosphoenolpyruvate 
carboxylase (EC 4.1.1.31) that could carboxylate phosphoenolpyruvate 
to oxaloacetate. However, in the NCBI 2017 genome annotation 
version of A. pasteurianus 386B, the latter enzyme-encoding gene 
was annotated as a pseudogene, containing a frameshift mutation.

Aerobic Respiration
A. pasteurianus is an obligate aerobe that has evolved a truncated 
aerobic respiratory chain (Figure 2D). In A. pasteurianus 386B, 
a single gene cluster cyaBACD (APA386B_1578 – APA386B_1581) 
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was found that encodes cytochrome ba3 ubiquinol oxidase 
(UOX ba3; EC 7.1.1.3). This heme-copper terminal oxidase 
probably contains a heme A moiety, since the genes encoding 
heme O (ctaB; APA386B_608) and heme A (ctaA; 
APA386B_1565) synthase, which are remnants of a cytochrome 
c oxidase gene cluster, have been shown to be  still functional 
in A. pasteurianus (Matsutani et  al., 2014). Additionally, A. 
pasteurianus 386B contained genes encoding two cytochrome 
bd-type oxidases, being cytochrome bd oxidase (APA386B_472 
– APA386B_473) and its homolog, cyanide insensitive oxidase 
(CIO; APA386B_1010 – APA386B_1111). Since the reaction 
catalyzed by both of these terminal oxidases has the same 
stoichiometry, an identical reaction (EC 7.1.1.7) was added to 
the GEM. However, it has been shown that these enzymes 
have different kinetic parameters, indicating a physiological 
distinct role (Miura et  al., 2013). Furthermore, two sets of 
genes for a cytochrome bc1 complex (E.C. 7.1.1.8) were found 
in the genome of A. pasteurianus 386B, as is also the case 
for A. aceti (Sakurai et  al., 2011).

Next to ubiquinone, NAD(P)+ is involved in respiratory chain 
reactions. Two types of NADH:ubiquinone reductases were 
encoded in the A. pasteurianus 386B genome, namely one that 
is proton-translocating (EC 7.1.1.2) and one that is not (EC 
1.6.5.9). Furthermore, a membrane-bound proton-translocating 
NAD(P)+ transhydrogenase (EC 7.1.1.1) was present in the 
genome. Finally, the genes encoding ATP synthase (EC 7.1.2.2) 
were present in two gene clusters (APA386B_1266 – APA386B_1270 
and APA386B_1604 – APA386B_1608), which is also the case 
for Rhodospirillum rubrum (Falk and Walker, 1988).

Acetobacter pasteurianus 386B Grows  
in a Defined Medium
From all carbon sources tested during the in vitro growth 
experiments, A. pasteurianus 386B was only able to grow on 
a defined medium containing lactic acid as the sole carbon 
source added. Thus, except for the possible need for some 
micronutrients, A. pasteurianus 386B had no specific auxotrophies 
and was able to form all its biomass compounds from ammonium 

A

B
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D

FIGURE 2 | Carbon metabolism of A. pasteurianus 386B. Horizontal bars (from top to bottom) delineate the extracellular environment, the periplasm, and the 
cytosol, respectively. (A) Carbohydrate oxidation. (1) D-glucose:ubiquinone oxidoreductase (EC 1.1.5.2); (2) gluconolactonase (EC 3.1.1.17); (3) gluconate:H+ 
symport; (4) gluconokinase (EC 2.7.1.12); (5) mannitol permease; (6) D-sorbitol dehydrogenase (mann_ox_rxn); (7) mannitol 2-dehydrogenase (EC 1.1.1.67);  
(8) fructokinase (EC 2.7.1.4). (B) Lactate and glycerol oxidation. (1) lactate:H+ symporter; (2) D-lactate dehydrogenase (quinone) (EC 1.1.5.12), D-lactate 
dehydrogenase (cytochrome) (EC 1.1.2.4); (3) glycerol facilitator; (4) glycerol kinase (EC 2.7.1.30); (5) glycerol-3-phosphate dehydrogenase (EC 1.1.5.3); (6) glycerol-
3-phosphate dehydrogenase [NAD(P)+] (EC 1.1.1.94). (C) Ethanol oxidation. (1) alcohol dehydrogenase (quinone) (EC 1.1.5.5); (2) alcohol dehydrogenase [NAD(P)+] 
(EC 1.1.1.1, 1.1.1.2); (3) aldehyde dehydrogenase (quinone) (EC 1.2.5.2); (4) aldehyde dehydrogenase [NAD(P)+] (EC 1.2.1.3, EC 1.2.1.4); (5) succinate-acetate:H+ 
symporter; (6) acetate ABC transporter. (D) Aerobic respiration. (1) NADH:ubiquinone reductase (H+-translocating) (EC 7.1.1.2); (2) NADH:ubiquinone reductase 
(non-electrogenic) (EC 1.6.5.9); (3) proton-translocating NAD(P)+ transhydrogenase (EC 7.1.1.1); (4) ubiquinol oxidase (H+-transporting) (EC 7.1.1.3); (5) ubiquinol 
oxidase (electrogenic, non-H+-transporting) (EC 7.1.1.7); (6) H+-transporting two-sector ATPase (EC 7.1.2.2).
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as the sole nitrogen source, sulfate as the sole sulfur source, 
phosphate as the sole phosphate source, and lactic acid as the 
sole carbon source.

Biosynthesis Pathways
In what follows, biosynthesis pathways are described that were 
included in the A. pasteurianus 386B GEM and for which 
there was genetic evidence based on the genome re-annotation. 
These pathways allowed to simulate the growth of A. pasteurianus 
386B in silico using the defined medium conditions mentioned 
above. Focus is on those steps of the pathways for which 
there was evidence that the gene-protein-reaction associations 
in A. pasteurianus 386B were different from the reference 
pathways described in the literature.

Fatty Acid and Phospholipid Biosynthesis
The major fatty acids in bacterial cells of the genus Acetobacter 
are cis-vaccenic acid (C18:1), palmitic acid (C16:0), and stearic 
acid (C18:0) (Yamada et  al., 1981). Further, the presence of a 
detectable amount of myristic acid (C14:0) distinguishes the 
genus Acetobacter from the genus Gluconobacter (Yamada et al., 
1981). The fatty acid biosynthesis pathway for saturated fatty 
acids in A. pasteurianus 386B was similar to the one described 
in E. coli (Janßen and Steinbüchel, 2014). For unsaturated fatty 
acid biosynthesis, the FabA (EC 4.2.1.59/5.3.3.14) and FabB 
(EC 2.3.1.41) enzymes are critical for their formation in E. 
coli (Feng and Cronan, 2009). Although cis-vaccenic acid (C18:1) 
was the major fatty acid in the fatty acid profile of A. pasteurianus, 
the genes encoding FabA and FabB could not be  found in 
the A. pasteurianus 386B genome. Even though unsaturated 
fatty acid biosynthesis in A. pasteurianus 386B seemed to 
be unclear, reactions of the FabA/FabB pathway were nonetheless 
added to the model (Supplementary Figure S5). As each fatty 
acid elongation cycle can be  described by a stoichiometric 
reaction (Janßen and Steinbüchel, 2014), lumped reactions were 
added to the GEM to describe the formation of myristic acid 
(C14:0), palmitic acid (C16:0), stearic acid (C18:0) and cis-
vaccenic acid (C18:1).

Bacterial cell membranes are composed of amphiphilic 
lipids, most commonly glycerophospholipids (Sohlenkamp and 
Geiger, 2016). Here, the phospholipid biosynthesis pathway 
of Sinorhizobium meliloti was taken as a reference (Geiger 
et  al., 2013). In A. pasteurianus 386B, glycerol 3-phosphate 
could be  produced by a quinone-dependent (EC 1.1.5.3) or 
NAD(P)+-dependent (EC 1.1.1.94) glycerol-3-phosphate 
dehydrogenase. The A. pasteurianus 386B genome encoded 
the PlsX/PlsY/PlsC system for phosphatidic acid biosynthesis, 
as described before (Parsons and Rock, 2013). Although long-
chain acyl-acyl carrier protein (acyl-ACP) are the end-products 
of fatty acid biosynthesis and are initially transferred to a 
phosphate moiety by phosphate:acyl-ACP acyltransferase (PlsX), 
no generic reaction was available in MNXRef 3.0. Therefore, 
two reactions (EC 3.6.1.7 and EC 3.1.2.14) were added to 
the GEM to simulate acyl phosphate and acyl-ACP formation 
to represent the link between fatty acid biosynthesis and 
glycerophospholipid biosynthesis. Subsequent acylation of 

glycerol 3-phosphate is performed by the membrane-bound 
glycerol-3-phosphate acyltransferase (PlsY; EC 2.3.1.n3). Then, 
1-acyl-glycerol-3-phosphate acyltransferase (PlsC; EC 2.3.1.51) 
forms phosphatidic acid (Paoletti et al., 2007; Yoshimura et al., 
2007; Hara et al., 2008). Acetobacter aceti contains an unusually 
high amount of phosphatidylcholine in its membrane, attributed 
to its acetic acid resistance (Hanada et  al., 2001). In A. 
pasteurianus 386B, the three methylation steps of the S-adenosyl-
L-methionine (SAM)-dependent methylation pathway forming 
phosphatidylcholine from phosphatidylethanolamine were  
most probably catalyzed by the same enzyme, namely 
phosphatidylethanolamine N-methyltransferase (Pmt, EC 
2.1.1.17), as the enzyme from A. pasteurianus 386B (encoded 
by the gene with locus tag APA386B_612) belonged to the 
same family as the one in Rhodobacter sphaeroides and  
shared high sequence identity to the Pmt enzyme in A. aceti 
(Hanada et  al., 2001; Geiger et  al., 2013).

Amino Acid Biosynthesis
The presence of biosynthesis pathways for proteinogenic amino 
acids in the A. pasteurianus 386B PGDB was confirmed by 
the growth of A. pasteurianus 386B in a defined medium 
containing ammonium as the sole nitrogen source (section 
“Acetobacter pasteurianus 386B Grows in a Defined Medium”). 
Two genes were retrieved that encoded potential ammonium 
ion channels (TC 1.A.11; APA386B_239 or APA386B_740). In 
addition, an ammonium assimilation pathway for de novo 
biosynthesis of proteinogenic amino acids was assumed to 
be  present. In E. coli, two pathways are known for ammonium 
assimilation (van Heeswijk et  al., 2013), one occurs via a 
NADP+-dependent glutamate dehydrogenase (EC 1.4.1.4) that 
allows to form L-glutamate directly from 2-oxoglutarate and 
ammonium, the other via the formation of L-glutamate and 
L-glutamine through a cycle of reactions involving glutamine 
synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.1.13), 
which produces a net amount of L-glutamate. Only the latter 
pathway was found in the A. pasteurianus 386B genome 
(Figure  3A; Supplementary Figure S6).

A number of pyridoxal phosphate-dependent aminotransferases 
were identified based on the genome annotation. These were 
involved in the formation of L-aspartate and L-alanine and were 
assigned to specific reactions based on their presence in different 
orthogroups. Aspartate aminotransferase (EC 2.6.1.1) was linked 
to three genes, likely encoding this enzyme (APA386B_861, 
APA386B_862, and APA386B_942). These were not predicted 
to be  homologous to the E. coli aspartate aminotransferase gene 
(b0928, aspC) but shared considerable sequence identity with 
curated SwissProt sequences from other bacteria with identical 
function (>50% identity). The gene encoding glutamate-pyruvate 
aminotransferase (EC 2.6.1.2; APA386B_991) was a predicted 
ortholog of the gene in E. coli (b2379, alaC). Finally, the genes 
encoding aspartate 4-decarboxylase (EC 4.1.1.12; APA386B_482, 
APA386B_1928) had no E. coli homolog but were related  
to a bifunctional aspartate aminotransferase and aspartate 
4-decarboxylase of Comamonas testosteroni. However, the enzyme 
characterized had only a minor activity as an aminotransferase 
(Wang and Lee, 2007). Thus, the A. pasteurianus 386B genes 
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were only associated to the reaction catalyzed by aspartate 
4-decarboxylase.

In the biosynthesis pathways of L-valine, L-leucine, and 
L-isoleucine, a bifunctional enzyme (EC 2.2.1.6) catalyzes the 
formation of (2S)-2-acetolactate and (S)-2-hydroxy-2-ethyl-3-
oxobutanoate, the latter metabolite only involved in L-isoleucine 
biosynthesis (Barak and Chipman, 2012). The A. pasteurianus 
386B genome contained three genes, which likely encode the 
enzymes for these reactions. The genes with locus tags 
APA386B_835 and APA386B_836 were most likely involved 
in amino acid biosynthesis, since these genes each had an E. 
coli ortholog encoding subunits of a bifunctional acetolactate 
synthase/acetohydroxybutanoate synthase enzyme complex (ilvI, 
ilvH). However, the gene with locus tag APA386B_1863 was 
closely related to two “catabolic” acetolactate synthases, identified 
in Klebsiella pneumoniae and Lactococcus lactis (Peng et  al., 
1992; Snoep et  al., 1992). This evidence, combined with the 
fact that the neighboring gene APA386B_1862 was annotated 
as encoding an acetolactate decarboxylase, forming acetoin 
from (2S)-2-acetolactate, could be  an indication that the 
physiological role of the APA386B_1863-encoded enzyme would 
only be  related to acetoin formation. Finally, the branched-
chain amino acid aminotransferase (EC 2.6.1.42/2.6.1.6; 
APA386B_1001) could be  involved in the last step of the 
formation of these amino acids.

The aromatic amino acids L-phenylalanine, L-tyrosine, and 
L-tryptophan share a common initial pathway, which produces 
chorismate from erythrose 4-phosphate (Yang and Pittard, 
2008). Comparative genomics revealed that the gene with locus 
tag APA386B_1330, encoding a dehydroquinate dehydratase 

(EC 4.2.1.10), had an ortholog in G. oxydans 621H (locus tag 
GOX0437) that has been identified as encoding a periplasmic 
enzyme involved in the oxidation of quinate (Adachi et  al., 
2008). The cytoplasmic dehydroquinate dehydratase of G. oxydans 
621H (locus tag GOX1351) could not be  found in the A. 
pasteurianus 386B genome. In the last reaction step of the 
biosynthesis of L-tyrosine and L-phenylalanine, an amino group 
transfer occurs with glutamate as amino group donor. In E. 
coli, three enzymes have been identified that could catalyze 
this reaction, namely the aromatic aminotransferase (TyrB), 
the aspartate aminotransferase (AspC), and the branched-chain 
amino acid aminotransferase (IlvE), whereby the latter is only 
involved in the biosynthesis of L-phenylalanine (Yang and 
Pittard, 2008). In A. pasteurianus 386B, only an ortholog of 
the gene encoding IlvE was found (APA386B_1001). Thus, 
the L-tyrosine-forming reaction was tentatively associated to 
the aspartate aminotransferases encoded in the genome 
(APA386B_861, APA386B_862, and APA386B_942).

Since A. pasteurianus 386B was able to grow in a defined 
medium containing sulfate as the sole sulfur source, sulfate 
assimilation was assumed (Figure  3B). Indeed, import of 
sulfate ions could occur via a sulfate permease (TC 2.A.53) 
as well as a probable ortholog of the E. coli cysPUWA ABC 
sulfate transporter. However, since the stoichiometry of the 
anion:H+ symporter is not known in Acetobacter, only the 
ABC transporter was added to the A. pasteurianus 386B GEM. 
The enzymes of the assimilatory sulfate reduction pathway, 
which reduce sulfate to hydrogen sulfide, were encoded in 
the genome. One exception was the flavoprotein subunit of 
sulfite reductase (EC 1.8.1.2), which was not found in the 

A B

FIGURE 3 | Nitrogen and sulfur metabolism of A. pasteurianus 386B. (A) Ammonium assimilation. (1) ammonium permease; (2) glutamine synthetase (EC 6.3.1.2); 
(3) glutamate synthase (NADPH-dependent) (EC 1.4.1.13). (B) Sulfate assimilation. (1) sulfate ABC transporter; (2) sulfate adenylyltransferase (EC 2.7.7.4);  
(3) adenylyl-sulfate kinase (EC 2.7.1.25); (4) phosphoadenylyl-sulfate reductase (thioredoxin-dependent) (EC 1.8.4.8); (5) assimilatory sulfite reductase  
(NADPH-dependent) (EC 1.8.1.2).
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genome re-annotation. Whereas L-methionine is produced 
by the transsulfuration pathway in E. coli, only cystathionine 
𝛽-lyase (EC 4.4.1.8), but not homoserine O-succinyltransferase 
(EC 2.3.1.46), could be  identified in A. pasteurianus 386B. 
In Corynebacterium glutamicum, next to the transsulfuration 
pathway, a direct sulfhydrylation pathway is present that 
produces L-methionine, of which the key enzyme is 
O-acetylhomoserine sulfhydrylase (EC 2.5.1.49) (Hwang et al., 
2002). The gene with locus tag APA386B_753 was annotated 
as encoding a putative bifunctional O-acetylhomoserine 
sulfhydrylase (EC 2.5.1.49)/O-succinylhomoserine sulfhydrylase 
(EC 2.5.1.48). However, the presence of a homoserine 
O-acetyltransferase (E.C. 2.3.1.31; APA386B_2138) upstream 
in the direct sulfhydrylation pathway gave additional evidence 
to annotate the gene APA386B_753 as encoding an 
O-acetylhomoserine sulfhydrylase (E.C. 2.5.1.49). Since this 
pathway was complete, the direct sulfhydrylation pathway was 
added to the A. pasteurianus 386B GEM instead of the 
transsulfuration pathway. Finally, L-methionine could 
be  synthesized from L-homocysteine by methionine synthase 
(EC 2.1.1.13). SAM could be  formed from L-methionine by 
methionine adenosyltransferase (EC 2.5.1.6). This reaction is 
part of the SAM cycle, which links L-methionine biosynthesis 
to glycerophospholipid biosynthesis, and involves the key 
reaction catalyzed by adenosylhomocysteinase (EC 3.3.1.1) 
(Reddy et  al., 2008).

Nucleotide Biosynthesis
Based on the A. pasteurianus 386B PGDB, the nucleotide 
biosynthesis pathways were curated and added to the  
A. pasteurianus 386B GEM (Supplementary Figure S7). A 
broad-substrate-range nucleoside diphosphate kinase (EC 
2.7.4.6) was present in the genome of A. pasteurianus 386B 
that could phosphorylate different nucleoside diphosphate 
acceptors, using ATP as phosphate donor, to form the respective 
nucleoside triphosphate products (Armenta-Medina et  al., 
2014). Similarly, a broad-substrate-range thioredoxin-dependent 
ribonucleoside-diphosphate reductase (EC 1.17.4.1) could reduce 
ribonucleoside diphosphate acceptors to their respective 
deoxyribonucleoside diphosphate forms. The thioredoxin 
molecule may be recycled by an NADP+-dependent thioredoxin 
reductase (EC 1.8.1.9). The precursor for purine biosynthesis 
is 5-phospho-α-D-ribose 1-phosphate (PRPP), which is also 
the starting point of histidine biosynthesis and involved  
in tryptophan biosynthesis (Kilstrup et  al., 2005). From  
PRPP, a linear pathway was obtained to produce inosine 
monophosphate, from which adenosine monophosphate (AMP) 
or guanosine monophosphate (GMP) could be produced. Two 
additional adenosine salvage reactions were identified, which 
were related to side-products formed in other pathways. First, 
sulfate reduction to hydrogen sulfide could yield adenosine 
3′,5′-bisphosphate as a by-product of the initial adenylation 
of sulfate by ATP. This compound could be  recycled to AMP 
by 3′,5′-bisphosphate nucleotidase (EC 3.1.3.7), which was 
previously not annotated in the A. pasteurianus 386B genome. 
Second, the SAM cycle could produce adenosine, which could 
be  recycled to AMP by adenosine kinase (EC 2.7.1.20).

Uridine diphosphate (UDP) production is the result of a 
linear pathway, in which aspartate is the substrate for pyrimidine 
biosynthesis and which could be  converted into cytidine 
triphosphate (CTP) via CTP synthase (EC 6.3.4.2) or 
deoxythymidine triphosphate (dTTP) by a dedicated pathway 
(Kilstrup et  al., 2005). Cytidine monophosphate (CMP) could 
be  salvaged by cytidylate kinase (EC 2.7.4.25), as CMP was 
a side-product from phospholipid and lipopolysaccharide (LPS) 
biosynthesis. Consecutive cytidine diphosphate (CDP) reduction 
by ribonucleoside-diphosphate reductase and phosphorylation 
by nucleoside diphosphate kinase could produce dCTP.

Peptidoglycan and Lipopolysaccharide 
Biosynthesis
Biosynthesis pathways of membrane components in E. coli were 
used as a reference for their reconstruction in A. pasteurianus 
386B (Supplementary Figures S8, S9). In general, the biosynthesis 
of peptidoglycan starts with the formation of glucosamine 
6-phosphate by glutamine-fructose-6-phosphate transaminase 
(EC 2.6.1.16), which is subsequently biochemically activated to 
form UDP-N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc 
is subsequently converted into UDP-N-acetylmuramic acid 
(UDP-MurNAc) and used as a basis to attach the first alanine 
residue by UDP-N-acetylmuramate L-alanine ligase (EC 6.3.2.8), 
which was previously not annotated in the A. pasteurianus 
386B genome. In the next reactions, D-glutamate, meso-
diaminopimelate, and D-alanyl-D-alanine are successively attached 
to UDP-MurNAc (Barreteau et  al., 2008). Finally, another 
molecule of UDP-GlcNAc is linked to UDP-MurNAc to form 
the peptidoglycan monomer (Vollmer et  al., 2008). This last 
step was included in the macromolecule reaction forming 
peptidoglycan (Supplementary Figure S1). Whereas it involves 
in vivo the linkage of the peptidoglycan precursor to undecaprenyl-
phosphate (Typas et  al., 2012), a growing peptidoglycan chain 
requires the recycling of undecaprenyl-phosphate, so its 
biosynthesis was not included in the model.

For lipopolysaccharide biosynthesis, UDP-GlcNAc is an important 
precursor to form (Kdo)2-lipid A via the Raetz pathway (Whitfield 
and Trent, 2014). In A. pasteurianus 386B, UDP-2,3-diacylglucosamine 
pyrophosphatase (EC 3.6.1.54) could form the intermediary lipid 
X. In contrast to E. coli that has the lpxH gene, in A. pasteurianus 
386B and other α-proteobacteria this enzyme is encoded by the 
lpxI gene, which has a different reaction mechanism (Metzger and 
Raetz, 2010). Lipid X could be  converted into lipid IV and two 
molecules of CMP-ketodeoxyoctonate (CMP-Kdo) could 
be  transferred to lipid IV by a bifunctional 3-deoxy-D-manno-
octulosonic-acid transferase (EC 2.4.99.12 and EC 2.4.99.13). Finally, 
two fatty acyl chains could be added to form (Kdo)2-lipid A. Whereas 
E. coli has two distinct enzymes encoded by lpxL and lpxM, one 
for each fatty acyl chain transfer, of which lpxM is not required 
for growth (Raetz et al., 2007), A. pasteurianus 386B possessed only 
one putative ortholog, APA386B_2689, which was most similar to 
lpxL. Subsequently, a core oligosaccharide unit, of which the 
composition may differ between microorganisms, is synthesized and 
attached to lipid A (Raetz and Whitfield, 2002). Here, the pathway 
present in A. pasteurianus 386B diverged from the one known in 
E. coli, since only four out of 10 described enzymatic reactions to 
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synthesize the E. coli core oligosaccharide could be linked to putative 
A. pasteurianus 386B orthologs. Furthermore, two enzymes were 
missing in the pathway to produce ADP-L-glycero-D-manno-heptose. 
These reactions were nonetheless added to the model to allow for 
biomass formation (Supplementary Figure S9). Genes encoding 
enzymes to form the LPS precursors UDP-glucose and UDP-galactose 
were present, including the genes encoding phosphoglucomutase 
(EC 5.4.2.2), UTP-glucose-1-phosphate uridylyltransferase (EC 2.7.7.9), 
and UDP-glucose 4-epimerase (EC 5.1.3.2). Biosynthesis reactions 
for the formation of lipoprotein were not added to the A. pasteurianus 
386B GEM, since there was no information about its abundance 
in the biomass composition data used.

Model Validation
In vitro and in silico growth experiments were compared to validate 
the A. pasteurianus 386B GEM (Table  1). This strain has been 
routinely cultivated in a cocoa pulp simulation medium containing 
lactic acid, ethanol, and mannitol as the main carbon sources 
(Lefeber et al., 2010; Moens et al., 2014). Here, the carbon sources 
were tested separately to assess their influence on the predicted 
flux distribution in isolation. For all tested carbon sources, periplasmic 
proton exchange was necessary to obtain growth in silico.

Growth of A. pasteurianus 386B on lactic acid as the 
sole carbon source was found in silico as well as in vitro. 
CO2 and H2O were the sole metabolites secreted by the 
model, which was in accordance to the experimental results 
obtained with another A. pasteurianus strain (Adler et  al., 
2014). A. pasteurianus 386B was not able to grow on ethanol 
as the sole carbon source, which confirms the growth 
characteristics of A. pasteurianus and is in contrast to other 
species of the genus Acetobacter (Cleenwerck et  al., 2008). 
This result was also obtained when acetate was the sole 
carbon source. These results are probably related to the 
absence of genes encoding enzymes of the glyoxylate cycle 
in the A. pasteurianus 386B genome, since this cycle is known 
to be  crucial for growth on C2 sources such as ethanol and 
acetate (Illeghems et  al., 2013).

In contrast to the results of the in vitro growth experiments, 
in silico growth was possible on D-glucose and D-mannitol 
as the sole carbon sources. In both cases, FBA predicted their 
catabolism by the pentose phosphate pathway, leading to the 
formation of fructose-6-phosphate and glyceraldehyde-3-
phosphate. The latter was further catabolized in the lower part 
of the Embden-Meyerhof-Parnas (EMP) pathway. Due to the 

absence of a phosphofructokinase enzyme, fructose-6-phosphate 
was converted into glucose-6-phosphate, leading to a reaction 
flux cycle involving the pentose phosphate pathway and the 
upper part of the EMP pathway. A high NADPH+H+ production 
flux had to be  balanced to allow growth, which was mainly 
performed by a proton-translocating NAD(P)+ transhydrogenase. 
The contrasting results obtained for D-glucose and D-mannitol 
might be  explained by the fact that no specific transporter 
could be  identified for these metabolites or their oxidation 
products. In general, functional annotation of transporters is 
difficult because a limited number of transporters have been 
functionally characterized (Gelfand and Rodionov, 2008). It is 
therefore possible that D-glucose and D-mannitol are almost 
exclusively oxidized in the periplasm, forming D-gluconate and 
D-fructose, respectively (Moens et  al., 2014). In addition, the 
occurrence of a reaction flux cycle in the FBA prediction could 
be  an indication of the incapability of sugar catabolism to 
sustain growth of A. pasteurianus 386B.

A similar discrepancy for in vitro and in silico growth was 
found for glycerol. The predicted specific growth rate on glycerol 
was the highest of all carbon sources tested, but in silico growth 
was only possible if the reaction catalyzed by the aerobic 
glycerol-3-phosphate dehydrogenase (EC 1.1.5.3) was defined 
as being reversible. Here, a glycerol facilitator could be identified 
in the genome of A. pasteurianus 386B. No apparent reason 
for the absence of in vitro growth could be  identified in the 
flux distribution. However, the assumption of the presence of 
a catabolic glycerol-3-phosphate dehydrogenase may be  faulty 
or glycerol catabolism was not efficient enough for the bacterial 
cells to grow on glycerol as the sole carbon source.

Evaluation of the Manual Curation Process 
and Acetobacter pasteurianus 386B  
GEM Properties
Manual curation of GPR associations in the A. pasteurianus 
386B GEM was performed based on different information 
sources. Hereto, EC numbers were used, as these provide a 
defined classification of enzymatic reactions. However, GPR 
associations may be  complex and it is thus expected that 
curation will reveal inconsistencies in the functional annotations 
provided by the different annotation sources. For genes linked 
to reactions in the GEM, the differences between the manually 
curated EC numbers and the EC numbers provided by each 
annotation source were compared (Figure 4). Some annotation 
sources, such as eggNOG-mapper and NCBI 2017, did not 
provide much EC information. EggNOG-mapper annotations 
are characterized by long annotation notes, mostly descriptive 
and evading EC classification. For the NCBI annotation, the 
outcome is related to the RefSeq annotation version used that 
apparently only contained very few EC numbers. Although 
overall the EC numbers in the A. pasteurianus 386B GEM 
corresponded to the ones in the different annotation sources, 
differences were apparent at the main class or sub-subclass 
EC classification. The former indicated, for example, the 
occurrence of multi-functional enzymes, linked to more than 
one reaction, with EC numbers belonging to different classes. 

TABLE 1 | In vitro growth experiments and in silico predicted specific growth 
rate using different carbon sources.

Carbon source In vitro growth In silico specific growth rate (h−1)

D-glucose No 0.66
D-mannitol No 0.66
Glycerol No 1.12
Lactic acid Yes 0.85
Ethanol No 0.00
Acetic acid No 0.00
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Also, proton-translocating enzymes were recently re-classified 
in a new EC class of translocases (EC 7). The latter highlighted 
the subtleties of the manual curation process in defining the 
substrate and co-factor specificities.

The properties of the resulting A. pasteurianus 386B GEM, 
the curated A. pasteurianus 386B PGDB, and the models 
of the automatic reconstruction tools are summarized in 
Table 2. Compartmentalization differed between the different 
reconstructions, probably due to a difference in ways to 
represent a GEM from Gram-negative bacteria. However, 
since compartmentalization represents important physiological 
barriers, it most likely influences the GEM simulation results. 
As could be expected, the number of genes in the automatically 
reconstructed models was higher than for the A. pasteurianus 
386B GEM presented in the current study, as this reconstruction 
was performed manually and because some pathways were 

deliberately not included, such as the co-factor biosynthesis 
pathways. This latter decision was taken based on the 
assumption that the biosynthesis and degradation fluxes of 
the reaction co-factors were small compared to their 
involvement in the metabolic redox reactions. In contrast, 
the number of orphan reactions was much lower for the 
A. pasteurianus 386B GEM compared to the other models, 
providing causal links between reactions and enzyme-encoding 
genes in the genome. Also, the number of dead-end metabolites 
was low compared to the automatic reconstructions. Although 
dead-end metabolites could be  an indication of redundancy 
in the reconstruction, their presence may also reflect the 
uncertainty in the reactants and products of the different 
enzymatic reactions in the models, thus providing a 
compendium of possible reactants and products, as for example 
in the curated A. pasteurianus 386B PGDB.

FIGURE 4 | Comparison of EC number annotations of genes in the A. pasteurianus 386B GEM with EC numbers present in other annotation sources. The levels of 
agreement between annotated EC numbers were classified in a sub-subclass (three first numbers identical), subclass (two first numbers identical), main class (first 
number identical), and other class (different first number), according to the EC classification system. The number of genes classified in each class is shown for each 
of the annotation sources considered.

TABLE 2 | Properties of currently available reconstructed genome-scale metabolic models of A. pasteurianus 386B.

Property iAp386B454 CarveMe KBase MNX PGDB PGDB_curated

Compartments 2 3 2 3 0 0
Pathways NA NA NA NA 294 213
Genes 454 611 697 820 723 829
Reactions 322 1,424 1,061 2,712 1,514 1818
Exchange reactions (% 
of reactions)

17 (5%) 135 (9%) 98 (9%) 245 (9%) 0 (0%) 0 (0%)

Irreversible reactions 
(% of reactions)

135 (42%) 946 (66%) 477 (45%) 1,451 (54%) 1,052 (69%) 1,493 (82%)

Orphan reactions (% 
of reactions)

32 (10%) 473 (33%) 107 (10%) 778 (29%) 468 (30%) 308 (16%)

Metabolites 296 1,078 1,026 1,535 1,608 1,759
Dead-end metabolites 
(% of metabolites)

2 (1%) 19 (2%) 305 (30%) 90 (6%) 701 (43%) 719 (40%)

Curated reconstructions include iAp386B454 and PGDB_curated. Draft reconstructions include CarveMe, KBase, MNX, and PGDB (Pathway Tools). Exchange reactions represent a 
possible exchange of metabolites with the environment. Irreversible reactions are based on the flux bounds in the SBML file. Orphan reactions have no GPR association. Dead-end 
metabolites have only a single reaction partner. NA, not available.
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CONCLUSION

During the genome re-annotation of A. pasteurianus 386B, the 
functional annotation of predicted enzymes and transporters was 
targeted, as these are critical for an accurate genome-scale metabolic 
network reconstruction. To improve the quality of the re-annotation, 
information from multiple, different annotation sources was 
combined, which proved to be  a good strategy to guide manual 
curation of GPR associations. This methodology was combined 
with the prediction of orthogroups, using genomes of related 
species, which was further fine-tuned with information from the 
literature. Finally, using the Pathway Tools software allowed to 
set the annotation content in a metabolic pathway context. In 
this way, possible links between the different biosynthesis pathways, 
necessary for the biomass formation, were identified.

The re-annotated A. pasteurianus 386B genome was used 
to compile a curated GEM, named iAp386B454, containing 
454 genes, 322 reactions, and 296 metabolites embedded in 
two cellular compartments. The GEM is available in SBML 
level 3 format and as a curated Pathway Tools PGDB and 
represents the first in silico genome-scale metabolic network 
reconstruction of a species of the genus Acetobacter. The 
reconstructed model was validated by performing growth 
experiments in a defined medium, which revealed that lactic 
acid as the sole carbon source could sustain growth of this strain.

Nevertheless, it became clear that some knowledge gaps 
remained, for example for the reconstruction of the biosynthesis 
pathways of cell constituents, especially for the cell envelope. 
Also, the combination of genome re-annotation and growth 
experiments could not resolve the presence of all metabolite 
transporters. The results obtained in this study will help to guide 
future research to close these knowledge gaps in A. pasteurianus.
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