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A powerful investigative tool in biology is to consider not a single mathematical model but
a collection of models designed to explore different working hypotheses and select the
best model in that collection. In these lecture notes, the usual workflow of the use of
mathematical models to investigate a biological problem is described and the use of a
collection of model is motivated. Models depend on parameters that must be estimated
using observations; and when a collection of models is considered, the best model has
then to be identified based on available observations. Hence, model calibration and se-
lection, which are intrinsically linked, are essential steps of the workflow. Here, some
procedures for model calibration and a criterion, the Akaike Information Criterion, of
model selection based on experimental data are described. Rough derivation, practical
technique of computation and use of this criterion are detailed.

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Motivation

Richard Casement wrote (Casement, 1984) “It is a common fallacy to confuse scientists’models of reality with reality itself.
A model is a map. A map is not the territory it describes”. For instance, if wewanted to cross Canada by bike, wewould need a
road map of Canada with the elevation and inclination to be able to select the shortest route with the least difference in
elevations. A political map of Canada representing the provinces, which is another model of Canada, will however be useless
for the purpose of crossing Canada by bike. Hence, before writing a mathematical model, the question to be investigated has
to be carefully defined, since a good answer to a poor question is still a poor answer (Burnham & Anderson, 2002).

Once the question is determined, the modelling process comprises several steps that can be organized in a recursive way.
Based on experimental data available, the model variables and parameters are defined. To make the model as simple as
possible, assumptions have to be made, identifying the important processes governing the problem investigated in the
perspective of the question considered. Then, using basics principles governing the variables considered, such as physical
laws or types of interactions, equations of the model can be written using the appropriate mathematical formalism. The well-
posedness of the model such as the consistency of units, existence and uniqueness of solutions and non-negativity of so-
lutions (if needed) have to be verified.

Once the model is written, its mathematical analysis has to be conducted to characterize its behaviour using the
appropriate mathematical techniques and theories. Numerical experiments then need to be conducted. Adequate numerical
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methods have to be carefully chosen to ensure the accuracy of numerical solutions of the model. Numerical experiments
require the choice of values for model parameters. These values can be chosen from published work or estimated by cali-
brating the model responses to experimental data. Sensitivity analysis can help to understand the effects of model inputs
(parameters or initial conditions) on model outputs and identify parameters that are the key drivers of the model responses.
Finally, the model must represent accurately the observed process, it must reproduce known states of the real process. If
several models are considered, model selection has to be used to identify the best model to represent the data. Ultimately, the
proposed mechanism identified by the (best) model has to be validated by further experiments. The typical workflow used in
mathematical biology is represented in Fig. 1.

The next example, adapted from (Zhang, Cao, & J Carroll, 2015), motivates the use of a collection of models and gives an
illustration of its design.

Example 1.1. If wewant to investigate the interactions between a population of rabbits and a population of foxes on a specific
territory in which it is known that the foxes are specialist predators (foxes feed only on rabbits), we can propose a mathe-
matical model using the formalism of ordinary differential equations. To do so, the following mechanisms have to be
described:

� dynamics of predators in absence of preys,
� dynamics of preys in absence of predators,
� interactions between preys and predators.

For the dynamics of predators in absence of preys, the assumptions are pretty specific and allow us to write that the
dynamics shows exponential decay. However, for the rabbit population, we have no specification. Hence, we could describe
the dynamics of rabbits in absence of predators as an exponential growth, to translate an unlimited growth of the rabbit
population, or as a logistic term to specify the limitation of the rabbit population due to the environmental supply. Similarly,
for the interactions between the two populations, the predator-prey link can be described by different functional responses; a
mass action type term or a saturating rate could be hypothesized. The saturating rate would describe the fact that even if the
amount of rabbit is infinite, foxes cannot consume rabbits faster than some maximal rate. Different translations of the
saturating process can be used; see for instance Fig. 2. Here, to write the model, we use a Michaelis-Menten type or Holling
type II saturating term (left panel of Fig. 2).

The different assumptions yield different terms and then different models. Here, we consider three candidate models.

Model I Model II Model III
dR
dt

¼ aR� bRF
dR
dt

¼ a
�
1� R

k

�
R� bRF

dR
dt

¼ aR� bRF
1þ fR

dF
dt

¼ �cF þ eRF
dF
dt

¼ �cF þ eRF
dF
dt

¼ �cF þ eRF
1þ fR
Fig. 1. Mathematical biology workflow; adapted from (Portet, 2015).



Fig. 2. Different translations of saturating rates. (Left) Hyperbolic saturation: as the amount increases the rate increases but slowing down (Michaelis-Menten
dynamics or Holling type II function). (Right) Sigmoidal saturation: from a slow to rapid rate, “switch-like” rise toward to the limiting value or Holling type III
function (Cooperativity).
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Model I is the famous Lotka-Volterra model in which the rabbits grow exponentially. Model II describes a limitation of the
rabbit population due to environmental factors. Model III is characterized by a saturating rate in the functional response.
These threemodels are non-nested, as, for instance, Model II cannot be obtained from any othermodels. However, we can also
define a general model

dR
dt

¼ aR� vR2 � bRF
1þ fR

dF
dt

¼ �cF þ eRF
1þ fR

:

Each of the three models is a particular case of the general model obtained by setting some parameters to zero:

� v ¼ f ¼ 00 Model I (Lotka-Volterra model),
� f ¼ 00 Model II (with logistic dynamics for preys),
� v ¼ 00 Model III (with saturating rate in functional response).

The three models are therefore nested models of the general model. Note that from the general model, more nested
models can be defined by setting other subsets of parameters to zero.

In Example 1.1, due to lack of knowledge of the processes, we had to consider different assumptions for a givenmechanism.
Furthermore, we could have used different translations for the saturating rate; that yields the definition of a collection of
models. The design of a collection of models can be also used to mimic the well known positive and negative control
experimental protocol used in experimental sciences. Considering a collection of models will allow the identification of a
most plausible scenario for the defined problem. Systematic modelling of all possible scenarios is a powerful approach; see,
for instance, (Gotoh et al., 2016).

Once we have a collection of models depending on unknown parameters, two questions have to be addressed. What are
the parameter values? What is the best model to represent the experimental data? The first question will be solved using
parameter estimation or model calibration methods. The second question can be addressed by model selection methods,
which can be divided into two types:

� information theory criteria,
� statistical tests.

Here, only information theory based selection model methods are presented.

2. Model calibration

A mathematical model depends on independent variable(s), dependent variable(s) or state variable(s) and parameters p.
Parameters of the model have (biological) interpretations and their values are unknown. Hence, we need to estimate the
model parameters (find appropriate values) from measurements (the experimental data) in presence of errors in measure-
ments. Here, two general (optimal) methods for parameter estimation are presented:

� Least Squares (LS), in which an objective function (sum of squared residuals of all measurements) is minimized.
� Maximum Likelihood (ML), in which the likelihood function is maximized.
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Both LS andMLmethods are optimization problems and provide point estimates. Other types of methods such as Bayesian
inferences use the likelihood combined with priors on parameters to provide posterior distributions of parameters (Coelho,
Codeço, & Gomes, 2011; Friston, 2002).

After presenting LS and ML methods, we will show that if the measurement errors are independent and normally
distributed with a common variance, both methods are equivalent and give the same estimate for the mathematical model
parameters.

2.1. A few words on optimization

When an analytic expression of the function to be optimized f ðpÞ is known and has appropriate properties, the following
well known result can be used to find local extrema.

Theorem 2.1. A smooth function f ðpÞ attains a local minimum (resp. maximum) at bp if the following two conditions hold

� the gradient vf ðpÞ
vp vanishes at bp

� the Hessian HðpÞ with ði; jÞth entry v2f ðpÞ
vpivpj

is positive definite (resp. negative definite) at bp, or

zTHðpÞz>0 ðresp: < 0Þ;

where z is any real non-zero vector.

If f ðpÞ is non-smooth, the local extrema are at the discontinuity of f ðpÞ or where the gradient vf ðpÞ
vp is discontinuous or

vanishes.
However, when the analytic expression of the function to be optimized f ðpÞ is unknown or lacks appropriate properties,

search methods have to be used. These methods can be categorized as local or global optimization methods (Pitt & Banga,
2019; Sagar, LeCover, Shoemaker, & Varner, 2018). Local optimization methods are faster but might converge to local op-
tima that are suboptimal solutions or only find a global optimum for appropriate starting points. Gradient descent-based
methods such as Levenberg-Marquardt or Gauss-Newton or derivative-free local search methods such as simplex or
Nelder-Mead are local optimization methods. Global optimization methods, which are heuristic or meta-heuristic methods,
are more time consuming. Some examples of global optimizationmethods are the simulated annealing, genetic algorithms or
particle swarm methods.

2.2. Least squares

The aim of the LS method is to find parameter values of the model that minimize the distance between data and model
output. First, a simple case of the problem to solve is described.

� Observation: we have n data points ðti; yiÞ with i ¼ 1;…;n; where ti are the values of the independent variable t.
� Model: the model is a differentiable function f ðt; pÞ that depends on t and p, the latter being a k� vector of parameters (k
parameters).

� Criterion: the total error between the model and data is defined as the residual sum of squares (RSS), the sum of squared
residuals,

RSSðpÞ¼
X
i¼1

n

ðyi � f ðti; pÞÞ2 (1)
and depends on p. The residual is the difference between the actual value yi (data) and the predicted value f ðti; pÞ at a value of
the independent variable ti.

� Solution: the solution is the k� vector of parameter values bplsq (the LS Estimate) that minimizes the sum of squares of
vertical distances between data points and model points,

RSS
�bplsq

�
¼min

p
RSSðpÞ:
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Hence, based on Theorem 2.1, possible solutions for bplsq can be obtained by setting the gradient equal to zero

vRSS
vpj

¼0; j ¼ 1;…; k;
yielding

�2
X
i¼1

n

ðyi � f ðti; pÞÞ
vf ðti; pÞ
vpj

¼0; j¼1;…; k: (2)
Then, solve the k equations for pj with j ¼ 1;…;k.

Example 2.1. To illustrate, we consider the temporal evolution of the US population from 1790 to 2000; data are obtained
from the US census (Fig. 3). Observations consist of n ¼ 22 data points ðti; yiÞ ¼ (year, population) with i ¼ 1;…;22. Based on
the trend of data, we can hypothesize different forms for the model f, such as

� A quadratic function in t (years, the independent variable),

f ðt; a; b; cÞ¼ y¼ at2 þ bt þ c;
then k ¼ 3 parameters are to be estimated and p ¼ ða;b;cÞ.

� An exponential function in t (years),

f ðt; a; bÞ¼ y¼ aebt :
Using the change of variable lny ¼ Y , we obtain

ln y¼Y ¼ ln aþ bt ¼ Aþ bt:
Here, k ¼ 2 parameters are to be estimated and p ¼ ðA;bÞ.
Notice that both models are linear in the parameters; hence, equation (2) to be solved to estimate parameter values is a

linear system in p. Here, we only explicitate the solution of the problem when the exponential function is used.
When the exponential form is considered, the change of variable ln y ¼ Y is used to make the model linear in the pa-

rameters; hence, the analytic expression of the RSS (1) takes the following form:
Fig. 3. (Left) US population (in millions) from 1790 to 2000; data from the US census, https://www.u-s-history.com/pages/h980.html. (Right) Data and best fits of
the quadratic function f ðtÞ ¼ 0:0067t2 � 24:0358t þ 21620:47 and exponential function f ðtÞ ¼ 1:2162� 10�15e0:0202t .

https://www.u-s-history.com/pages/h980.html
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RSSðA; bÞ¼
Xn
i¼1

ðlnyi � ðAþ btiÞÞ2:
We want to find values of A and b that minimize RSSðA;bÞ. By setting its gradient to zero to find critical points of RSSðA;bÞ,
(2) is then

X
i¼1

n

ðlnyi � ðAþ btiÞÞ
vðAþ btiÞ

vA
¼
X
i¼1

n

ðlnyi � ðAþ btiÞÞ ¼ 0;

X
i¼1

n

ðlnyi � ðAþ btiÞÞ
vðAþ btiÞ

vb
¼
X
i¼1

n

ðlnyi � ðAþ btiÞÞti ¼ 0:
These two necessary conditions for the existence of a local extremum can be rewritten in matrix form as follows

24 n
Pn
i¼1

ti

Xn
i¼1

ti
Pn
i¼1

t2i

35� bAbb
�
¼
" Xn

i¼1

lnyi

Xn
i¼1

ti lnyi

#
;

where bA and bb (LS estimates of A and b) are the unique solutions if the matrix is non-singular. In such a case, using Cramer’s

rule, the unique solution that minimizes RSS is

bA ¼
Xn

i¼1
lnyi

Xn

i¼1
t2i �

Xn

i¼1
ti lnyi

Xn

i¼1
ti

n
Xn

i¼1
t2i �

�Xn

i¼1
ti
�2 ;

bb ¼
n
Xn

i¼1
ti lnyi �

Xn

i¼1
lnyi

Xn

i¼1
ti

n
Xn

i¼1
t2i �

�Xn

i¼1
ti
�2 :
Results are given on the right panel of Fig. 3.
Note that the two models considered in Example 2.1 are not explanatory models but descriptive models. They have a

strong predictive power but they cannot encode any underlying process to explain the trend in data. For instance, with these
two models, we cannot decide if the increase of the population is due to either an increase in fertility, a decrease in the death
rate or the contribution of immigration. To unravel the processes responsible for the trend in data, a mechanistic approach
needs to be followed and explanatory models need to be designed by modelling the hypothesized underlying mechanisms
such as, for instance, in Example 1.1. Hence, when the ODE formalism is used, explanatory models can be expressed as follows

dx
dt

¼mðx; p; tÞ; xðt0Þ¼ x0ðpÞ; with hðx; p; tÞ¼ ~y; (3)

where t is the independent variable, xðtÞ is the vector of state variables, x0 is the vector of initial conditions and p is the vector
of unknown constant parameters. The observable function h depends on model inputs and outputs.

Now, the LS method detailed above is generalized. To find the vector of parameter values p that minimizes the distance
between measured and simulated observations, the scalar objective function (cost function), FlsðpÞ, is defined:

FlsðpÞ¼
X
e¼1

ne X
o¼1

ne
o X

i¼1

ne;o
i

ue;o
i

�
yoeðtiÞ � ~yeoðti; pÞ

	2
; (4)

with ne the number of experiments, neo the number of observables per experiments and ne;oi the number of samples per

observable per experiment. Also, yoeðtiÞ are measured data, ue;o

i are weights and ~yeoðti; pÞ are simulated observable outputs.
Then, an optimization method to minimize FlsðpÞ has to be chosen to find bpLSE (the LS Estimate) such that

FlsðbpLSEÞ¼min
p

FlsðpÞ:
Note that when models as defined in (3) are considered, analytic expressions of observables ~ymight not exist; in this case,
only their numerical approximations can be used to compute (4). Hence, prior to any model calibration, the mathematical
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analysis of the ODE model (3) has to be carried out to characterize the model behaviour in as much detail as possible. For
instance, if the model (3) presents an oscillatory regime, specific search methods will have to be used (Pitt & Banga, 2019).
2.3. Maximum likelihood

Experimental data y ¼ ðy1;…; ynÞ can be interpreted as a random sample generated from an unknown probability dis-
tribution function (pdf) depending on parameters p ¼ ðp1;…; pkÞ. Then, a model is defined as a family of probability dis-
tributions indexed by the model’s parameters,

f ðyjpÞ¼probability of observing data y given the parameter p:
If the observations yi are statistically independent of one another, the pdf of observing the data y ¼ ðy1;…; ynÞ given the
parameter vector p is the multiplication of the pdfs for individual observations

f ððy1;…; ynÞjðp1;…; pkÞÞ¼ f ðy1jðp1;…; pkÞÞf ðy2jðp1;…; pkÞÞ
/f ðynjðp1;…; pkÞÞ:
The function f ððy1;…; ynÞjðp1;…; pkÞÞ is the probability of observing data y for a given value of p and is a function of data y.
Varying the parameter p across its range defines a family of pdfs that makes up the model.

Hence, the inverse problem to solve is to find the pdf among all the pdfs of the family that is the most “likely” to have
produced the data y. To attack the problem, a function of parameters p needs to be defined. Hence, the likelihood function L
is the density function regarded as a function of p

L ðpjyÞ¼ f ðyjpÞ:
The role of data y and parameters p is reversed. The likelihood of a particular value for a parameter is the probability of
obtaining the observed data y if the parameter had that value. It measures howwell the data supports that particular value of
parameters. The density function f (function of y, data scale) gives the probability of observing y given the parameter p and
sums to 1 over all the possible values of y. The likelihood function L is a function of p (parameter scale) given the data and
does NOT sum to 1 over the possible values of p.

The inverse problem to solve is equivalent to seeking the value bpMLE ¼ ðbp1;MLE;…; bpk;MLEÞ of the parameter vector p that
maximizes the likelihood function L ðpjyÞ. In practice, the log-likelihood lnL ðpjyÞ will be considered. As the logarithm is a
monotonically increasing function, maximizing L ðpjyÞ is equivalent to maximizing the log-likelihood lnL ðpjyÞ to find the
Maximum Likelihood Estimator bpMLE. A bpMLE satisfies the following conditions based on Theorem 2.1:

� Necessary condition of existence of a bpMLE ,

vlnL ðpjyÞ
vpi

¼0; i¼1;…; k:
� Convexity condition: consider the Hessian matrix HðpÞ, Hi;jðpÞ ¼ v2 lnL ðpjyÞ
vpivpj

with i; j2f1;…;kg. Then there must hold that

zTHðpÞz<0;

where z is any real non-zero k� vector.
Example 2.2. Suppose the blood pressure of 1000 patients is recorded with observations given in gray in Fig. 4. Seeing the
shape of the data in Fig. 4, we assume that experimental data y1;…; yn (yi is the blood pressure of the patient i with i2 f1;
…1000g) are drawn from a normal distribution N ðm; s2Þ with m and s unknown (k ¼ 2, p ¼ ðm;sÞ).

Let Y1;…;Yn be n i.i.d.1 N ðm; s2Þ random variables,
1 independent and identically distributed.



Fig. 4. Blood pressures of 1000 patients (data generated in R). In gray, observations that looks normally distributed. In red, the normal distribution N ðbmMLE ;bs2
MLEÞ

¼ N ð85; 202Þ.
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fYi
ðyijm; sÞ¼

1ffiffiffiffiffiffi
2p

p
s
e�

ðyi�mÞ2
2s2 :
The joint probability distribution function is

f ðy1;…; ynjm; sÞ¼
�

1ffiffiffiffiffiffi
2p

p
s

�n

e�
Pn

i¼1

ðyi�mÞ2
2s2 :
Hence, for a fixed data set y1;…;yn, the likelihood function is

L ðm; sjy1;…; ynÞ¼
�

1ffiffiffiffiffiffi
2p

p
s

�n

e�
Pn

i¼1
ðyi�mÞ2

2s2

and the log-likelihood function is
lnL ðm; sjy1;…; ynÞ¼ �n
�
ln
� ffiffiffiffiffiffi

2p
p �

þ lnðsÞ
�
�
Xn
i¼1

ðyi � mÞ2
2s2

:

To find the Maximum Likelihood Estimate of m, bmMLE , we differentiate the log-likelihood function with respect to m,

vlnL ðpjyÞ
vm

¼
Xn
i¼1

ðyi � mÞ
s2

¼00
Xn
i¼1

yi ¼nbmMLE0bmMLE ¼
1
n

Xn
i¼1

yi ¼ y:
To find the Maximum Likelihood Estimate of s, bsMLE , we differentiate the log-likelihood function with respect to s,

vlnL ðpjyÞ
vs

¼ �n
s
þ
Xn
i¼1

ðyi � mÞ2
s3

¼00bs2
MLE ¼

1
n

Xn
i¼1

ðyi � mÞ2:

P

Using m ¼ bmMLE we obtain bs2

MLE ¼ 1
n

n
i¼1ðyi � bmMLEÞ2:Maximum Likelihood Estimates are bmMLE (themean of data) and bs2

MLE
(the variance of data). Using the data, we compute bmMLE ¼ 85 and bs2

MLE ¼ 202 and we plot in red the normal distribution
function N ð85;202Þ in Fig. 4. Furthermore, the maximum log-likelihood can be computed by replacing m and s by their
estimates as follows:
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lnL
�bmMLE; bsMLEjy1;…; ynÞ¼max

m;s
lnL ðm; sjy1;…; yn

	
:

For many problems, even computational evaluation of the likelihood is infeasible. A relationship between the negative of
the log-likelihood function and the residual sum of squares (or the cost function used in least squares method) is now derived
under some condition.

2.4. Relationship between least squares estimate and maximum likelihood estimate

Define the statistical model

Yo
e ¼ ~yeoðti; pÞ þ ε

o
e ;

where the measured data yoeðtiÞ is a realization of the randomvariable Yo
e , ~y

e
oðti; pÞ is the (algebraic, ODE or PDE) mathematical
model output and the randomvariable εoe represents measurement errors or noise (Miao, Dykes, Demeter,&Wu, 2009; Zhang
et al., 2015). Assuming independent and normally distributed additive measurement errors with standard deviation se;oi , the
probability of observing the data y given the parameters p and se;oi is

f ðyjqÞ¼
Yne

e¼1

Yne
o

o¼1

Yne;o
i

i¼1

1ffiffiffiffiffiffi
2p

p
se;oi

exp

 
� 1
2

 
yoeðtiÞ � ~yeoðti; pÞ

se;oi

!2!
;

where yoeðtiÞ aremeasured data, ~yeoðti; pÞmodel output and q includes themathematical model parameters p and the statistical

model parameters se;oi . As previously defined, ne is the number of experiments, neo is the number of observables per exper-
iment and ne;oi is the number of samples per observable per experiments. Hence, the likelihood function is

L ðqjyÞ¼
Yne

e¼1

Yne
o

o¼1

Yne;o
i

i¼1

1ffiffiffiffiffiffi
2p

p
se;oi

exp

 
� 1
2

 
yoeðtiÞ � ~yeoðti; pÞ

se;oi

!2!
:

Maximizing the likelihood is equivalent to minimizing the negative of the log-likelihood function, so we consider the
negative of the log-likelihood function, defined as

�lnL ðqjyÞ¼1
2

Xne

e¼1

Xne
o

o¼1

Xne;o
i

i¼1

"
ln
�
2p
�
se;oi

�2�þ yoeðtiÞ � ~yeoðti; pÞ
se;oi

!2#
:

Recall the cost function, FlsðpÞ, defined in the least squares method by (4). Hence, there is the following relationships
between the negative log-likelihood �lnL ðqjyÞ and least squares cost function FlsðpÞ (Baker, Bocharov, Paul, & Rihan, 2005).

� For ue;o
i ¼ 1=ðse;oi Þ2 (weighted LS),

�lnL ðqjyÞ¼1
2

X
e¼1

ne X
o¼1

ne
o X

i¼1

ne;o
i

ln
�
2p
�
se;oi

�2�þ 1
2
FlsðpÞ ¼ neneon

e;o
i ln

� ffiffiffiffiffiffi
2p

p �
þ ln

�Y
e¼1

ne Y
o¼1

ne
o Y
i¼1

ne;o
i

se;oi

�
þ 1
2
FlsðpÞ:
Hence, �lnL ðqjyÞ and FlsðpÞ have the same optimal mathematical model parameters p (bp ¼ bpMLE ¼ bpLSE).

� For se;oi ¼ s (weighted LS) and ue;o
i ¼ 1 (ordinary LS),

�lnL ðqjyÞ¼neneon
e;o
i

�
ln
� ffiffiffiffiffiffi

2p
p �

þ lnðsÞ
�
þ 1
2s2

FlsðpÞ:
Hence, �lnL ðqjyÞ and FlsðpÞ have the same optimal parameters for the mathematical model parameters p (bp ¼ bpMLE ¼bpLSE) and from vlnL ðqjyÞ
vs ¼ 0,
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bs2 ¼ 1
neneon

e;o
i

FlsðbpÞ:
Thus, the minimum of the negative of the log-likelihood function is

�lnL ðbqMLEjyÞ¼
neneon

e;o
i

2
lnð2pÞþneneon

e;o
i

2
þ neneon

e;o
i

2
ln

0BB@ FlsðbpÞ
neneon

e;o
i|fflfflfflfflffl{zfflfflfflfflffl}

MLE of variance

1CCA; (5)

where bp ¼ bpMLE ¼ bpLSE .
Therefore, under the assumption of independent, normally distributed additive measurement errors with constant

variance, the Least Squares Estimates and Maximum Likelihood Estimates of the mathematical model parameters are the
same.

2.5. Problems in model calibration

The use of optimal methods for model calibration (LS or ML) for non-linear models have inherent problems that can be
categorized as follows.

� Lack of prior knowledge about parameters.
� Lack of identifiability (non-uniqueness of optimal solutions for parameter estimation) (Miao et al.,2009). There exist two
types of identifiability:
1 (Practical identifiability) The larger the number of unknown parameters in a model, the larger the amount of quanti-

tative data necessary to determine meaningful values for these parameters.
2 (Structural identifiability) Even if appropriate experimental data are available, model parameters may not be uniquely

identifiable.
� Convergence to local optima (ill-conditioning and non-convexity).
� Overfitting (fitting the noise instead of the signal).

Example 2.3. A famous example illustrates the problem of structural identifiability (Janz�en et al., 2016; Yates, 2006). A two
compartment model describing the temporal evolution of the amount of drug injected in the blood system is considered
(Fig. 5):

dx1
dt

¼ �ðk12 þ k10Þx1 þ k21x2; x1ð0Þ ¼ D;

dx2
dt

¼ k12x1 � ðk21 þ k20Þx2; x2ð0Þ ¼ 0;

~y ¼ x1
V1

;

Fig. 5. Pharmacokinetics model: evolution of the amount of drug in the blood system x1, the gastro-intestinal system x2 and the blood test, which is the only
observable outputs of the model.
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where x1 (variable) is mass of drug in compartment 1 (blood system), x2 (variable) mass of drug in compartment 2 (gastro-
intestinal system), ~y (variable) is the observable concentration of drug in the blood test with V1 (parameter) the volume of the
observed compartment (blood system). The parameters kij are rates of transfer from i to j. The dose D of drug injected in the
blood system is a known parameter. Hence, there are five parameters to estimate.

The model is a homogeneous linear system that can be solved explicitly; closed forms of x1ðtÞ and x2ðtÞ can be obtained.
Hence, the time solution ~yðtÞ can be expressed as follows:

~yðtÞ¼C1e
�l1t þ C2e

�l2t :

�l t
As seen in Example 2.1, functions of the form Cie i can be linearised by a change of variables; then, C1, C2, l1, and l2 can be
determined from the observed concentration curve in a unique way. However, their knowledge results in only four condi-
tions/equations that depend on the five unknown parameters kij and V1. Hence, we cannot find a unique solution for the five
parameters to estimate. Therefore, the model is structurally unidentifiable.
3. Model selection

When a collection of models is considered to investigate a problem, after calibrating each model to the available exper-
imental data, a model selection method can be employed to discriminate between the different candidate models of the
collection in terms of the representation of experimental data considered.

3.1. Naive approach

For linearmodels, a naive approach to comparemodels is to used the R2 or adjusted R2. They are ameasure of the goodness
of fit; the best fit is selected but the model complexity is neglected. The R2 is defined as

R2 ¼1� RSS=nPn
i¼1ðyi � yÞ2�n

or by replacing the two variances with their unbiased estimates, the adjusted R2 is obtained,

R2adj ¼1� RSS=ðn� k� 1ÞPn
i¼1ðyi � yÞ2�ðn� 1Þ

;

where RSS is the residual sum of squares as defined in (1), n is the sample size, y are the data, y is the average of the data and k
is the number of parameters. These criteria select the model that maximizes R2 or R2adj; the most parameter rich model is
selected.

However, in selecting the best model, the principle of parsimony, which states that a model should be as simple as
possible, should be employed (Fig. 6). A good model is a proper balance between underfitting and overfitting. Johnson and
Omland (Johnson& Omland, 2004) state the following: “Parsimony is, in statistics, a trade-off between bias and variance. Too
few parameters results in high bias in parameter estimators and an underfit model (relative to the best model) that fails to
identify all factors of importance. Too many parameters results in high variance in parameter estimators and an overfit model
that risks identifying spurious factors as important, and that cannot be generalized beyond the observed sample data”.

Here a model selection method is introduced, the Akaike Information Criterion, which accounts for the goodness of the fit
and parsimony principle.

3.2. Sketch of Akaike Information Criterion derivation

First we need to define the Kullback-Leibler (KL) divergence, which is used to measure the difference between two
probability distributions f ðxÞ and gðxÞ defined over the same probability space (Kullback& Leibler, 1951). The KL divergence of
gðxÞ from f ðxÞ is

Iðf ; gÞ¼
X
x2X

f ðxÞln
�
f ðxÞ
gðxÞ

�
;

if f ðxÞ and gðxÞ are pdfs of a discrete random variable X and

Iðf ; gÞ¼
Z
X

f ðxÞln
�
f ðxÞ
gðxÞ

�
dx;



Fig. 6. Principle of parsimony.
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if f ðxÞ and gðxÞ are pdfs of a continuous random variable X.
The KL divergence can be interpreted as the distance between two probability distributions; however, it is not really a

distance as the KL divergence is not symmetrical. Here are some properties of the KL divergence:

� Iðf ; gÞsIðg; f Þ (not symmetric),
� Iðf ;gÞ � 0;
� Iðf ; gÞ ¼ 0 if and only if f ¼ g.

In 1973, Akaike (AkaikePetrov and Csaki, 1973) found a relationship between themaximum likelihood (statistical analysis)
and Kullback-Leibler divergence (information theory) and, based on that, defined a model selection criterion, now called
Akaike Information Criterion (AIC). A sketch of the AIC derivation is given here.

As no single model includes the whole truth or the complete information about the phenomena under investigation, the
quantity of information loss has to be determined. The Kullback-Leibler divergence can be used as a measure to quantify the
information lost when approximating the full reality f ðxÞ by a model gðxjqÞ, where the model gðxjqÞ depends on parameters q,

Iðf ; gÞ¼
Z

f ðxÞln
�

f ðxÞ
gðxjqÞ

�
dx:
However, the reality/truth f is unknown and the parameters q must be estimated from data y (generated from f).
Measurement of the information lost when approximating the full reality f ðxÞ by a model gðxjqÞ, Iðf ;gÞ, can be rewritten as

the difference between two expectations with respect to the true distribution f as follows:

Iðf ; gÞ ¼
Z

f ðxÞln
�

f ðxÞ
gðxjqÞ

�
dx

¼
Z

f ðxÞlnðf ðxÞÞdx�
Z

f ðxÞlnðgðxjqÞÞdx

¼ Ef ½lnðf ðxÞÞ� � Ef ½lnðgðxjqÞÞ�;

where the first term E ½lnðf ðxÞÞ� ¼ C, which depends only on the unknown true distribution f, is unknown and constant. The
f
second term is the relative KL divergence between f and g and is defined as

Iðf ; gÞ�C¼ � Ef ½lnðgðxjqÞÞ�:
Consider two models g1 and g2. If Iðf ; g1Þ< Iðf ; g2Þ then model g1 is better than model g2. In other words,

Iðf ; g1Þ< Iðf ; g2Þ
Iðf ; g1Þ � C < Iðf ; g2Þ � C

�Ef
h
lnðg1ðxjqÞÞ�< � Ef ½lnðg2ðxjqÞÞ

i
:

Thus, without knowing C, we know how much better g1 is than g2 (comparison between 2 models),
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Iðf ; g2Þ� Iðf ; g1Þ¼ � Ef
h
lnðg2ðxjqÞÞ� þ Ef ½lnðg1ðxjqÞÞ

i
:

Hence, the use of the relative KL divergences between f and the models gi (instead of the KL divergence between f and gi
that compares the model gi to the unknown truth f) allows the comparison of the candidate models gi.

The models depend on parameters that have to be estimated using the data y. Let us define bqðyÞ, the estimator of q, as a
random variable. Consequently, Iðf ; gð ,jbqðyÞÞÞ is also a random variable. Hence, its expectation can be estimated,

Ey


Iðf ; gð , jbqðyÞÞÞ� ¼C� Ey½Ex½lnðgðxjbqðyÞÞÞ��;

where x and y are two independent random samples from the same distribution f and both statistical expectations are taken
with respect to the truth f.

As we want to minimize the information loss by approximating the full reality f by models, we want to minimize the
estimated expected KL divergence Ey½Iðf ; gð ,jbqðyÞÞÞ� over the set of models considered. That is equivalent to maximizing the
estimated expected relative KL divergence. Hence, a model selection criterion can be defined as follows:

max
g2G

Ey½Ex½lnðgðxjbqðyÞÞÞ��;
where G is the collection of models in terms of probability density functions.

In 1973, Akaike (AkaikePetrov and Csaki, 1973) found an asymptotically (for a large sample) unbiased estimator of the
expected relative Kullback-Leibler divergence Ey½Ex½lnðgðxjbqðyÞÞÞ��, given by

lnL ðbqMLEjyÞ � K;
where L is the likelihood function (previously defined in the section on model calibration), bqMLE is the maximum likelihood
estimate of q (lnL ðbqMLEjyÞ is the maximum log-likelihood value) and K is the number of estimated parameters including the
variance (the bias correction term). Akaike multiplied this estimator by �2. Thus, the Akaike Information Criterion for each
model considered with the same data set is defined as

AIC¼ �2lnðL ðbqMLEjyÞÞ þ 2K: (6)
Therefore, the best model within the collection of models considered given the data is the one with the minimum AIC
value. More details on the derivation of AIC can be found in (Burnham & Anderson, 2002).

3.3. Model selection using AIC

Consider a collection of R models. Which model of the collection would best represent reality given the data we have
recorded? To answer this question, we can compute the information criterion for each model of the collection.

If the number of observations is large enough, K < ðN =40Þ, use AIC

AIC¼ �2 lnðL ðbqMLEjyÞÞ þ 2K:
For a small number of observations, K > ðN =40Þ, Sigiura (Hurvich & Tsai, 1989; Sugiura, 1978) developed the corrected AIC
(AICc),

AICc¼ �2 lnðL ðbqMLEjyÞÞþ
2KN

N � K � 1
¼AIC þ 2KðK þ 1Þ

N � K � 1
;

where K is the number of estimated parameters in the mathematical and statistical model and N is the number of obser-
vations. AsN/∞, AICc/AIC. Other extensions of the AIC have been derived to accommodate other specific cases (Burnham&
Anderson, 2002).

In practice, except for some simple models, computing the minimum of the negative of the log-likelihood� lnðL ðbqMLEjyÞÞ
for a model is difficult, in particular when dealing with an ODE or PDE model. However, under some assumptions, we have
previously derived a relationship between the negative of the log-likelihood and least squares cost function, which can be
used to easily compute AIC and AICc.

Recall that when the measurement errors are independent, identically and normally distributed with the same variance,
the minimum of the negative of the log-likelihood function can be expressed as follows (see (5)),
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�lnL ðbqMLEjyÞ¼
N
2
lnð2pÞþN

2
þ N

2
ln
�
FlsðbpÞ
N

�
;

with bp ¼ bpMLE ¼ bpLSE and the number of observations N ¼ neneon
e;o
i . Hence, under this assumption and as the AIC or AICc are

used to compare the models with each other and that the same data are used to estimate the parameters for all the models,
the first term of (6) can be expressed as � 2 lnðL ðbqMLEjyÞÞzN ln

�
FlsðbpÞ
N

�
. Therefore, AIC and AICs can be computed as follows:

AIC¼N ln
�
FlsðbpÞ
N

�
þ2K ¼N ln

�
RSS
N

�
þ 2K

and

AICc¼N ln
�
FlsðbpÞ
N

�
þ 2KN
N � K � 1

¼N ln
�
RSS
N

�
þ 2KN
N � K � 1

;

where K is the number of estimated parameters (numbers of mathematical model estimated parametersþ 1 for the variance)
and N is the number of observations.

Due to this approximation, interpreting the actual values of AIC and AICc has no real meaning. Furthermore, as only the
estimates of the expected relative KL divergences between f and giðxjqÞ are known with the information criteria, it is
convenient to scale them with respect to the minimum AIC value among all models. Compute AICi of each model i with i2
f1;…;Rg and then compute the AIC differences Di as follows (Akaike, 1974):

Di ¼AICi �min
i

AICi;

where miniAICi is the AIC value of the best model in the collection. The AIC difference Di estimates the information loss when
using model i rather than the estimated best model. Hence, the larger Di, the less plausible is model i.

Some guidelines for the interpretation of AIC difference Di in the case of nestedmodels are given in (Burnham& Anderson,
2002):

� Di2½1;2�; model i has substantial support and should be considered,
� Di2½4;…;7�; model i has less support,
� Di >10; model i has no support and can be omitted.

However, these rules might be different for non-nested models or when a very large number of models is present.
Going further, for an easier interpretation, Di can be rescaled. The likelihood of model gi given the data y can be defined as

L ðgijyÞfexp
�
� Di

2

�
:

The model likelihoods can be normalized so that they sum to 1. This normalization yields the definition of the Akaike
weight or “weight of evidence” of model i for being the best model (in terms of KL) of the collection given the data recorded,

wi ¼
expð�Di=2ÞPR
r¼1expð�Dr=2Þ

: (7)
The Akaike weightwi of model i can be interpreted as the probability that model i is the best (approximating) model given
the experimental data and the collection of models considered. Hence, the smaller the weightwi, the less plausible is model i.
We can consider a single best model i if wi >0:9.

Moreover, by using Akaike weights, the evidence ratio of model i versus model j can be defined as

wi

wj
¼ L ðgijyÞ
L
�
gj
���y� :
This evidence ratio quantifies the strength of evidence in favour of model i over model j.
Furthermore, using Akaike weights, the confidence set of models can be also defined. Rank models in order of Akaike

weights (from the largest to smallest); then, compute the cumulative sum of their weights. The minimal subset of models
whose the cumulative sum is larger than 0.95 constitutes the 95% confidence set of models (in terms of KL) (Symonds &
Moussalli, 2011): there is 95% confidence that the best approximating model is in this subset.
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Last but not least, Akaike weights can also be used to determine the relative importance of a process. The sum of Akaike
weights over all models in which the process of interest appears gives a measure of the relative importance of the process of
interest.

If the aim of the study is parameter estimation and when several models are well supported by the experimental data or
when there is no model iwithwi >0:9, we can use model averaging. If q is a parameter common to all models well supported
by the data, the weighted average of parameter estimate bq is

b
q¼

XR
i¼1

wi
bqi;

where bqi is the MLE bqMLE frommodel i. If q is only common to a subset of models, rescale thewi of the subset to have
P

wi ¼
1.

Example 3.1. In Jacquier et al. (2018) (Jacquier et al., 2018), using a collection of mathematical models, the regulation of
NMT1 by mTOR is investigated. mTOR is a kinase (enzyme that phosphorylates other molecules) that regulates cell growth,
proliferation, survival and migration. mTOR exists in two forms: the inactive form (mTOR) and the active form (pmTOR).
Cancer cells exploit mTOR to enhance their capacity to grow. Rapamycin is a drug used in cancer therapy that targets mTOR
and prevents its activation by preventing mTOR phosphorylation. Strong expression of NMT1 has been reported in malignant
breast tissues compared with normal breast cells.

Experimental data used in (Jacquier et al., 2018) shows that Rapamycin treatment decreases phosphorylation of mTOR
(pmTOR) and augments total NMT1 levels over time. However, there is no significant change in the total mTOR levels
(mTORþ pmTOR). Four dataset are recorded for this study. For each of the four datasets, three quantities are measured atm ¼
9 time points: total mTOR (Texp

total), pmTOR (Texpp ) and total NMT1 (Nexp
total).

The core assumption of thework is that the NMT1 phosphorylation is regulated by pmTOR; the general model described in
the framed diagram of Fig. 7 is

dT
dt

¼ �aTT
KT þ T

zfflfflffl}|fflfflffl{phosphorylation
þ aTpTp
KTp þ Tp

zfflfflfflfflffl}|fflfflfflfflffl{dephosphorylation
þ P
z}|{synthesis

T � bTN
z}|{feedback

þ gðT;RcÞ
zfflfflfflffl}|fflfflfflffl{rapamycin effect

;
dTp
dt

¼ aTT
KT þ T

zfflfflffl}|fflfflffl{phosphorylation
� aTpTp
KTp þ Tp

zfflfflfflfflffl}|fflfflfflfflffl{dephosphorylation
� dTpTp
zfflffl}|fflffl{degradation

;
dN
dt

¼ �aNTpN
KN þ N

zfflfflfflffl}|fflfflfflffl{phosphorylation
þ PN

z}|{synthesis
;
dNp

dt

¼ aNTpN
KN þ N

zfflfflfflffl}|fflfflfflffl{phosphorylation
� dNp

Np

zfflffl}|fflffl{degradation
;
dRc
dt

¼ hðT;RcÞ
zfflfflfflffl}|fflfflfflffl{rapamycin effect

;

where T is the inactive form of mTOR, Tp is (pmTOR) the active form of mTOR, N is the active form of NMT1, Np is the
phosphorylated form of NMT1 (pNMT1) and Rc is the complex formed by Rapamycin and mTOR. In presence of Rapamycin,
five models are considered to test alternative hypotheses difficult to test experimentally.

� Does the regulation of endogenous levels of mTOR components impact the dynamics? Two cases are described:
e synthesis and degradation of the relevant forms of mTOR,
e the total mTOR (mTOR þ pmTOR) is assumed to be constant.
� Does NMT1 have a negative feedback effect on mTOR? Two cases are considered:
e no feedback, b ¼ 0,
e presence of feedback, b>0.
� Is the effect of rapamycin on mTOR reversible or irreversible? Two cases are considered:
e a reversible binding with gðT;RCÞ ¼ �gRT þ kRC and hðT;RCÞ ¼ � gðT;RCÞ,
e an irreversible binding following gðT;RCÞ ¼ �gRT and hðT ;RCÞ ¼ gRT � dRC

RC .

The five models in the collection resulting from the general model, their assumptions and number of parameters are given
in Fig. 7.

The five models are calibrated to each of the four datasets. For the four datasets, the residual sum of squares between
experimental and simulated data for model i2f1;…;5g is minimized using a genetic algorithm. For each dataset, the residual
sum of squares is defined as

RSSi ¼
Xm
j¼1

��
Texpp

�
tj
	� Ti

p
�
tj
	�2 þ�Texptotal

�
tj
	� Titotal

�
tj
	�2 þ�Nexp

total

�
tj
	� Ni

total
�
tj
	�2�

; (8)



Fig. 7. General model and collection of models considered for the interactions between NMT1 and mTOR in breast cancer cells in Jacquier et al. (2018) (Jacquier
et al., 2018). In the centre, the framed diagram is the general model. The non-framed diagrams represent the five models of the collection. At the top left corner,
the table lists the collection of models studied with their number of parameters p, assumptions on rapamycin binding, feedback regulation of mTOR by NMT1 and
mTOR dynamics (s/d meaning an explicit synthesis and degradation of mTOR). Figure adapted from (Jacquier et al., 2018).
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where tj are them ¼ 9 time points, Ti
totalðtjÞ ¼ TiðtjÞ þ Ti

pðtjÞ and Ni
totalðtjÞ ¼ NiðtjÞ þ Ni

pðtjÞ are the responses in model i. Hence,
for a given dataset, a model is associated with a nominal set of parameters.

To identify the best model and characterize the required mechanisms for each of the four dataset, the corrected AIC are
used as the number of observations is small (n ¼ 3m ¼ 27, for each dataset) in comparison to the number of parameters pþ 1
(see table in Fig. 7). For each dataset and each model i2f1;…;5g, AICci is computed as previously shown:

AICci ¼n ln
�
RSSi
n

�
þ 2kin
n� ki � 1

: (9)

ki is the number of estimated parameters for model i (p in the table displayed in Fig. 7), including the estimation of the
variance by RSSi=n. Using (7) with (9), the Akaike weights are computed for an easier interpretation of results (Table 1).

This example highlights that conclusions depend strongly on experimental data. For dataset 2 and 3, the Akaike weight of
model NTtRr is found to be larger than 0.9; for dataset 2 and 3, model NTtRr is the best model. However, for dataset 1 and 4,
none of models obtains a high Akaike weight. Model selection to find the best model is not conclusive when using dataset 1
and 4. However, discriminating between feedback and no feedback is conclusive for all the four datasets. There is strong
evidence that there does not exist a negative feedback regulation of mTOR by NMT1. The reversible binding assumption is
more likely to occur when dataset 2 and 3 are used; however, discriminating between reversible and irreversible binding is
not conclusive when dataset 1 and 4 are considered.

In summary, the Akaike Information Criterion, valid to compare nested and non-nested models, can be used as a powerful
tool for model selection. AIC or AICc allows the ranking of the candidate models and might select a best model within the
collection given the experimental data considered. The best model has the lowest AIC or AICc values; however, the actual
values of AIC or AICc have no meaning. The use of Akaike weights computed from AIC or AICc allows the interpretation of
results by providing the probability that a model is the best model given the experimental data and the set of models
considered. Furthermore, the Akaike weights allow the quantification of the likelihood of diverse assumptions considered
within the model collection. The model selection method is specific to a given set of data; neither AIC nor AICc can be used to



Table 1
AICci and Akaike weights wi for the five models for datasets 1 to 4, with ki ¼ pþ 1 the number of parameters considered to compute the AICci , with i
denoting the model considered. The weights corresponding to each assumption are obtained by summing the weights of the models verifying the
assumption (see the table in Figure 7). Thus, the weight of models with reversible (resp. irreversible) rapamycin effect is obtained by summing theweights of
models including this assumption namely NTRr, NTtRr and NTRrf (resp. NTRi and NTRif). The weight of the feedback assumption corresponds to the sum of
the weights of models NTRrf and NTRif.

Models Dataset 1 Dataset 2 Dataset 3 Dataset 4

ki AICci wi AICci wi AICci wi AICci wi

NTRr 13 -2.3 0.393 -107.1 10�4 -75.9 0.025 -58.8 0.407
NTtRr 12 -1.4 0.248 -124.9 0.997 -83.1 0.929 -58.2 0.305
NTRi 13 -2.0 0.351 -113.5 0.003 -76.7 0.039 -58.1 0.282
NTRrf 14 7.0 0.004 -91.6 10�8 -73.2 0.007 -48.0 0.002
NTRif 14 6.6 0.005 -102.4 10�5 -66.6 10�4 -49.4 0.004

Assumptions
Reversible 0.64 0.9967 0.961 0.714
Irreversible 0.36 0.0033 0.039 0.286

Feedback 0.008 10�5 0.007 0.006
No feedback 0.992 0.99999 0.993 0.994
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compare models based on different datasets. Information criteria are not statistical tests. Finally, never forget that the best
model cannot be considered as the “truth”.

4. Conclusion

The principle of multiple working hypotheses is important in Science as it permits to confront different mechanisms;
when considered with appropriate selection criteria, it allows the culling of hypotheses and the unimportant and required
mechanisms can be identified. The use of a collection of models coupled with a model selection method instead of a single
model makes themathematical modelling approachmore powerful and helps convince experimental scientists of the use and
power of theoretical approaches. For instance, in (Kirmse et al., 2007), the use of a collection of models allows the identi-
fication of the longitudinal annealing of filaments as a requiredmechanism for the filament elongation of in vitro intermediate
filaments. This mechanismwas experimentally confirmed a few years later in (Colakoglu& Brown, 2009) and (Winheim et al.,
2011). In (Portet, Madzvamuse, Chung, Leube, & Windoffer, 2015), the use of a collection of models combined with Akaike
Information Criterion model selection allows to demonstrate that the directed transport of assembled intermediate filament
proteins in cells was required to explain the spatial distributions of intermediate filaments.

Summing up, investigating a question in Biology by combining experimental data and mathematical modelling could
follow the different steps (Baker et al., 2005; Burnham & Anderson, 2002; Miao et al.,2009 Symonds & Moussalli, 2011):

� a systematic modelling of possible scenarios based on biological hypotheses and first principles to design a collection of
models;

� once the collection of models is formed, each model has to be calibrated using the same data set or data sets;
� once parameter estimates are known for each model, compute their AIC or AICc and associated Akaike weights; rank
models and identify the best model or the 95% confidence set of models;

� partition the collection of models in subsets of models based on their underlying hypotheses and using Akaive weights,
evaluate the importance of different processes.
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