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Abstract 

Objective:  An excessive rise in blood lipids during pregnancy may promote metabolic dysfunction in adult prog‑
eny. We characterized how maternal phytosterol (PS) supplementation affected serum lipids and the expression of 
lipid-regulatory genes in the intestine and liver of newly-weaned apo-E deficient offspring from dams fed a chow diet 
supplemented with cholesterol (0.15%, CH) or cholesterol and PS (2%) (CH/PS) throughout pregnancy and lactation.

Results:  Serum lipid concentrations and lipoprotein particle numbers were exacerbated in offspring from choles‑
terol-supplemented mothers but normalized to chow-fed levels in pups exposed to PS through the maternal diet 
during gestation and lactation. Compared with the CH pups, pups from PS-supplemented mothers demonstrated 
higher (p < 0.05) expression of the primary intestinal cholesterol transport protein (Niemann-Pick C1-like 1) and the 
rate-limiting enzyme in hepatic cholesterol synthesis (HMG-CoAr), suggestive of a compensatory response to restore 
cholesterol balance. Furthermore, pups from PS-supplemented mothers exhibited a coordinated downregulation 
(p < 0.05) of several genes regulating fatty acid synthesis including PGC1β, SREBP1c, FAS, and ACC compared with 
the CH group. These results suggest that maternal PS supplementation during hypercholesterolemic pregnancies pro‑
tects against aberrant lipid responses in newly-weaned offspring and results in differential regulation of cholesterol 
and lipid regulatory targets within the enterohepatic loop.
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Introduction
Hypercholesterolemia is a considerable public health 
issue in the United States affecting roughly 30% of the 
population [1]. Transient elevations in maternal blood 
lipids during pregnancy are essential for embryogenesis, 
early organ development, and whole-body fetal growth 
[2–5]. However, a growing body of literature suggests 
that excessive maternal hyperlipidemia during preg-
nancy, termed maternal supraphysiological hypercho-
lesterolemia (MSPH) [6, 7], can adversely program fetal 
lipid metabolism predisposing offspring to increased 

cardiovascular disease (CVD) risk as adults by alter-
ing hepatic cholesterol metabolism [8, 9] and accelerat-
ing the development of arterial fatty streaks [10] and 
advanced arterial lesions [11]. Napoli et al. [10] reported 
that aborted fetuses from hypercholesterolemic moth-
ers had significantly more and larger lesions compared 
with those from mothers with a normal cholesterol 
range [10]. A follow up autoptic study including 156 chil-
dren (1–14 years old) suggested that although fetal fatty 
streaks may regress after birth, arterial lesions develop 
‘strikingly’ faster in children whose mothers were hyper-
cholesterolemic during pregnancy versus normocholes-
terolemic mothers [11].

As the use of statins in expectant mothers and women 
trying to conceive is contraindicated due to potential 
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teratogenic effects [12], we have conducted studies to 
examine if phytosterols (PS), plant-based cholesterol-
lowering compounds, have utility in the prevention and 
management MSPH [13, 14]. Results from these studies 
suggest that newly-weaned offspring from PS-supple-
mented mothers during gestation and lactation are largely 
protected against an early dyslipidemic phenotype com-
pared with offspring from hypercholesterolemic mothers. 
However, the potential molecular mechanisms associated 
with these lipid responses have yet to be examined. Thus, 
the primary objective of this study was to characterize 
alterations in lipid regulatory gene expression within the 
enterohepatic loop in newly-weaned apoE deficient off-
spring exposed to PS through the maternal diet during 
gestation and lactation. We have used the apoE deficient 
mouse as this model demonstrates a genetic predisposi-
tion to hypercholesterolemia which is further exacer-
bated upon consumption of a high cholesterol diet [15], 
responds to the cholesterol-lowering actions of phytos-
terols (unlike wildtype C57BL6/J mice) [16–19], and has 
been utilized in previous maternal programming studies 
to examine excessive early cholesterol exposure [20, 21].

Main text
Methods
The experimental design has been described previ-
ously [14]. In short, twenty-four mature (3-month old) 
female mice homozygous for disruption of the apoE gene 
(apoE−/−KO, strain B6.129P2-Apoetm1Unc >/J) were pur-
chased from Jackson laboratory. The mice were randomly 
assigned (n = 8/group) to 1 of 2 commercial nonpurified 
diets (Teklad 2019 Harlan Laboratories (% energy from 
protein, 21.4; fat, 19.9; and carbohydrate, 58.7): (i) choles-
terol supplemented chow (0.15%, w/w, CH, TD.140285), 
and (ii) cholesterol (0.15%, w/w) and PS (2%, w/w) sup-
plemented chow (CH/PS, TD.140286; PS sourced from 
Forbs Medi-Tech Corp, Kearny, NJ). An additional con-
trol group of chow-fed animals were included (n = 8) to 
provide reference values for the normal blood lipid and 
lipoprotein measurements in newly-weaned apoE defi-
cient offspring but were not used for subsequent gene 
expression studies. Females were mated for 1  week (1 
male per 2 females) with male apoE−/−KO breeders (main-
tained on a chow diet) and litters were culled to n =  6 
pups per dam to minimize variability in postnatal pup 
development influenced by litter size. Throughout the 
suckling period the dams remained on their respective 
diets. At weaning (d21), the dams and pups were anesthe-
tized with isoflurane for blood and tissue collection.

Fasting (15 h) blood was collected by cardiac puncture 
and intestinal and liver tissue were excised and stored at 
–  80  °C for further processing. Serum cholesterol panel 
(total-C, HDL-C, and direct LDL-C) and triglyceride 

(TG) were analyzed by automated enzymatic kits (Seki-
sui Diagnostics, Lexington, MA, USA) on an ABX Pentra 
400 autoanalyzer (Horiba Instruments Inc., Irvine CA, 
USA) using appropriate calibrators and controls as speci-
fied by the manufacturer. Lipoprotein particle number 
was analysed by nuclear magnetic resonance spectros-
copy (LabCorp) [22]. Serum PCSK9 concentration was 
measured in serum by ELISA according to the manufac-
turer instructions (R&D Systems, MPC900).

RNA extraction and real-time RT-PCR were conducted 
according to previously published procedures [13]. Gene 
expression was analyzed using the 2(-delta delta Ct) 
method [36]. Sequences of gene primers were based on 
previously published reports for β-actin [23], peroxisome 
proliferator-activated receptor α (PPARα) [24], carni-
tine palmitoyltransferase Iα  (CPT1α) [25], peroxisome 
proliferator-activated receptor gamma coactivator 1-beta 
(PGC1β) [26], sterol regulatory element binding protein 
1c (SREBP1c) [27], acetyl-coA carboxylase 1 (ACC1) [28], 
fatty acid synthase (FAS) [29], 3-hydroxy-3-methyl-glu-
taryl-coenzyme A reductase (HMG-CoAr) [30], SREBP 
cleavage activating protein (SCAP) [30], low-density 
lipoprotein receptor (LDLr) [31], proprotein convertase 
subtilisin/kexin type 9 (PCSK9) [32], sterol regulatory 
element-binding protein 2 (SREBP2) [31], liver X recep-
tor (LXR) [27], ATP binding cassette subfamily A mem-
ber 1 (ABCA1) [31], ATP binding cassette subfamily G 
member 1 (ABCG1) [31], ATP binding cassette subfamily 
G member 5 (ABCG5) [31], ATP binding cassette sub-
family G member 8 (ABCG8) [31], niemann-pick C1-like 
1 (NPC1L1) [33], organic solute transporter α and β 
(Ostα/β) [34], farnesoid X-activated receptor (FXR) [31], 
microsomal triglyceride transfer protein (MTP) [31], 
fatty acid binding protein 2 (FABP2) [35], cluster of dif-
ferentiation 36 (CD36) [36], and low-density lipoprotein 
receptor (LDLR) [37].

Statistical analyses
Litters from each dam were counted as a single observa-
tion. Blood lipids and lipoproteins concentrations in the 
main treatment groups (CH and CH/PS) were compared 
alongside normal chow-fed offspring using a general lin-
ear model ANOVA with a Bonferonni post hoc test [38]. 
Gene expression patterns were compared between the 
CH and CH/PS groups only using a one-way ANOVA. 
Data were analyzed with SPSS 16 for Mac (SPSS Inc, 
Chicago, IL). Data are presented as mean ± SEM. Differ-
ences were considered significant at p ≤ 0.05. One dam 
in the CH/PS group was terminated early, therefore the 
final number of animals per group was n = 8 chow, n = 8 
CH, and n = 7 CH/PS.
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Results
At gestation week 2, cholesterol-fed mothers (CH) 
demonstrated higher (p  <  0.05) serum total cholesterol 
(+  70%) and triglyceride (+  28%) concentrations com-
pared with chow mothers, but this response was normal-
ized in the CH/PS mice (Table  1). Maternal cholesterol 
feeding during gestation and lactation resulted in dyslipi-
demic newly-weaned pups with higher (p < 0.05) serum 
total-cholesterol, LDL-C, and TG compared to chow 
pups (Table  1). However, maternal PS supplementation 
protected against this dyslipidemic response with off-
spring from PS-supplemented mothers demonstrating 
lower (p  <  0.05) serum lipids (total-C, LDL-C and TG) 
compared with the CH groups. No change (p > 0.05) was 
observed in HDL-C concentrations between the groups. 
Additionally, offspring from cholesterol-fed mothers 
(CH) had higher total number of serum LDL, HDL, and 
VLDL particles compared to the chow group but this 
was normalized to chow-fed levels upon maternal PS 
supplementation.

Compared with CH offspring, offspring from PS-sup-
plemented mothers demonstrated higher (p < 0.05) intes-
tinal NPC1L1 (+ 1.6-fold of CH, Fig. 1a) expression and 
lower (p < 0.05) expression of the alpha sub-unit (OSTa) 
of the heterodimeric ileal basolateral bile acid transport 
protein OSTa/OSTb (0.6-fold of CH, Fig. 1a). No changes 
(p  >  0.05) in lipid regulatory targets were observed 
between the two groups (Fig. 1b).

New-weaned pups from PS-supplemented mothers 
demonstrated higher (p  <  0.05) hepatic mRNA expres-
sion of HMG-CoAr (+ 5.4-fold of CH), SCAP (+ 1.7-fold 
of CH), and PCSK9 (+ 1.4-fold of CH) compared with the 

CH group (Fig.  2a). However, increased hepatic PCSK9 
transcription did not reflect in any change (p > 0.05) in 
serum PCSK9 concentration between the CH and CH/
PS groups (10.8 ± 2.2 vs. 12.6 ± 1.5 µg/mL, respectively). 
Although no difference was observed between the CH 
and CH/PS groups in the expression of hepatic fat oxida-
tive regulators (CPT1α or PPARα), pups from PS-supple-
mented mothers demonstrated a reduction (p < 0.05) in 
several genes that regulate fatty acid synthesis including 
PGC1β (0.5-fold of CH), SREBP1c (0.43-fold of CH), FAS 
(0.55-fold of CH), and ACC (0.49-fold of CH) (Fig. 2b).

Discussion
Serum lipids and lipoprotein concentrations were exac-
erbated in offspring from cholesterol-supplemented 
mothers but were normalized to chow-fed levels in 
pups exposed to PS through the maternal diet during 
gestation and lactation. Gene expression results indi-
cate that due to a likely interference with in utero and/
or postnatal cholesterol transfer, offspring from PS sup-
plemented mothers had enhanced intestinal cholesterol 
absorption and hepatic cholesterol synthesis as reflected 
by higher NPC1L1 and HMG-CoAr expression, respec-
tively. Results further suggest that early exposure to PS 
resulted in a coordinated reduction in hepatic lipogenic 
gene expression which may underlie the TG-lowering 
response observed in these animals.

The effects of maternal PS supplementation on lipid 
metabolism in newly-weaned offspring is likely medi-
ated through multiple contributing mechanisms includ-
ing the limitation of excessive cholesterol transfer during 
gestation, the alteration of lipid milk composition during 
the suckling period, and/or direct effects of PS on lipid-
regulatory gene expression patterns within offspring. 
The expression of a variety of lipid transport proteins in 
placental trophoblasts and endothelial cells regulates the 
transfer of lipids and cholesterol from the maternal to the 
fetal circulation [39, 40]. A lowering of total body choles-
terol balance in PS-supplemented mothers, as evidenced 
by reduced gestational serum cholesterol and TG, would 
likely limit cholesterol transfer between the mother 
and developing fetus. However, as far as we are aware, 
there are no studies examining placental lipid transport 
in response to PS. It is equally likely that interruption 
of maternal lipid transfer during lactation could have 
contributed to the observed lipid changes in offspring 
through altered milk composition of cholesterol and/or 
TGs. However, in a previous human study, Mellies et al. 
[41] detected no change in cholesterol concentration in 
breast milk following maternal PS supplementation in the 
lactation period (30 days) despite a reduction in maternal 
plasma cholesterol levels [41]. Whether maternal PS sup-
plementation inhibited cholesterol transfer to offspring 

Table 1  Serum lipids in  dams (gestation week 2) 
and  newly weaned offspring (postnatal day 21) 
from  mothers fed a chow diet, the chow diet supple-
mented with  cholesterol (CH), or cholesterol and  phytos-
terol (CH/PS) during gestation and lactation

a, b, c  Groups not sharing a superscript are significantly different (p < 0.05). Data 
are mean ± SE; n = 8 chow, n = 8 CH, n = 7 CH/PS

Endpoint Chow CH CH/PS

Maternal lipids (mmol/L), gestation week 2

 Total-C 3.73 ± 0.51a 6.36 ± 1.23b 4.23 ± 0.34a

 Triglycerides 0.61 ± 0.02a 0.78 ± 0.09b 0.60 ± 0.02a

Offspring lipids (mmol/L), postnatal day 21

 Total-C 10.9 ± 0.4a 12.5 ± 0.5b 9.4 ± 0.3c

 LDL-C 2.6 ± 0.1a 3.62 ± 0.1b 1.88 ± 0.1c

 HDL-C 0.60 ± 0.0a 0.67 ± 0.1a 0.53 ± 0.0a

 Triglycerides 1.13 ± 0.0a 2.09 ± 0.4b 1.22 ± 0.1a

Offspring lipoprotein particle number (µmol/L), postnatal day 21

 Total LDL Particles 378.1 ± 27.7a 676.3 ± 114.0b 442.5 ± 28.5a

 Total HDL Particles 12.3 ± 0.5a 16.3 ± 1.6b 11.5 ± 0.5a

 Total VLDL Particles 217.9 ± 9.9a 292.4 ± 9.2b 201.3 ± 6.7a
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in utero or during lactation, gene expression data in both 
the intestine and liver support a compensatory increase 
in intestinal cholesterol uptake through the primary 
intestinal cholesterol transport protein NPC1L1 [42] and 
the rate-limiting enzyme in hepatic cholesterol, HMG-
CoAr. This gene expression pattern may well reflect an 
effort to restore cholesterol lipid balance as cholesterol is 
critical for early development [43]. Although there are no 
other maternal PS supplementation studies with which to 
compare our gene expression data, previous PS supple-
mentation studies in adult animals have reported variable 
expression of NCP1L1 [44–47] and a more consistent 

increase in HMG-CoAr expression [48, 49] and choles-
terol synthesis [50–52].

We observed a coordinated reduction in the hepatic 
expression of a host of regulatory genes involved in de 
novo fatty acid synthesis including the rate-limiting 
enzymes ACC and FAS a reduction in the expression 
of PGC1β and SREBP1, critical molecular regulators 
that enhance hepatic fat synthesis [53]. In support of 
these observations, we recently reported a reduction in 
de novo lipogenesis and an associated down-regulation 
of hepatic FAS protein abundance in adult male Syrian 
golden hamsters fed a high fat diet supplemented with 

a

b

Fig. 1  Intestinal mRNA expression of cholesterol (a) and lipid regulatory targets (b) in newly-weaned apo-E deficient mice from mothers fed a cho‑
lesterol-enriched chow diet (CH) or the chow diet supplemented with cholesterol and phytosterol (CH/PS) during gestation and lactation. All genes 
were normalized to the CH group and expressed relative to β-actin. * denotes significance (p < 0.05). Data are mean ± SE; n = 8 CH, n = 7 CH/PS
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PS [54]. It is tempting to speculate that the reduction 
in hepatic lipogenic genes may be related to the lower 
serum TG and VLDL particles observed in pups from 
PS-supplemented mothers. In support of a TG-lowering 
mechanism of hepatic origin, Schonewille et al. recently 
reported a reduction in hepatic VLDL secretion in male 
C57BL/6  J  mice fed a high fat diet supplemented with 
3.1% PS or stanol esters for 3 weeks [55].

In summary, maternal hypercholesterolemia dur-
ing pregnancy resulted in an overt dyslipidemia in 

newly-weaned pups that was normalized through mater-
nal PS supplementation throughout the pregnancy and 
lactation periods. Pups from PS-supplemented moth-
ers demonstrated higher intestinal NPC1L1 and hepatic 
HMG-CoAr mRNA expression, suggestive of a compen-
satory response to restore cholesterol balance. The effects 
of maternal PS supplementation in normalizing blood 
TG concentration and VLDL particle numbers is likely 
associated with a coordinated down-regulation of hepatic 
lipogenic gene expression.

a

b

Fig. 2  Hepatic mRNA expression of cholesterol (a) and lipid regulatory targets (b) in newly-weaned apo-E deficient mice from mothers fed a cho‑
lesterol-enriched chow diet (CH) or the chow diet supplemented with cholesterol and phytosterol (CH/PS) during gestation and lactation. All genes 
were normalized to the CH group and expressed relative to β-actin. *denotes significance (p < 0.05). Data are mean ± SE; n = 8 CH, n = 7 CH/PS
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Limitations
Although our data demonstrates hepatic transcriptional 
changes in lipid regulatory genes in newly-weaned off-
spring exposed to excessive cholesterol and the protec-
tive effects of maternal PS supplementation, it is unclear 
if these changes are the result of prenatal versus postna-
tal exposure and if the observed hepatic adaptations will 
persist into adult life.
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