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Abstract 
 
Quantitative relationships between molecular structure and azolo-adamantanes derivatives were discovered 
by different chemometric tools including factor analysis based multiple linear regressions (FA-MLR), 
principle component regression analysis (PCRA), and genetic algorithm-partial least squares GA-PLS. The 
FA-MLR describes the effect of geometrical and quantum indices on enzyme inhibition activity of the 
studied molecules. The quality of PCRA equation was found to be better than those derived from FA-MLR. 
GA-PLS analysis indicated that the topological (IC4 and MPC06), constitutional (nf) and geometrical (G 
(N..S)) parameters were the most significant ones on influenza A virus activity. Comparison of the different 
statistical methods employed revealed that GA-PLS represented superior results and it could explain and 
predict 85% and 77% of variances in the pIC50 data, respectively. 
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INTRODUCTION 

 
Synthesis and evaluation of biological 

effects of new compounds usually consumes a 
lot of time and money. Nowadays, the 
application of computational methods for 
designing biologically active compounds has 
opened a new window to modern drug 
discovery research. Computational methods 
can accelerate the procedure of discovering 
new drugs by designing new compounds and 
predict their potency or activity. Quantitative 
structure activity relationships (QSAR) 
studies, as one of the most important areas in 
chemometrics, play a fundamental role in 
predicting the biological activity of new 
compounds and identifying ligand-receptor 
interactions (1-5). QSAR models are mathe-
matical equations that provide a deeper 
knowledge into the mechanism of biological 
activity of compounds by constructing a 
relationship between chemical structures and 
biological activities. The most important step 
in building QSAR models is the appropriate 
representation of the structural and 

physicochemical features of chemical entities 
(6-9). These features which are defined as 
molecular descriptors are the ones with higher 
impact on the biological activity of interest 
(10-13). Molecular descriptors have been 
classified into different categories according to 
different approaches including physiochemi-
cal, constitutional, geometrical, topological, 
and quantum chemical descriptors. Dragon and 
Gaussian are two well-known computational 
softwares which can provide more than 1000 
of these descriptors (14,15). The first step in 
constructing the QSAR/QSPR models is the 
selection of molecular descriptors that 
represent variation in the interested property of 
the molecules by a number. The selected 
descriptors then will be used for constructing 
statistical models. There are two types of 
QSAR/QSPR models: regression models and 
classification models. Multiple linear 
regression (MLR), principle component 
regression (PCR), and partial least squares 
(PLS) are considered as regression models. 
Although MLR equations can describe the 
structure property relationships appropriately, 
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some information will be disregarded in MLR 
analysis. Due to the co-linearity problem in 
MLR analysis, one may remove the collinear 
descriptors before the development of the 
MLR model. There are several variable 
selection methods including forward, back-
ward, and stepwise selection. There are also 
some other methods inspired by the nature of 
which genetic algorithm is the most widely 
used. Factor analysis identifies the important 
predictor variables contributing to the response 
variable and avoids collinearities among them. 
PLS analysis as a factor analysis–based 
method omits the multicolinearity problem in 
the descriptors. In this method, the descriptors 
data matrix is decomposed to orthogonal 
matrices with an inner relationship between 
the dependent and independent variables. 
Because a minimal number of latent variables 
are used for modeling in PLS, this modeling 
method coincides with noisy data better than 
MLR (11-13). 

Each winter, millions of people suffer from 
influenza, a highly contagious infection. The 
influenza virions are enveloped, mostly as 
spherical particles containing an outer lipid 
membrane. The genome of influenza virus is 
represented by eight separate segments of 
single-strand negative RNA associated with 
nucleoprotein and several molecules of the 
three subunits of its RNA polymerase. Unlike 
eukaryotic RNA polymerase, viral polymerase 
complex lacks error-prone activity. For this 
reason, similar to other RNA viruses, influenza 
virus has a very high rate of mutations in its 
genome leading to the fast selection of drug-
resistant strains. Despite numerous steps in the 
viral life cycle that are potential targets for 
drug intervention, only two of them are now 
available for clinical usage. Currently, two 
main classes of chemical compounds are used 
for the treatment of influenza. They differ in 
their viral targets and mechanisms of action. 
The antiviral drugs amantadine and 
rimantadine block a viral ion channel and 
prevent the virus from infecting cells. 
Oseltamivir and zanamivir are designed to halt 
the spread of the virus in the body (16). 

The structural invariants obtained from 
whole molecular structures and three different 
chemometric methods were used to make 
connections between structural parameters and 

azolo-adamantanes. These methods included 
partial least squares combined with genetic 
algorithm for variable selection (GA-PLS), 
factor analysis–MLR (FA-MLR) and principle 
component regression analysis (PCRA). 

 
MATERIALS AND METHODS 

 
Software  

A Pentium IV personal computer (CPU at 
3.06 GHz) with windows XP operating system 
was used. Geometry optimization was 
performed by Hyperchem (version 7.0 
Hypercube, Inc.) Dragon software was used 
for calculation of constitutional, topological, 
geometrical, and functional group descriptors. 
Gaussian software was used for calculation of 
quantum descriptors. SPSS software (version 
11.50, IBM, Inc.) was used for PCR and FA-
MLR analysis. GA-PLS regression and other 
calculations were performed in the MATLAB 
(version 7.1, MathWorks, Inc.) environment. 

 
Activity data and descriptor generation 

The biological data used in this study were 
anti influenza A activity, (in terms of -log 
IC50), of a set of forty six azolo-adamantanes 
derivatives (16). The structural features and 
biological activity of these compounds are 
listed in Table 1 and then used for subsequent 
QSAR analysis as dependent variable. The 
two-dimensional structures of molecules were 
drawn using Hyperchem 7.0 software. The 
final geometries were obtained with the semi-
empirical AM1 method in Hyperchem 
program. The molecular structures were 
optimized using Polak-Ribiere algorithm until 
the root mean square gradient was 0.01 kcal 
mol-1. Some chemical parameters including 
molecular volume (V), molecular surface area 
(SA), hydrophobicity (Log P), hydration 
energy (HE) and molecular polarizability (MP) 
were calculated using the Hyperchem 
Software. The resulted geometry by the 
Hyperchem software was transferred into 
Dragon program, which was developed by 
Milano Chemometrics and QSAR Group (14). 
Different functional groups, topological, 
geometrical and constitutional descriptors for 
each molecule were calculated by Dragon 
software. Z-matrices of the structures were 
provided by the Hyperchem software and 
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Table 1. Chemical structures of azolo-adamantanes analogues used in this study and their experimental activity against 
influenza A virus. 
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Table 1. (Continued) 
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Predicted pIC50 Predicted pIC50 
No. Experimental pIC50

 

FA-MLR PCR GA-PLS
No. Experimental pIC50

 

FA-MLR PCR GA-PLS
*1 7.42 7.57 7.54 7.37 24 7.36 7.21 7.14 7.29 

2 7.23 7.58 7.43 7.38 25 7.17 7.19 7.16 7.23 
*3 7.23 7.35 7.32 7.33 26 7.96 7.81 7.81 7.78 

4 7.38 7.23 7.32 7.28 27 7.80 7.86 7.79 7.81 
5 7.49 7.38 7.42 7.31 28 7.55 7.51 7.59 7.63 
6 7.14 7.28 7.06 7.48 29 7.72 7.80 7.78 7.69 
7 7.09 7.25 7.13 7.25 30 7.80 7.84 7.72 7.86 
8 6.96 7.35 7.06 7.16 *31 7.82 7.83 7.70 7.88 
9 7.26 7.29 7.16 7.18 32 7.74 7.66 7.89 7.70 

10 7.38 7.35 7.27 7.37 33 7.77 7.76 7.88 7.81 
*11 7.29 7.44 7.35 7.25 34 7.72 7.76 7.77 7.93 
12 7.34 7.50 7.52 7.38 35 8.05 7.79 7.85 7.95 
13 7.37 7.20 7.39 7.21 36 7.82 7.82 7.75 8.00 
14 7.43 7.41 7.41 7.41 37 7.92 7.80 7.85 7.94 
15 7.52 7.35 7.48 7.53 38 7.57 7.80 7.76 7.75 

*16 7.28 7.28 7.47 7.34 *39 7.60 7.72 7.74 7.67 
17 7.26 7.28 7.20 7.24 40 7.70 7.51 7.64 7.63 
18 7.21 7.17 7.21 7.31 41 8.05 7.99 7.97 7.92 
19 7.27 7.23 7.35 7.28 42 7.77 7.81 7.72 7.87 
20 7.51 7.55 7.53 7.41 43 7.72 7.79 7.76 7.83 
21 7.43 7.68 7.38 7.70 44 7.35 7.46 7.60 7.51 
22 7.30 7.55 7.40 7.42 *45 8.00 7.77 7.93 7.90 

*23 7.60 7.42 7.44 7.48 46 7.26 7.50 7.31 7.27 
* Compounds used as prediction set 
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transferred to Gaussian 98 program. Complete 
geometry optimization was performed taking 
the most extended conformation as starting 
geometries. Semi-empirical molecular orbital 
calculation (AM1) of the structures was 
preformed using the Gaussian 98 program 
(15). The Gaussian program calculated 
different quantum chemical descriptors 
including, dipole moment (DM), local charges, 
and HOMO and LOMO energies. Hardness 
(η), softness (S), electronegativity (χ) and 
electrophilicity (ω) were calculated according 
to the method proposed by Thanikaivelan and 
coworkers (17). The calculated descriptors 
from whole molecular structures are briefly 
described in Table 2. 
 
Data Pretreatment and model building 

Anti influenza A activity was used as 
dependent variable. The calculated descriptors 
(independent variables) were collected in a 
data matrix whose number of rows and 
columns were the number of molecules and 
descriptors, respectively. In order to test the 
final model performances, about 18% of the 
data (8 molecules out of 46) were selected as 
external test set molecules. These samples 

were selected based on descriptors spaces. The 
data matrix containing the total descriptors 
was subjected to principle component analysis 
and the first two principle components were 
plotted against each other. GA-PLS, MLR 
with factor analysis as the data pre-processing 
step for variable selection and PCRA methods 
were used to derive the QSAR equations. 

 
RESULTS 

 
GA-PLS 

In this study, GA-PLS was employed to 
model the structure azolo-adamantanes activity 
relationships more appropriately.(18-19). 
Application of PLS method thus allows the 
construction of larger QSAR equations while 
still avoiding over-fitting and eliminating most 
variables. This method is normally used in 
combination with cross-validation to obtain 
the optimum number of components (20-21). 
The PLS regression method used was the 
NIPALS-based algorithm existed in the 
chemometric toolbox of MATLAB software 
(version 7.1 MathWorks, Inc.). In order to 
obtain the optimum number of factors based 

 
Table 2. Brief description of some descriptors used in this study. 

Descriptor 
type Molecular Description 

Constitutional 

Molecular weight, no. of atoms, no. of non-H atoms, no. of bonds, no. of heteroatoms, no. of multiple bonds 
(nBM), no. of aromatic bonds, no. of functional groups (hydroxyl, amine, aldehyde, carbonyl, nitro, nitroso, etc.), 
no. of rings, no. of circuits, no of H-bond donors, no of H-bond acceptors, no. of Nitrogen atoms (nN), chemical 
composition, sum of Kier-Hall electrotopological states (Ss), mean atomic polarizability (Mp), number of rotable 
bonds (RBN), mean atomic Sanderson electronegativity (Me), etc.  

Topological 

Molecular size index, molecular connectivity indices (X1A, X4A, X2v, X1Av, X2Av, X3Av, X4Av), information 
content index (IC), Kier Shape indices, total walk count, path/walk-Randic shape indices (PW3, PW4, Zagreb 
indices, Schultz indices, Balaban J index (such as MSD) Wiener indices, topological charge indices, Sum of 
topological distances between F..F (T(F..F)), Ratio of multiple path count to path counts (PCR), Mean information 
content vertex degree magnitude (IVDM), Eigenvalue sum of Z weighted distance matrix (SEigZ), reciprocal 
hyper-detour index (Rww), Eigenvalue coefficient sum from adjacency matrix (VEA1), radial centric information 
index, 2D petijean shape index (PJI2), etc. 

Geometrical 3D petijean shape index (PJI3), Gravitational index, Balaban index, Wiener index, etc. 

Quantum 

Highest occupied Molecular Orbital Energy (HOMO) , Lowest Unoccupied Molecular Orbital Energy (LUMO), 
Most positive charge (MPC), Least negative charge (LNC), Sum of squares of charges (SSC), Sum of square of 
positive charges (SSPC), Sum of square of negative charges (SSNC), Sum of positive charges (SUMPC), Sum of 
negative charges (SUMNC), Sum of absolute of charges (SAC), Total dipole moment (DMt), Molecular dipole 
moment at X-direction (DMX), Molecular dipole moment at Y-direction (DMY), Molecular dipole moment at Z-
direction (DMZ). 

Functional 
group 

Number of total tertiary carbons (nCt), Number of H-bond acceptor atoms (nHAcc), number of total hydroxyl 
groups (nOH), number of unsubstituted aromatic C(nCaH), number of ethers (aromatic) (nRORPh), etc. 

Chemical 
LogP (Octanol-water partition coefficient), Hydration Energy (HE), Polarizability (Pol), Molar refractivity (MR), 
Molecular volume (V), Molecular surface area (SA). 



R. Karbakhsh and R. Sabet. / RPS 2011; 6(1): 23-33 

 

 28 
 

on the Haaland and Thomas F-ratio criterion, 
leave-one-out cross-validation procedure was 
used (22). 

Genetic algorithm is a novel and simple 
optimization method based on the evolution 
process of living beings in which simplicity 
and effectiveness have been applied to the 
various types of optimization problems in 
many scientific fields. It uses genetic rules 
such as reproduction, crossover and mutation 
to build pseudo organisms that are then 
selected, on the basis of a fitness criterion to 
survive and pass information on to the next 
generation (23-25). Each individual of the 
population was defined by a chromosome of 
binary values representing a subset of 
descriptors. The population size varied 
between 50 and 250 for different GA runs. The 
population of the first generation was selected 
randomly. The number of genes at each 
chromosome was equal to the number of 
descriptors (26). A gene took a value of 1 if its 
corresponding descriptor was included in the 
subset; otherwise, it took a value of 0. The 
number of genes with a value of 1 was kept 
relatively low to have a small subset of 
descriptors, that is, the probability of 
generating 0 for a gene was set greater (at least 
70%) than the value of 1 (25). The operators 
used here were crossover and mutation. The 
probability of the application of these 
operators varied linearly with generation 
renewal (0-10% for mutation and 60-90% for 
crossover). For a typical run, the evolution of 
the generation was stopped when 90% of the 
generation took the same fitness. A maximum 
generation number of 500 were used 
throughout. The fitness function (predictability 
of the model) was computed by cross-
validation procedure based on the sum of 
squares of errors (SSECV) value. The inverse 
of SSECV was considered as fitness function 
(27). The chromosomes with the least numbers 
of selected descriptors and the highest fitness 
were marked as informative chromosomes 
(26).  

In PLS analysis, the descriptors data matrix 
is decomposed to orthogonal matrices with an 
inner relationship between the dependent and 
independent variables. The multi-colinearity 
problem in the descriptors is omitted by PLS 

analysis because a minimal number of latent 
variables are used for modeling in PLS (26). 
Since redundant variables degrade the 
performance of PLS analysis, similar to other 
regression methods, a variable selection 
method must be employed to find the more 
convenient set of descriptors. Here, GA was 
used as variable selection method. These 
samples were selected based on descriptors 
spaces. To do so, the data matrix containing 
the total descriptors was subjected to principle 
component analysis and the first two principle 
components were plotted against each other. 
The data set (n=46) was divided into two 
groups: calibration set (n=38) and prediction 
set (n=8). Given 38 calibration samples; cross-
validation procedure was used to find the 
optimum number of latent variables for each 
PLS model. GA produces a population of 
acceptable models in each run. In this work, 
many different GA-PLS runs were conducted 
using different initial set of populations (50-
250) and therefore a large number of 
acceptable models were created.  

The most convenient GA-PLS model that 
resulted in the best fitness contained 10 
descriptors including four topological indices 
(PW2, SIC2, IC4 and MPC06), one 
constitutional (nf), two geometrical (G (N..S) 
and PJI3) and three quantum parameters 
(LUMO, DMz, DMx). The PLS estimate of 
the regression coefficients are shown in Fig. 1 
Since these constants were calculated based on 
the normalized descriptor values, they can be 
used as a measure of the importance of the 
corresponding descriptor. As it is observed, the 
topological (IC4 and MPC06), constitutional 
(nf) and geometrical (G (N..S)) parameters 
represent the most significant contribution in 
the obtained QSAR model followed by the 
functional geometrical and topological 
parameters (PJI and SIC2).  

The statistical parameters of the resulted 
PLS-based QSAR model are given in Table 3. 
This GA-PLS model possessed high statistical 
quality R2=0.86 and Q2=0.77. It could explain 
and predict about 77% of variances in the anti 
influenza A activity of the studied molecules. 
The predictive ability of the model was 
measured by application to 8 external test set 
molecules. The correlation coefficient of 
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Fig. 1. PLS regression coefficients for the variables used in GA-PLS model  

  
Table 3. Statistical parameters for testing prediction ability of the FA-MLR, PCR and GA-PLS models  

Model q2 a RMSECV
  b r2

P
 c RMSEP d 

FA-MLR 0.64 0.17 0.78 0.19 

PCR 0.82 0.11 0.82 0.12 

GA-PLS 0.77 0.13 0.85 0.14 

a q2 = Cross validation correlation coefficient. b RMSECV = Root mean square error of cross validation.  
c r2

p
 = Regression coefficient for prediction set. d RMSEP = Root mean square error of prediction set. 

 
prediction set is 0.85, which means that the 
resulted QSAR model could predict 85% of 
variances in the inhibitory activity data and 
standard error of prediction was 0.13. 

The predicted activities are represented in 
Table 1 and are plotted against the correspon-
ding experimental values in Fig. 2 Comparison 
between the results obtained by GA-PLS and 
the other employed regression methods 
indicates higher accuracy of this method in 
describing anti influenza A activity of the 
azolo-adamantanes derivative. Difference in 
accuracy of the different regression methods 
used in this study is visualized in Fig. 2 by 
plotting the predicted activity (by cross-
validation) against the experimental values. As 
it is observed, the plot of data resulted by GA-
PLS represents the lowest scattering of data 
around a straight line and that obtained by PCRA 
analysis is in the second order of accuracy. 

Some criteria for the prediction of the 
model are suggested by Tropsha. If these 
criteria are satisfied, it can then be concluded 
that the model is predictive: 

 

 

where, R2 is the correlation coefficient of 
regression between the predicted and observed 
activities of compounds in training and test set. 
Ro

2 is the correlation coefficient for 
regressions between predicted versus observed 
activities through the origin, R'o2 is the 
correlation coefficient for the regressions 
between observed versus predicted activities 
through the origin, and the slopes of the 
regression lines through the origin are assigned 
by k and k', respectively. Details of the 
definitions of parameters such as Ro

2, R'o2, k 
and k' are presented in the literature. In 
addition, according to Roy and coworkers, it is 
necessary to study the differences between the 
values of Ro

2 and R'o2. They suggest the 
following modified R2 form: if R2

m value for 
the given model is >0.5, indicates good external 
predictability of the developed model (28). 

 
Robustness and applicability domain of the 
models 

Leverage is one of standard methods for 
this purpose. The numerical value of leverage 
has certain properties: (a) the value is always 
greater than zero, (b) the lower the value, the 
higher is the confidence in the prediction.
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Fig. 2. Plots of the cross-validated predicts activity against the experimental activity for the different models 
obtained against Influenza A 

 
 
 
 
 
 
 
 
 
 
 

 
A value of 1 indicates very poor prediction. 

A value of 0 indicates perfect prediction and 
usually is not achievable, (c) If there are P 
coefficients in the model, the sum of values for 
leverage at each experimental point of 
calibration adds up to P. Warning leverage 
(h*) is another criterion for interpretation of 
the results. The warning leverage is, generally, 
fixed at 3k/n, where n is the number of training 
compounds and k is the number of model 
parameters. A leverage greater than warning 
leverage h* means that the predicted response 
is the result of substantial extrapolation of the 
model and therefore may not be reliable (29). 
The calculated leverage values of the test set 
samples for different MLR and PCR models 

are listed in Table 4. The warning leverage, as 
the threshold value for accepted prediction, is 
also given in Table 5. As seen, the leverages of 
all test samples are lower than h* for all 
models. This means that all predicted values 
are acceptable. 
 
FA-MLR and PCRA 

FA-MLR was performed on the dataset. 
Factor analysis (FA) was used to reduce the 
number of variables and to detect structure in 
the relationships among them. This data-
processing step is applied to identify the 
important predictor variables and to avoid 
collinearities (30). PCRA, was tried for the 
data set along with FA-MLR. With PCRA,

 
 
Table 4. Statistical parameters obtained for the developed model of the investigated compounds 

parameter Training set Test set 

R2- Ro
2/ R2 -0.012 -0.031 

R2- R'o2/R2 -0.007 -0.030 

K 1.032 0.876 

K' 1.014 0.765 

Rm
2 0.810 0.793 
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collinearities among X variables are not a 
disturbing factor and the number of variables 
included in the analysis may exceed the 
number of observations (31). In this method, 
factor scores, as obtained from FA, are used as 
the predictor variables (30). In PCRA, all 
descriptors are assumed to be important while 
the aim of factor analysis is to identify relevant 
descriptors. Table 6 shows the 4 factor 
loadings of the variables (after VARIMAX 
rotation) for the compounds tested against 
influenza A. As it is observed, about 73% of 
variances in the original data matrix could be 
explained by the selected 4 factors.  

Based on the procedure explained in the 
experimental section, the following three-
parametric equation was derived: 

 

pIC50 = 6.590 (± 0.353) - 0.054 (± 0.007) G (N..S) 
+1.742 (± 0.391) PJI3 - 0.050 (± 0.021) DMz 

r2 = 0.72  S.E = 0.21  F = 29.80  q2 = 0.64    

RMScv = 0.17  N = 38         (E1) 
 

Equation 1 could explain about 72% of the 
variance and predict 64% of the variance in 
pIC50 data. This equation describes the effect 
of geometrical (G (N..S) and PJI3) and 
Quantum (DMz) indices on enzyme inhibitory 
activity of the studied molecules. 

When factor scores were used as the 
predictor parameters in a multiple regression 
equation using forward selection method 
(PCRA), the following equation was obtained: 

 
pIC50 = 7.520 (± 0.018) - 0.215 (± 0.018)  f1 -0.144 
(± 0.019)  f3 
r2 = 0.85  S.E. = 0.13  F = 97.82   q2 = 0.82   
RMScv = 0.11  N = 38       (E2) 

Table 5. Leverage (h) of the external test set molecules for different models. The last row (h*) is the warning 
leverage. 

Molecule No. FA-MLR PCRA GA-PLS 

4 0.101 0.098 0.0322 

8 0.203 0.030 0.232 

10 0.240 0.045 0.123 

25 0.032 0.234 0.543 

29 0.313 0.123 0.233 

32 0.022 0.021 0.098 

38 0.032 0.322 0.032 

40 0.043 0.123 0.126 

h* 0.650 0.609 0.534 

Table 6. Numerical values of factor loading numbers 1–4 for descriptors after VARIMAX rotation 
 1 2 3 4 Commonality 

nF 0.133 0.882 0.133 0.054 0.800 

PW2 0.026 0.800 0.234 0.070 0.700 

SIC2 0.596 0.341 -0.365 0.184 0.639 

IC4 0.074 -0.479 0.605 0.284 0.681 

MPC06 0.298 0.477 0.727 0.136 0.864 

PJI3 -0.032 -0.179 -0.758 0.371 0.745 

G(N..S) 0.882 -0.076 0.129 -0.232 0.853 

DMx -0.055 -0.298 0.040 -0.678 0.553 

DMz -0.031 -0.133 -0.025 0.850 0.741 

LUMO -0.671 -0.270 -0.016 -0.323 0.628 

PIC50  -0.790 0.055 -0.470 0.056    0.850  

%variance 21.139 20.097 17.249 14.742  73.226 
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Equation 2 could explain and predict 85% 
and 82% of the variances in pIC50 data, 
respectively. Since factor scores are used 
instead of selected descriptors, and any factor-
score contains information from different 
descriptors, loss of information is thus avoided 
and the quality of PCRA equation is better 
than those derived from FA-MLR (32). 

As seen in Table 6, in the case of each 
factor, the loading values for some descriptors 
are much higher than those of the others. 
These high values for each factor indicate that 
this factor contains more information about 
descriptors. It should be noted that all factors 
have information from all descriptors but the 
contribution of descriptor in different factors 
are not equal. For example, factors 1 and 2 
have higher loadings for the geometrical, 
topological and constitutional indices, whereas 
information about the topological, geometrical 
and quantum descriptors are highly 
incorporated in factor 3 and 4. Therefore, from 
the factor scores used by equation E2, 
significance of the original variables for 
modeling the activity can be obtained. Factor 
score 1 indicates importance of G (N..S) 
(Geometrical indices). Factor score 2 indicates 
importance of nf and PW2 (the constitutional 
and topological descriptors) and factor scores 
3 and 4 signify the importance of MPC06, 
PJI3 and DMz (the topological, geometrical 
and Quantum descriptors). 

The predicted values of the activity for 
calibration set (by cross-validation) and 
prediction set for FA-MLR and PCRA are 
listed in Table 1 and are plotted against the 
corresponding experimental values in Fig. 2 
The statistical parameters of prediction set are 
listed in Table 3. The correlation coefficient of 
prediction for FA-MLR analysis is 0.78, which 
means that the obtained QSAR model could 
predict 78% of variances in the anti influenza 
A activity data. It has a root mean square error 
of 0.19. The correlation coefficient of 
prediction for PCRA analysis is 0.82. This 
means that the derived QSAR model could 
predict 82% of variances in the inhibitory 
activity data. The root mean square error of 
PCRA analysis was 0.12. Whilst the data of 
this analysis shows acceptable prediction, we 
see that the predicted values of some 
molecules are near to each other. 

DISCUSSION 
 
Quantitative relationships between molecu-

lar structure and anti influenza activity were 
discovered by GA-PLS, FA-MLR and PCRA. 
As it was shown in Fig. 1 the topological (IC4 
and MPC06), constitutional (nf) and 
geometrical (G (N..S)) parameters represent 
the most significant contribution in the 
obtained QSAR model followed by the 
functional geometrical and topological 
parameters (PJI and SIC2). FA-MLR was 
performed on the dataset. Equation 1 describes 
the effect of geometrical (G (N..S) and PJI3) 
and Quantum (DMz) indices on enzyme 
inhibitory activity of the examined molecules. 
PCRA was performed on the dataset and 
equation 2 could explain and predict 85% and 
82% of the variances in pIC50 data. 

 
CONCLUSION 

 
Quantitative relationships between molecu-

lar structure and anti influenza A activity of a 
series of azolo-adamantanes derivatives were 
discovered by different chemometric tools 
including FA-MLR, PCRA and GA-PLS. The 
FA-MLR describes the effect of geometrical 
and quantum indices on inhibitory activity of 
the examined molecules. The quality of PCRA 
equation is better than those derived from FA-
MLR. Factor scores 1 and 2 indicate 
importance of geometrical, constitutional and 
topological indices. Factor scores 3 and 4 
show the importance of geometrical, 
topological and quantum descriptors. GA-PLS 
analysis indicated that the topological (IC4 and 
MPC06), constitutional (nf) and geometrical 
(G (N..S)) parameters were the most 
significant parameters on inhibitory activity. A 
comparison between the different statistical 
methods employed revealed that GA-PLS 
represented superior results and it could 
explain and predict 85% and 77%  of variances 
in the pIC50 data, respectively. 
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