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Autoantigen-directed tolerance can be induced by certain nucleosomal histone peptide
epitope/s in nanomolar dosage leading to sustained remission of disease in mice with
spontaneous SLE. By contrast, lupus is accelerated by administration of intact (whole)
histones, or whole nucleosomes in microparticles from apoptotic cells, or by post-
translationally acetylated histone-peptides. Low-dose therapy with the histone-peptide
epitopes simultaneously induces TGFb and inhibits IL-6 production by DC in vivo,
especially pDC, which then induce CD4+CD25+ Treg and CD8+ Treg cells that
suppress pathogenic autoimmune response. Both types of induced Treg cells are
FoxP3+ and act by producing TGFb at close cell-to-cell range. No anaphylactic
adverse reactions, or generalized immunosuppression have been detected in mice
injected with the peptides, because the epitopes are derived from evolutionarily
conserved histones in the chromatin; and the peptides are expressed in the thymus
during ontogeny, and their native sequences have not been altered. The peptide-induced
Treg cells can block severe lupus on adoptive transfer reducing inflammatory cell reaction
and infiltration in the kidney. In Humans, similar potent Treg cells are generated by the
histone peptide epitopes in vitro in lupus patients’ PBMC, inhibiting anti-dsDNA
autoantibody and interferon production. Furthermore, the same types of Treg cells are
generated in lupus patients who are in very long-term remission (2-8 years) after
undergoing autologous hematopoietic stem cell transplantation. These Treg cells are
not found in lupus patients treated conventionally into clinical remission (SLEDAI of 0); and
consequently they still harbor pathogenic autoimmune cells, causing subclinical damage.
Although antigen-specific therapy with pinpoint accuracy is suitable for straight-forward
organ-specific autoimmune diseases, Systemic Lupus is much more complex. The
histone peptide epitopes have unique tolerogenic properties for inhibiting Innate
immune cells (DC), T cells and B cell populations that are both antigen-specifically and
cross-reactively involved in the pathogenic autoimmune response in lupus. The histone
peptide tolerance is a natural and non-toxic therapy suitable for treating early lupus, and
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also maintaining lupus patients after toxic drug therapy. The experimental steps,
challenges and possible solutions for successful therapy with these peptide epitopes
are discussed in this highly focused review on Systemic Lupus.
Keywords: autoimmunity, systemic lupus erythematosus, T regulatory cells, T suppressor cells, autoantigen
specific tolerance, autoantigen derived peptide epitopes
INTRODUCTION

This chronicle with historical perspective focuses first on the
early steps of pathogenic autoantibody production in lupus,
especially on the role of Th cells, and then how they can be
regulated. In human lupus, it is now established that the main
genetic risk loci for lupus susceptibility in GWAS are located in
MHC class II and IRF5 regions, which respectively determine
autoantigen presentation and associated activating cytokines
production required to recruit autoreactive T helper (Th) cells
(1–8). Genetic studies in families with rheumatic autoimmune
diseases also support the initiating role of T cells in lupus (9), in
addition to complement genes in the MHC locus (10).
Importantly, augmented Th cell activity which is prevalent in
lupus (11–13), can overcome the need for TLR abnormalities
contributing to lupus (14). B cells and other professional APCs
are activated to present autoantigens as the disease progresses.
However, normally macrophages, such as, tingible body MF and
DCs remain tolerogenic when handling dying (apoptotic) cells
that can provide the autoantigens for lupus if mishandled, as
described below (15–18). The professional APC become
effectively activated in vivo to present these apoptotic
autoantigens after the apoptotic cell derived DNA and/or RNA
containing autoantigens are presented in IgG immune complexes
(IC) that are bound by the APC to dually stimulate their TLR and
FcgR (19, 20). Hence, Th cell mediated class-switched IgG
autoantibodies specific for the DNA or RNA containing
autoantigens have to be made first for IC formation activating
the APC. Moreover, B cells become efficient antigen presenter to
lupus Th cells that have been primed first by other APC, or if the
B cells have developed high affinity receptors after undergoing
somatic mutation and expansion with TFH cell help in germinal
centers (19, 21). However, high level expression of X-linked
TLR7, due to incomplete X-chromosome inactivation (22), can
contribute to lupus development early on, by independently
activating DC and other APC, which in turn causes
widespread T-cell activation (23, 24). To accomplish the above
effect, striking studies have recently shown that IRF5 is first
activated by TLR7 using the adaptor TASL, which interacts with
SLC15A4, an amino acid transporter in endolysosome, to recruit
IRF5 (25). The X-inked gene CXorf21-a encoding TASL and the
gene for SLC15A4 were known to be associated with lupus
susceptibility, as discussed in ref (26). Of course intrinsic
defects in B cells and APC are critically important for lupus
pathogenesis. With disease progression, other pathogenic players
in T cell, B cell and unconventional APC populations evolve and
are recruited to participate in amplifying the autoimmune
inflammatory response, especially in extra-follicular sites, to
org 2
cite a few (27–32), and reviewed elsewhere [Tsokos, 2020
#2492] (33, 34). Those pathogenic contributors might be kept
in check by establishing regulatory mechanisms at the earliest
steps of the disease, which is the focus of this review on Lupus,
and this topic.
IDENTIFYING AND CLONING
PATHOGENIC ANTI-DSDNA
AUTOANTIBODY-INDUCING TH CELLS OF
LUPUS IN PATIENTS AND LUPUS-PRONE
MICE (HISTORICAL PERSPECTIVE)

Step by step experiments and ensuing hypothesis based on their
results at each stage led to cellular and molecular
characterization of the pathogenic Th cells of lupus and how
the Th cells become capable in helping pathogenic
autoantibody production.

Properties of Pathogenic
Anti-DNA Autoantibodies
First of all, certain distinctive properties of pathogenic anti-DNA
autoantibodies were crucial for isolating and characterizing the
Th cells that specifically help them. The pathogenic anti-dsDNA
autoantibodies that are deposited in kidneys with lupus nephritis
have distinct features, as they are complement-fixing IgG in
isotypes, with cationic charge, and clonally restricted by
isoelectric focusing, and are able to cause glomerulonephritis in
vivo (35–41). Moreover, their antigen combining V regions share
recurrent idiotype and fine-specificity patterns for autoantigens
(39, 42). Sequence analysis of the pathogenic autoantibodies
confirmed their clonal expansion, as they shared VH region
CDR3 sequences containing numerous cationic residues
generated by somatic mutation (43–45), a signature of Th cell
drive. Contemporary studies had shown that immune complexes
with cationic charge preferentially bind to anionic residues in
glomerular basement membrane proteoglycans and collagen
(46–48). It was shown later that glomerular binding of these
“anti-DNA” antibodies could also be mediated via histones in
nucleosomes bound in situ (49–52).

Initial Studies to Find the Link Determining
Cognate Interaction Between Autoimmune
T and B Cells of Lupus
As described above, pathogenic anti-dsDNA antibodies in lupus
are class-switched (35, 36) and clonally expanded (43, 44)
suggesting a T helper cell dependent response, but it was
April 2021 | Volume 12 | Article 629807
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mysterious up to 1980s and early 1990s how the Th cells actually
helped Pathogenic anti-dsDNA autoantibody-producing B cells,
because conventional Th cells do not recognize DNA.

In the first step, it was established that special autoimmune T
helper (Th) cell subsets expanded the select population of
pathogenic anti-dsDNA autoantibody producing B cells in
mice with lupus (41, 53). The production of these pathogenic
autoantibodies is also driven by select Th cells that are detectable
in patients with active lupus nephritis (54–56).

In the next step, to define their antigenic specificity, the
autoimmune Th cells were cloned from lupus prone mice, and
also from patients with lupus nephritis (~ 800 clones). Prior to
these studies, isolation of the pathogenic T helper (Th) cells of
lupus was not done, because their antigenic specificities were
unknown. However, using their special functional property of
inducing the pathogenic variety of anti-dsDNA autoantibodies as
a selection marker, the lupus nephritis-inducing Th cells were
isolated. Only 12-15% of activated T cells in lupus patients and
mouse models, could induce the production of pathogenic IgG
anti-DNA autoantibodies (53–57). When administered into
young pre-clinical stage lupus-prone mice, pathogenic
autoantibody-inducing Th clones could rapidly induce
immune-deposit glomerulonephritis (57, 58). Sequences of
antigen-binding CDR loops of the TCRs of these pathogenic
Th clones of lupus show recurrent motifs of anionic residues,
indicating their selection by autoantigens with cationic residues
(56, 57, 59). Indeed, a majority of such pathogenic Th clones
produced IL-2 and IFN-g in response to nucleosomes that
Frontiers in Immunology | www.frontiersin.org 3
contain histone peptides bearing cationic determinants, and
nucleosome-specific T cells are detectable in pre-clinical stage
lupus-prone mice before pathogenic autoantibodies are
detectable in their serum (56, 60, 61). In addition,
immunization of pre-clinical lupus mice, but not normal mice,
with whole nucleosome particles induces accelerated lupus
nephritis indicating the need for pre-existing autoimmune T
and B cells in a lupus-prone background (60).

Thus the relevant autoantigens for pathogenic anti-dsDNA
autoantibody inducing Th cells of lupus were discovered by an
unbiased experimental approach, using pathogenic autoantibody
inducing Th cells as sensors to detect the relevant autoantigen
epitopes. This property provided the lupus Th cells the ability of
“linked recognition” (62) for interaction with pathogenic anti-
DNA autoantibody producing B cells (Figure 1). In this way, for
the first time a true autoantigen for spontaneous SLE; namely
endogenous nucleosomes from host’s apoptotic cells, and not
some speculative component in microbes (63, 64), was found to
be the real text book-like hapten- carrier link between the
pathogenic Th and B cell in lupus for cognate interaction (57,
60),—and from that critical experimental step further studies led
to identification of the histone peptide epitopes in nucleosomes
recognized by those Th cells, and showed how to harness those
particular epitopes for regulatory T cell induction for lupus
therapy, as described below. All this was possible in 1980s and
early 1990s by cloning the select population of pathogenic anti-
dsDNA autoantibody-producing B cells, and then the special
autoimmune T helper cells that drive such B cells in lupus. To
FIGURE 1 | Autoimmune T and B cell interaction in lupus based on Nucleosome-derived autoantigens (based on work done from early 1980s through early1990s;
references in the Text). Figure shows that Th cells that induce the production of pathogenic anti-DNA autoantibodies possess anionic residues in CDR3 of their TCRs
(green). The lupus Th cells recognize peptides with reciprocal cationic charge (red), such as peptides from histones in nucleosomes presented by the pathogenic
anti-DNA autoantibody producing B cells bearing BCRs with cationic residues generated by somatic mutations in CDR3 of their receptors (red). The pathogenic
BCRs bind to anionic residues in DNA (green) that are complexed with cationic histones in nucleosomes, which are then endocytosed and processed for
presentation to the interacting Th cells. Nucleosomes accumulate due to defective clearance of apoptotic cells in lupus, and are processed by activated APC to
prime the pathogenic Th cells; a lupus-specific event initiated early in life. This figure is extensively modified from a figure in J Exp Med (60).
April 2021 | Volume 12 | Article 629807
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emphasize again, despite the obstacle that the antigenic
specificities of lupus T cells were then unknown, using the
experimental steps described above, the pathogenic anti-
dsDNA autoantibody-inducing T helper cells were cloned to
define the structure and specificity of their receptor genes in
human and murine lupus. To achieve the ultimate goal of
understanding the cause, and designing a cure for spontaneous
autoimmune diseases like lupus, it was essential at that time to
identify the major autoantigen/s that drives the pathogenic
autoimmune response. In lupus, DNA is a target antigen for
autoantibodies but paradoxically immunization of mice with
DNA does not cause lupus. The studies with the pathogenic
autoantibody-inducing T helper clones in early 1990s led to the
initial identification of one of the major immunogens that drives
the pathogenic T helper cells of lupus (57, 60).

Significance and Relevant Contemporary
Studies by Others
Many studies soon followed that demonstrated or suggested
mechanisms that could initiate or amplify the response of
pathogenic Th cells to nucleosomal peptides in lupus. Briefly, in
lupus, products from apoptotic cells accumulate and become
immunogenic because, scavenging molecules in phagocytic cells,
such as Marco and other scavenger receptors are functionally
deficient in lupus, and so are complement components such as
C1q,which facilitatephagocytosis of apoptotic cellswithout causing
an immune response (65–68). Nucleosomes, HMGB1, DNA or
RNA from apoptotic cell components not being disposed of
properly, act as endogenous TLR ligands, stimulating cells of the
innate and adaptive immune system (19, 23, 60, 69–74). For
example, HMGB1 chromosomal protein from apoptotic cells that
have not been removed properly, forms inflammatory complexes
with other accumulating debris like DNAor nucleosomes particles,
stimulating immune cells via TLR 2, TLR 4, and RAGE on the cell-
surface, or TLR9 in the endosome/lysosome (74–76). Similarly,
accumulating extra-cellular nucleosomes in micro particles
containing DNA, or ribonucleoproteins containing RNA can
stimulate cells of the innate immune system respectively by TLR9
or by TLR 7/8 (29, 31, 77, 78), thus augmenting autoantigen
presentation to pathogenic Th cells by those activated APC. The
case for TLR 9 is actually more complex, because in early stages,
TLR9 actually protects against lupus (79), possibly by promoting
tolerance in APC, B cells and helping Treg generation (80, 81). The
other possible autoantigen-derived epitope with cationic charge,
which could be recognized in a lupus B cell-linked fashion by the
pathogenic autoantibody inducing Th cells possessing reciprocally
charged anionic residues in their CDR3 region, would be derived
from CDR3 region peptides of somatically mutated anti-DNA
autoantibodies, as suggested (57, 60); and this possibility was
independently demonstrated to be true by several laboratories
(82–85). This issue is dealt in other contributions to this
research topic.

How Are the Many Types of Th Cells of
Lupus Linked?
Th1, TFH, TPH, Gamma Delta Th, CD8 Th, CD4-CD8- Th cells
and more, participate in contributing to the pathogenic response
Frontiers in Immunology | www.frontiersin.org 4
in lupus. However, is itmainly Th1→TFH cells initiating/sustaining
pathogenic autoantibody production; whereas the others evolve as
amplifiers at extrafollicular inflammatory sites? First of all as
mentioned above, only particular subclasses of IgG anti-DNA
antibodies are more closely associated with a pathogenic potential
in lupus patients and mice, and these pathogenic IgG antibodies
belong to Th1-induced isotype classes. In lupus patients, Th1-
induced anti-DNA IgG1antibodies are always elevated before the
occurrence of renal relapse, and IgG1 plus IgG2 anti-DNA
antibodies are found in patient’s renal eluates, whereas in lupus
prone mice, murine Th1-induced IgG2a, IgG2b, and IgG3 anti-
DNAaremore frequently eluted fromkidneyswith active nephritis
(39, 42, 86–88). In contrast to TFH cells which conventionally
produce IL-21; Th1 cytokine IFNg not only mediates class switch
for the nephritogenic isotypes, but Th1 derived IFNg signal is also
critical for autoantibody production by germinal center B cells (89,
90). Furthermore, many non-autoantigen specific, bystander TFH

cells expand as a secondary eventwith progressionof disease,which
could amplify (but not initiate) anti-DNAautoantibody production
(91). Indeed, Ig class-switch recombination (CSR), during T and B
cell cognate interaction, which is Th1 IFNg cytokine dependent in
lupus, may occur before the TFH IL-21 driven expansion of
autoantibody producing B cells in germinal center, which comes
later (92). Moreover, Th1-biased GC TFH cells have been reported
(93), and another group reported that the differentiation and
function of a Th1-derived TFH1-like cell population is driven by
IL-12 signaling,which is important for differentiationofTh1 cells in
the first place (94–96).

Therefore, Th1 → TFH1 evolution/transition is a possibility in
pathogenic anti-DNA autoantibody production in lupus.

And then there are the potent TPH cells with TFH like phenotype
but areCXCR5-; theyhelp lupusB cells also byproducing IL-21; and
IL-10–producing CCR6+T cells populate lymph nodes of SLE
patients. These Th cells probably evolve after receiving cytokine
and other signals from activated B cells and other APC at extra-
follicular sites, as the disease progresses (27, 97).

In addition, helper activity of CD8+ and CD4-/CD8- ab and gd
TCR+ Th cells, in pathogenic autoantibody production in human
SLE has been reported (54, 55). The subset of T cells in humans that
are CD4-/CD8- and ab TCR+ with pathogenic anti-DNA
autoantibody-inducing ability in SLE is interesting, because such
Th cells were considered to be unique toMRL-lpr mice with lupus.
However, similar pathogenic autoantibody-inducing T cells with
double negative phenotype that express “forbidden”, autoreactive T
cell receptors were described in non-lpr lupus prone mice (41, 53,
98) and then in human lupus (54, 55). Although these double
negative T cellsmight be secondary events in lupus compared to the
CD4+ Th cells, they make an important contribution to
pathogenesis of the disease. The CD4-/CD8- and ab TCR+ T cells
also have important role in target organ inflammation (99, 100).

Nucleosomal Peptide Autoepitopes
Recognized by Pathogenic Th and B Cells
of Lupus
In the next step, the critical peptide autoepitopes recognized by
lupus nephritis-inducing Th cells were localized initially to be in
the core histones of nucleosomes, at amino acid (aa) positions:
April 2021 | Volume 12 | Article 629807
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10-33 of H-2B, 16-39 and 71-94 of H4, and 85-102 of H3 (61).
Altogether 154 overlapping 15-mer peptides spanning the entire
length of all four core histones were tested to find the buried
epitopes in nucleosomal histones that were recognized specifically
autoimmuneThcells that cause lupus inmousemodels. Inaddition,
another dominant epitope was identified in position 22-42 of H1’,
by mass spectrometry analysis of naturally processed peptides
eluted from class II molecules of lupus B cell (APC) lines fed with
chromatin (101). Remarkably, all these epitopes are located in
regions of histones that contact with DNA in the nucleosome,
and they are also targeted by autoantibodies from lupus B cells (B-
cell epitopes), indicating that the epitopes could be protected from
degradation during autoantigen processing and thus preferentially
presented to the Th cells (61, 101–103). Surprisingly, the
nucleosomal peptides have the features of “universal epitopes”
(104), for instance, the peptide epitopes are promiscuously
recognized by pathogenic Th cells derived from lupus-prone
SNF1 mice (MHC I-Ad/q) even when presented by APC bearing I-
Amolecules of all othermouse haplotypes, and humanHLA-DRas
well! Due to reciprocal charge interaction, the lupus TCRs probably
contact the nucleosomal peptide-complexed with MHC
promiscuously to sustain TCR signaling (105, 106). The
promiscuity of lupus TCRs influences their selection in the
thymus of lupus-prone mice and ability to generate Treg cells for
tolerance spreading in the periphery, as described below (80,
107–109).

Nested Epitopes for CD8 T Cells. The tolerogenic nucleosomal
peptide autoepitopes bind to MHC class II as described above, but
CD8+ Treg cells were also induced by injection of the epitopes.
Indeed algorithms showed, MHC class I-binding motifs were nested
in their sequences, as described (108, 110). The rationale being that
the relatively long chain peptides epitopes would be processed
further by APC for cross-presentation to CD8 T cells (111). For
an example, H471–94 nucleosomal epitope has the nested CD8
sequence shown in bold letters TYTEHAKRKTVTAM
DVVYALKRQG, and similarly individually distinct nested CD8
epitopes were detected in each of the longer peptide epitopes from
the nucleosomes with CD4 Treg inducing ability, as detailed (108).
TOLERANCE THERAPY WITH
NUCLEOSOMAL PEPTIDE EPITOPES

Generation of Autoepitope Specific CD4
Treg and CD8 Treg Cell Subsets in Lupus
by Low-Dose Tolerance Therapy With
Nucleosomal Histone Peptides
(Experimental Steps ofMore Recent Publications inMouseModels
and Then in Human Lupus Are Described in Brief Below):

Studies in Lupus Prone Mouse Models
(a). Publication Title: “Very Low Dose Tolerance With
Nucleosomal Peptides Controls Lupus and Induces Potent
Regulatory T Cell Subsets”
The major autoepitopes for lupus nephritis-inducing Th cells
were localized to H1’22-42, H385-102, H416-39 and H471-94, as
Frontiers in Immunology | www.frontiersin.org 5
described above. These peptide epitopes stimulate both
autoimmune Th cells and B cells. In lupus-prone mice,
tolerance therapy at High doses (300mg I.V.) of the peptide
epitopes halted the progression of established lupus nephritis.
However, high-dose may not be suitable in humans. Therefore,
low-dose tolerance therapy was developed with 300 fold lower
doses by injecting lupus-prone mice with 1 µg nucleosomal
histone peptide autoepitopes S.C. every 2 wk (108). This sub-
nanomolar peptide therapy lowered autoantibody levels, blocked
nephritis progression and markedly diminished inflammatory
cell infiltration in kidneys, thus restoring normal life span. H471-
94 was the most effective autoepitope in this study. Low-dose
tolerance therapy induced regulatory cell subsets of CD8+

suppressor Treg, and CD4+CD25+ Treg cells, which contained
autoantigen-specific and cross-reactive autoantigen-directed
Treg cells. The Treg cells suppressed IFN-g production by
pathogenic lupus Th cells in response to nucleosomal epitopes
at up to 1:100 ratio of Treg or Treg : Th cells, and diminished
autoantibody production in vitro by up to 90-100% by inhibiting
nucleosome-stimulated T cell help to nuclear autoantigen-
specific B cells. The induced CD4+CD25+ Treg and CD8+ Treg
cells produced, and required TGF-b1 for immunosuppression;
moreover, they effectively suppressed lupus autoimmunity upon
adoptive transfer in vivo. For their suppressor function, the
CD4+CD25+ Treg cells were partially cell contact-dependent,
but CD8+ Treg cells were contact-independent. Thus, this work
demonstrated that low-dose tolerance with the conserved histone
autoepitopes durably ameliorates the regulatory defect in SLE by
inducing TGF-b producing Treg cells, and without causing
adverse side effects such as, generalized immunosuppression or
allergic/anaphylactic reactions (Figures 2 and 3).

(b). Publication Title: “Low-Dose Peptide Tolerance
Therapy of Lupus Generates Tolerogenic Plasmacytoid
Dendritic Cells That Cause Expansion of Autoantigen-
Specific Treg Cells Along With Contraction of
Inflammatory Th1 and Th17 Cell Populations”
As noted above, low-dose tolerance of mice with lupus using just
a single nucleosomal peptide epitope (H471-94) could halt the
progression of lupus nephritis by generating potent Treg cells
that suppressed autoimmune T and B cells specific for a broad
spectrum of nuclear autoantigens, and markedly inhibited
inflammatory cell reaction and infiltration in kidneys. Next
step was to determine how this therapy with only 0.36 nM of
peptide injected subcutaneously (S.C.) every 2 weeks, induced in
vivo TGFb-producing CD8+Treg, and CD4+25+ Treg cell
subsets containing regulatory cells that were autoantigen-
specific, as established by the following approach (80). In order
to track which APC had captured the histone peptide after
tolerance therapy; DC, macrophages and B cells were isolated
from local lymph nodes and spleens of lupus-prone mice injected
with low-dose H471-94 peptide S.C., and then those APC were
tested for their ability to stimulate cognate H471-94-specific T cell
hybridomas in culture. The T cell hybridomas are highly
sensitive and specific sensors detecting cognate peptide-MHC
II on APCs presenting attomole concentration of the histone
peptide. Only DC and B cells from spleen of histone peptide-
April 2021 | Volume 12 | Article 629807
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FIGURE 2 | (A) Renal histology from lupus prone mice tolerized by histone peptide epitope (left) or age-matched saline-injected control mice (right). H&E
staining; ×100 magnification shown in Upper panels. The saline control shows marked interstitial infiltrate of mononuclear cells with perivascular distribution,
hyalinized and sclerotic glomeruli and tubules engorged with casts. Lower panels (original magnification, ×400) show in further detail the differences between mice
that underwent peptide-epitope therapy (left) and control mice (right). Kidneys from the former group of mice show marked thickening of basement membranes and
advanced sclerosis and crescent formation in glomeruli, and perivascular, interstitial infiltrates of mononuclear cells. (B) Immunohistochemistry (original magnification
was ×200). Brown color shows positive staining for IgG deposits in glomeruli of lupus-prone mice, in both peptide-treated (left upper panel) and control groups (right
upper panel). However, marked cellular infiltrates around blood vessels containing CD4+ T cells (on the right, in upper panel), CD8+ T cells (on left in lower panel), and
CD138+ plasma cells (on right side in lower panel) were found only in kidneys of control mice, although both groups had IgG immune complex deposits.
(C) Immunohistochemistry showing glomerular, and interstitial-perivascular infiltration of Th17 cells in control (PBS)-injected control lupus mice (Right side). This
inflammatory cell infiltration was prevented in age-matched control mice by low-dose tolerance therapy with nucleosomal histone peptide epitope (Left Panel). Figure
partially derived from J Immunol (80, 108), (Originally published in The Journal of Immunology. Kang H-K, Michaels MA, Berner BR, Datta SK. Very low-dose
tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. J Immunol (2005) 174:3247-55. And Kang H-K, Liu M, Datta SK.
Low-Dose Peptide Tolerance Therapy of Lupus Generates Plasmacytoid Dendritic Cells That Cause Expansion of Autoantigen-Specific Regulatory T Cells and
Contraction of Inflammatory Th17 Cells J Immunol (2007) 178:7849-58. Copyright © [2005 and 2007] The American Association of Immunologists, Inc.).
Frontiers in Immunology | www.frontiersin.org April 2021 | Volume 12 | Article 6298076
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injected mice stimulated the T hybridomas. Thus, during
tolerance therapy, the subcutaneously injected H471-94 peptide,
which is highly soluble and charged, was rapidly absorbed
systemically and captured by APC in the spleen. However,
splenic DC, but not B cells or macrophages was responsible for
the tolerogenic effect of the peptide therapy. Adoptive transfer of
plasmacytoid DC or whole DC, but not B cells from the H471-94
peptide treated mice suppressed responses of autoimmune T
cells to nucleosome peptides up to 80% by Treg cells induced in
the un-manipulated lupus mouse recipients, and blocked
development of nephritis and autoantibody production in a
lupus acceleration assay. The DC from the H471-94 peptide
injected mice expressed a tolerogenic phenotype upon
capturing the S.C. injected H471-94 peptide, expressing
relatively low levels of CD80, CD86, CD40 and MHC class II.
Compared to controls, the peptide epitope treated animal’s DC,
especially plasmacytoid DC (pDC) produced increased amounts
of TGFb but decreased amount of IL-6 on stimulation by
nucleosomes and other TLR-ligands, surprisingly the TLR-9
pathway was important for this tolerogenic effect (80).
Moreover, these H471-94 peptide-tolerized pDC ameliorated
lupus autoimmune disease by simultaneously inducing/
expanding contained autoantigen-specific and cross-reactive
autoantigen-directed Treg, and suppressing effector Th1 and
Th17 cells that infiltrate the kidneys causing lupus nephritis.
As an aside, these studies initially showed that inflammatory
Th17 infiltrate the kidneys of mice with lupus nephritis (80),
Frontiers in Immunology | www.frontiersin.org 7
which was then demonstrated also in human lupus nephritis (99,
112, 113).

Altogether, these studies early on showed the pathogenic
importance of tubulo-interstitial region infiltration in lupus
nephritis kidneys by various inflammatory cells in addition to
monocyte/macrophages; such as extrafollicular germinal center
like accumulation of CD4 and CD8 T cells, and B cells and
plasma cells to set up residence in organized perivascular foci, as
well as Th17 cells; and importantly, this infiltration was inhibited
by the histone peptide epitope tolerance therapy resulting in its
beneficial effect (80, 108) (Figure 2). As discussed below, similar
to these therapeutic results, the role of locally active Treg cells
migrating into the kidney and suppressing lupus nephritis has
been recently demonstrated in other systems (114–116).
Interestingly, Figure 2B, shows that IgG immune complex
deposits were equally present in the kidneys in both peptide-
treated and control lupus-prone mice, but interstitial infiltrates
of interacting T and B cells and APC were prominent only in the
control mice with severe nephritis. This observation is consistent
with the demonstration that lupus B cells can contribute to
nephritis even without autoantibody production, but just by
autoantigen presentation and providing cytokine and other
membrane signals to pathogenic Th cells (117); and that
Belimumab has beneficial effect in patients with active lupus
nephritis (118), which is surprising, but we now know that
mature memory B cells also express BAFFR like immature
transitional B cells (119). All these intricate pathogenic
A B

FIGURE 3 | (A) Percent survival, of age-matched, lupus-diseased mice, injected subcutaneously with different nucleosomal histone peptides in low-doses, or with
saline (PBS) every two week. (B) In a rigorous test for potency of suppression, Treg cells from H471-94 peptide tolerized mice suppressed lupus acceleration upon
adoptive transfer in vivo. Pre-clinical lupus-prone mice were immunized (not tolerized) by another histone peptide at 100 fold higher doses with adjuvant CFA, leading
them to produce augmented levels of autoantibodies and develop severe nephritis rapidly, and this accelerated disease was suppressed by adoptive transfer of
CD4+CD25+ Treg and CD8+Treg cells, but not CD4+CD25- effector T cells from H471–94-treated tolerized mice. Y-axis values are for IgG autoantibody levels in
serum of recipients (mg/dL). *P <0.001. Parts of this Figure are from J Immunol (80, 108). Experimental details are in those references. (Originally published in The
Journal of Immunology. Kang H-K, Michaels MA, Berner BR, Datta SK. Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent
regulatory T cell subsets. J Immunol (2005) 174:3247-55. And Kang H-K, Liu M, Datta SK. Low-Dose Peptide Tolerance Therapy of Lupus Generates Plasmacytoid
Dendritic Cells That Cause Expansion of Autoantigen-Specific Regulatory T Cells and Contraction of Inflammatory Th17 Cells J Immunol (2007) 178:7849-58.
Copyright © [2005 and 2007] The American Association of Immunologists, Inc.)
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interactions were prevented by tolerance therapy with the
histone peptide epitopes (Figure 2).
SIGNIFICANCE OF ABOVE STUDIES IN
LUPUS-PRONE MICE

Cross-Reactive Recognition of Nuclear
Autoantigens of Lupus and
“Tolerance Spreading”
It is noteworthy that the immune response against nuclear
autoantigens is inter-connected by cross-reactive recognition at
the B cell level (38, 39, 42), and importantly at the Th cell level
(61, 101, 102, 105, 109). Thus the same lupus Th clone can help
either a B cell specific for nucleosomes, or a B cell specific for
dsDNA, or for ssDNA, or histone, or HMG, because each B cell
can take up and process the whole chromatin particle by
recognizing its own specific epitope in the chromatin, and then
present the Th clone’s relevant histone peptide epitope derived
from chromatin processing, and that results in linked
intermolecular help (56, 60, 120). Therefore, suppressing the
Th cells of lupus could block spreading of response to multiple
epitopes in chromatin (Figure 4). This hypothesis of “Tolerance
Spreading” was experimentally supported as described above
showing that progression of established lupus nephritis in the
lupus-prone mouse models can be delayed, diminishing
proteinuria and prolonging life by administering the
nucleosomal peptide epitopes singly in high dose IV or low
dose SC in tolerogenic regimens (80, 108, 109).

Indeed, the production of a variety of pathogenic
autoantibodies to nuclear autoantigens was inhibited by
tolerance therapy with any one of the epitopes. Due to
promiscuous recognit ion described above, multiple
autoimmune T cells with different TCRs can respond to the
same peptide from a nucleosomal histone, and on the other
hand, an individual autoimmune T cell can recognize multiple
nucleosome-derived peptides that are distinct in sequence (61,
105). Therefore, when injected in a soluble tolerance-inducing
form, in the absence of adjuvants, even one peptide epitope can
tolerize autoimmune Th cells of diverse specificity for
chromatin-derived autoantigens and conversely suppressing Th
cells with specificty for one nuclear autoantigenic epitope
deprives help for multiple autoimmune B cells of lupus. Thus,
tolerance induced by any one of the dominant peptide epitopes
can suppress autoimmune response to other nucleosome-derived
pathogenic epitopes (“Tolerance Spreading”). Indeed, such
“cross-reactive” suppression directed at the broad spectrum of
pathogenic autoimmune response is more desirable in lupus
therapy rather than pinpoint precision for antigen-specificity,
which is the goal of some studies using modern techniques (121).
Furthermore, the peptide epitopes are very effective in tolerance
induction because, they are simultaneously recognized by
autoimmune T and B cells, and they may inhibit autoimmune
B cells and DC directly in lupus (80, 101, 108, 109).

Despite “Tolerance Spreading to other lupus autoepitopes”,
the histone peptide therapy resulted in autoantigen-specific
Frontiers in Immunology | www.frontiersin.org 8
regulation because, pathogenic autoimmune responses in
lupus-prone subjects were preferentially and selectively
downregulated, without any suppression of immune responses
to foreign antigens, as detailed in these References (80, 108, 109).
Moreover, ability of the treated animals to survive environmental
microbes/pathogens appeared to be intact and robust as
compared to untreated controls and non-autoimmune
“normal” mice housed in the same “dirty” mouse facilities (80,
108, 109). Finally, experiments showed that the Treg cells
generated by the peptide epitope therapy suppressed T cell
response and T cell helper activity specifically directed to the
peptide autoepitopes, but not for a foreign antigen, such as Hen
Egg Lysozyme (80, 108).

Summary of Lessons Derived From Above
Studies in Lupus-Prone Mice and
Comparisons With Findings From
Contemporary Literature
As described above, the nucleosomal histone peptide epitopes
when administered in nanomolar doses (1µg) subcutaneously
(S.C.) every 2 weeks or even every month to lupus-prone mice,
are effective in delaying or even preventing nephritis. This dose is
lower by almost 1000 fold compared to some other peptides
being tried as therapeutic agents. Furthermore, a major histone
peptide epitope, administered singly, can suppress lupus disease
also via nasal tolerance (122, 123). The peptide epitopes are a
constituent of nucleosome, a highly conserved, ubiquitous self-
antigen produced during ongoing apoptosis in generative
lymphoid organs and recognized by developing cells of the
immune system bearing appropriate receptors. Therefore,
anaphylactic reactions were not observed with these self-
peptides when administered in close to 1000 lupus-prone mice
for various studies. The histone peptide epitopes, administered
S.C. in a very low doses, generate Treg cells that suppress by
producing minute amounts of TGFb that act in close range cell to
cell interaction, rather than causing Th2 deviation with
consequent allergic reactions seen in the case of therapy of
other autoimmune diseases, such as, EAE/MS and diabetes in
NOD mice using other peptides. The histone peptide epitopes
induce stable Treg that are autoepitope-specific and cross-
reactive autoantigen-directed Treg cells by simultaneously
decreasing IL-6 and increasing TGF-b production by DCs,
which consequently caused Smad-3 phosphorylation in the
peptide epitope-specific auto-immune CD4+ Th cells, and the
peptide tolerance therapy is effective even at an age when they
manifest clinically active disease. A single dominant epitope such
as H471-94, is capable of inhibiting the diverse autoimmune
process in lupus, because, potent and durable regulatory T cells
(Treg) are generated by low-dose tolerance therapy mediating
“tolerance spreading”. Both sets of regulatory T cells act via
TGFb in close range, and suppress autoimmune Th and B cells
and other autoantigen presenting cells.

Although the phenomenon of low-dose tolerance was well
known (124), most work since then have dealt with tolerance
induction to foreign antigens in non-autoimmune subjects.
However, the histone peptide induced low-dose tolerance was
April 2021 | Volume 12 | Article 629807
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achieved in subjects with spontaneous SLE, whose immune
system is already primed for autoimmune response against
ubiquitous nucleosomal self-epitopes. The Autoantigen-specific
and cross-reactive autoantigen-directed Treg cells generated by
the peptide epitope therapy was effective even in the presence of
complex lupus abnormalities, such as hyperactivity of lupus T
and B cells and DC; particularly IFN-a producing pDC.

Unlike the peptide epitopes in low doses, whole (intact)
histones worsen lupus (60) probably by binding to DNA or
reciprocally charged molecules in vivo to make complex
nucleosome like particle structures. Moreover, processing by
APC of intact histones generates altered epitopes by post-
Frontiers in Immunology | www.frontiersin.org 9
translational modifications, such as acetylation or citrulination
(125). Therefore, intact whole (complete) histones should not be
used for tolerance induction.

Another group induced Treg cells by continuous infusion of a
model laboratory antigen using hemagglutinin (HA)-specific
TCR−Tg mouse system, and they also targeted the peptide to a
surface receptor DEC-205 on DC, and administered considerable
quantities of TGFb in vivo (126). However, those approaches for
therapy of diabetes were found to be deleterious (127). Moreover,
in vivo administration of TGF−b as a drug in the presence of high
IL−6 levels in lupus could induce pathogenic Th17 cells and TFH

cells, instead of generating Treg cells (128, 129).
FIGURE 4 | Production of a variety of anti-nuclear autoantibodies by inter-molecular T-cell help in SLE. A lupus Th cell with specificity for an individual nucleosomal
histone peptide can help either a B cell specific for nucleosomes, or a B cell specific for dsDNA, or for ssDNA, or histone, or HMG, because each B cell can take up
and process the whole chromatin particle by recognizing its own specific epitope in the chromatin, and then present to the Th clone its relevant histone peptide
epitope derived from chromatin processing, which results in “inter-molecular help” This principle of linked “inter-molecular help” for a variety of B-cell epitopes in the
complex chromatin particle would also apply to other Th cells of lupus which induce other pathogenic autoantibodies; and forms the basis for “Tolerance-Spreading”
as described in the text. Modified from Ref (109, 120). (Originally published in The Journal of Immunology. Kaliyaperumal A, Michaels MA, Datta SK. Antigen-specific
therapy of murine lupus nephritis using nucleosomal peptides: Tolerance spreading impairs pathogenic function of autoimmune T and B cells. J Immunol (1999)
162:5775-83. Copyright © [1999] The American Association of Immunologists, Inc.).
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RECENT STUDIES IN HUMAN LUPUS
RELEVANT TO THE PEPTIDE EPITOPES

Remarkably, pathogenic anti-DNA autoantibody inducing Th
cells in human lupus recognized the same immunodominant
histone peptide autoepitopes identified in murine lupus (61,
102), and those T cells in lupus patient’s PBMC respond by
producing IFNg. To reiterate, IFNg-dependent IgG autoantibody
subclasses cause lupus nephritis by fixing C’ and binding to
inflammatory Fcg receptors in pathogenic cells (39, 130).
Furthermore, the peptide autoepitopes for Th cells of human
lupus have the property of promiscuous HLA-DR binding, and
as in lupus-prone mice, they are located in the native nucleosome
at sites that contact with DNA, and they reside in histone regions
that are also targeted by lupus B-cells (autoantibodies), thus
being protected during antigen processing. Therefore, these
immunodominant epitopes could probably be used as
“universal” tolerogens in lupus patients despite their diversity
of HLA alleles. The pathogenic role of nucleosome epitope-
specific Th cells in human lupus have been confirmed by other
laboratories (131, 132). Similar principles apply to other
autoantigens in lupus, such as, Sm, RNP (133), but this review
is focused on anti-DNA response whose pathogenic role in
human lupus nephritis is well characterized. Remarkably, very
recent approaches using latest technology to identify
immunodominant epitopes for influenza hemagglutinin-
specific memory T cells (134), showed results that are similar
in outcome to the histone peptide approach performed two
decades ago to identify the recurrent epitopes for pathogenic
anti-DNA inducing memory T cells of lupus (61, 102).

(a). Publication Title: “Regulatory T Cell
(Treg) Subsets Return in Patients With
Refractory Lupus Following Stem Cell
Transplantation and TGF-b Producing
CD8+ Regulatory Treg Cells (CD8TGF-b

Treg) Are Associated With Immunologic
Remission of Lupus”
Unexpectedly, prolonged remission achieved by patients with
refractory lupus after autologous hematopoietic stem cell
transplantation (HSCT) have a different mechanistic basis than
“clinical remission” in conventional drug-treated patients, who do
not achieve true immunologic remission, although they have a
SystemicLupusDiseaseActivity Index (SLEDAI) of0–2 (80%of the
drug induced remission patients were at zero level). In patients with
stem cell transplant induced remission, CD4+CD25highFoxP3+
Treg, and CD8+FoxP3+ Treg cells are generated, accompanied by
almost total suppression of pathogenic T cells that respond to the
histone peptide autoepitopes (135).

Detailed experiments in the above ref (135)., demonstrated that
the post-transplant CD8 Treg cells suppressive activity was
nucleosomal histone peptide-specific, as well as nonspecific, but
directed to cross-reactive autoreactive and activated T cells. Both
types of Treg cell’s suppressive activity was mainly TGF-b-
dependent, but independent of cell-cell contact. The post-
transplant patients’ CD8 Treg cells were stably FoxP3+ and they
Frontiers in Immunology | www.frontiersin.org 10
expressed markedly increased levels of CTLA-4, CD103, PD-1,
PD-L1 and LAP, when compared to CD8 T cells from the same
patients before undergoing transplantation. By contrast, the pre-
transplant lupus patient’s CD8 T cells have cell-contact dependent
helper activity for autoantibody production. The CD8 Treg found
only in post-transplant patients are considerably more potent in
suppressive activity compared to the CD4+CD25high Treg cells
that appear during clinical “remission” in lupus patients treated by
conventional drugs, in whom autoimmune response of CD4 T
cells to nucleosome-derived autoepitopes persists even during
“clinical remission” (SLEDAI of zero). Therefore, autologous
HSCT leads to the generation of a newly differentiated
population of LAPhighCD103high CD8TGF-b Treg cells that
maintain the lupus patients in “true immunological remission”,
unlike patients with conventional drug therapy. Remarkably, very
similar, highly potent CD8 Treg cells are also generated by low-
dose nucleosomal peptide tolerance therapy that can prevent or
treat lupus disease in mouse models of spontaneous SLE, as
described above.

As stated, autoantibodies in lupus that belong to IFN-g (Th1)
dependent IgG subclasses fix complement and bind to activating
FcgR on inflammatory cells to mediate pathogenicity. A CD4 T
cell population in untreated lupus patients PBMC produces IFN-
g in response to histone peptide autoepitopes, and this
autoimmune IFN-g production response was almost
completely suppressed in fresh PBMC from lupus patients in
remission post-transplant. Removal of CD8 T cells (total) from
the PBMC of post-transplant patients in remission, restored the
IFN-g response of CD4 T cells to nucleosomes and histone
epitopes, much more strongly than removal of CD4+CD25high

cell subset enriched for Treg. Therefore, the latter subset
probably cannot restore immunologic remission in
conventionally treated lupus patients although they are
increased in such patients after “clinical remission” (SLEDAI
of 0–2).

The Post-transplant CD8 T cells suppressed by secreting
mainly TGF-b and they expressed high levels of TGF-b
latency-associated peptide (LAP), but they produced IL-10 to a
much lesser extent; which is desirable because IL-10, by causing
expansion of autoimmune B cells, is deleterious in lupus (136).

Significance of the Above Studies in Lupus Patients
Transplanted With Autologous Stem Cells and
Contemporary Relevant Studies by Others
The return of potent CD8TGF−b Treg cells after HSCT in
refractory lupus patients, or after nucleosomal peptide epitope
tolerance therapy in lupus-prone mice is an important biomarker
for a state of true Immunologic Remission. These CD8+CD103+
FoxP3+ TGFb producing Treg are highly effective in controlling
lupus, as shown in autologous stem cell transplant patients in
remission above; and after corticosteroid pulse therapy induced
remission in patients with lupus nephritis (Tsai YG et al. Plos
One 2014, 9:e81344); as well as in murine models of lupus (108,
137, 138), and graft-versus-host lupus (138–140). And the above
category of CD8+FoxP3+ TGFb producing Treg that are highly
effective in controlling lupus disease, are quite different from
April 2021 | Volume 12 | Article 629807
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another variety of CD8+ Treg that are FoxP3-negative, cytotoxic
and contact-dependent, and with varying surface phenotypes
found in organ-specific autoimmune diseases (141–143). Those
FoxP3-Ly49+(CD158e+ in humans)CD122hiHelios+CXCR5+
CD8 Treg cells were decreased as a percentage of total CD8 T
cell population in lupus (144, 145), but such changes in
proportion could be due to many reasons that cause shifts in
various CD8 T cell subsets in lupus (146). Therefore, no cause
and effect relationship of the latter CD8 Treg with spontaneous
lupus disease in humans has been established yet. Anyway, target
organ pathology in lupus nephritis, is inhibited by the TGFb
producing CD4+FoxP3+ Treg and CD8+FoxP3+ Treg cells
induced by histone peptide epitope tolerance therapy (80, 108),
or by targeted nanoparticle therapy (140) induced CD8+ Treg,
which are quite different from the cytotoxic CD8 Treg (144, 145).
Indeed, CD8+CD103+FoxP3+ TGFb producing Treg cells,
which maintain lupus patients in long term immunological
remission after autologous bone marrow transplantation (135),
or that induced in lupus patients’ PBMC by the histone peptide
epitopes in vitro (147), have their highly effective suppressor
counterparts in several models of autoimmune diseases including
lupus (148–151). The role of locally active tissue-resident TGFb
producing Treg cells migrating into the kidney and its lymph
nodes to suppress lupus nephritis pathogenesis, like those
induced by histone peptide epitope therapy, has been recently
demonstrated in other Treg inducing systems (114–116, 152).

(b). Publication Title: “Major Pathogenic
Steps in Human Lupus Can Be Effectively
Suppressed by Nucleosomal Histone
Peptide Epitope-Induced
Regulatory Immunity”
As low-dose tolerance induced by the histone peptide epitopes
effectively inhibited lupus disease in mouse models, the effect of
the epitopes on lupus patients’ PBMC cultures was tested in vitro.
As discussed above, the major Peptide Autoepitopes for
nucleosome-specific T Cells of human lupus were identical in
sequence to the peptide autoepitopes for pathogenic T cells of
lupus-prone mice (61, 102), and they shared similar properties of
promiscuous MHC class II binding and being B cell
autoantibody epitopes as well. Thus the peptide epitopes could
be effective tolerogens for inhibiting both autoimmune T and B
cell populations in lupus patients with diverse HLA alleles (61,
102, 105, 147).

Indeed, in PBMC cultures from inactive lupus patients and
healthy subjects, addition of the histone peptide epitopes induced
CD4+CD25highFoxP3+ or CD4+CD45RA+FoxP3low Treg cells, as
well as CD8+CD25+FoxP3+ Treg cells with stable FoxP3
expression and suppressive activity (147). In the case of PBMC
from patients with active lupus, dexamethasone or
hydroxychloroquine were additionally needed for Treg-
induction by the peptide epitopes in cultures. The peptide-
induced regulatory T cells in lupus PBMC depended on TGFb/
ALK-5/pSmad 2/3 signaling, and TGF-b precursor LAP was
expressed by those Treg cells, indicating that TGFb production
was responsible for their suppressive activity, and a positive
Frontiers in Immunology | www.frontiersin.org 11
feedback mechanism as well. The peptide epitope-induced Treg
cells also inhibited type I IFN related gene expression in lupus
PBMC. Expression of major members of Type I IFN genes
themselves, as well as type I IFN induced genes (ISG) were
markedly reduced by histone peptide epitopes in TLR9-
stimulated PBMC of lupus patients. As stated above, pDCs in
lupus are the main producers of Type I IFN upon stimulation by
nuclear autoantigens complexed with anti -nuclear
autoantibodies (7, 153, 154), and in lupus-prone mice, histone
peptide epitopes act on pDC rendering them to become
tolerogenic (80). Secondly, expression of 13 ISG genes, which
have been reported to be upregulated in patients with active
lupus (153, 155, 156) were also inhibited by the peptide epitopes.
Moreover, the histone peptide Th cell epitopes, which were also
shared by autoantibody producing B cell epitopes in lupus, could
inhibit production of pathogenic autoantibodies by PBMC from
active lupus patients as potently as an anti-IL6 antibody.
Experimental details are in reference (147). Importantly, a
mixture of the peptide epitopes (cocktail) was more effective in
uniformly suppressing pathogenic activities in Human lupus
PBMC cultures, as compared to single epitopes, because
patients are heterogeneous in contrast to inbred lupus-prone
mice. For example, suppression by a histone peptide cocktail #1
(C1), which is a mixture of H122-42, H3115-135 and H416-39 at a
concentration of 1.5 mM for each peptide or histone peptide
epitope cocktail #2 (C2), which is a mixture of H122-42, H3115-135

and H416-39 at a concentration of 4 mM of each peptide were very
efficient in suppressing pathogenic autoantibody production and
type I IFN related gene expression in lupus PBMC (147). Thus,
low-dose histone peptide epitopes could durably inhibit
pathogenic autoimmune response in human lupus by
diverse pathways.
OVERALL CLINICAL SIGNIFICANCE
AND SUMMARY

Generalized immunosuppression can control manifestations of
active lupus, but despite their toxicity the drugs fail to achieve
true immunological remission. Such drug therapies should be
followed by autoantigen specific suppression of pathogenic
autoimmune cells in lupus to prevent flares and continuing
organ damage. In contrast to lupus patients, normal subjects
have regulatory mechanisms including regulatory T cells that
prevent abnormal pathogenic response to nuclear autoantigens
from cells undergoing apoptosis routinely in the body (135,
147, 157).

The tolerogenic histone peptide epitopes have the potential
for prophylactically repairing the functional deficiency of
regulatory T cells in lupus (135, 147, 157, 158). The above
studies in mouse models in vivo, and with lupus patient’s cells
in vitro, showed that the peptide autoepitopes have the ability to
bring about durable regulatory mechanisms; probably because of
desirable properties mentioned above, and summarized here.
The histone peptide epitopes are derived from nucleosomes of
apoptotic cells produced daily in the body, which are cleared
April 2021 | Volume 12 | Article 629807
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silently in the normal host without causing any immune
response (17). Indeed large scale apoptosis occurs daily in
generative organs, such as bone marrow and thymus and the
products are used to “educate” the cells of developing immune
system. The epitopes with their native sequences intact are called
“unaltered peptide ligands (UPL)”; they are derived from
nucleosomes of apoptotic cells that are naturally processed and
displayed to developing lymphocytes during ontogeny (101, 107,
159, 160), and therefore, unlike artificially altered peptide ligands
(APL), or post-translationally acetylated or citrullinated histone
peptides, the unaltered histone peptide epitopes described here
are not associated with anaphylactic/allergic reactions or
worsening of lupus (80, 108, 109). In fact Treg cells are
generated in the thymus, even in lupus-prone mice, in a
natural response to the native unaltered histone peptide
epitopes (107),. Only 1 µg (0.34 nanomolar) of the histone
peptide epitope/s administered biweekly is effective in low-dose
tolerance therapy of lupus-prone mice; that dosage would be
around 0.2 to 2 mg range in humans with lupus. The histone
peptides are rapidly absorbed systemically after S.C. injection,
because they possess numerous charged residues making them
highly soluble. As soon as they reach the lymphoid organs the
peptides render APCs, especially pDC tolerogenic by inducing
TGFb and inhibiting IL-6, and consequently the peptide epitope
presenting DC generate long-lasting Treg containing
autoantigen-specific and cross-reactive autoantigen-directed
Treg and Treg cells that suppress lupus (80, 108). Because the
peptide epitopes operate by being taken up extremely rapidly by
DC in vivo rendering them tolerogenic, short half life due to
decay of the epitopes is not a problem. Moreover, the histone
peptide therapy induced stable autoantigen-specific and cross-
reactive autoantigen-directed regulatory or suppressive T cells
generated in vivo are effective in suppressing disease upon
transfer into lupus-prone mice (80, 108). Both MHC class II,
and nested MHC class I binding determinants are present in the
peptide epitope sequences so that they can genarate both CD4
Treg and CD8 Treg cells (80, 108). The epitopes are recognized
by autoimmune T cells irrespective of the HLA type of lupus
patients (102, 105, 135, 147, 159), similar to “universal epitopes”
(104). Tolerance therapy with the histone peptide epitopes is
effective even in mice with established lupus disease (80, 108,
109). The peptides can generate Treg in lupus patient’s PBMC
even in the presence of other conventional maintenance
medicines such as hydroxychloroquine or corticosteroids (147).
The peptide autoepitopes from histones induce “linked
tolerance” to other nuclear antigen autoepitopes recognized by
pathogenic T and B cell of lupus (cross-reactive, “tolerance
spreading”), but not to foreign antigens or other organ-derived
autoantigens. In addition to generation of Treg cells, the peptides
also exert tolerogenic effect directly on pathogenic lupus B cells
and DC (80, 101, 147); suppressing autoantibody production
irrespective of the degree of Treg induction (135, 147).
Regulatory mechanisms against abnormal autoimmune
response to nuclear autoantigens in asymptomatic subjects
could be enforced by the relatively innocuous tolerance therapy
with histone peptides (147), which suggests that apparently
Frontiers in Immunology | www.frontiersin.org 12
healthy relatives or ANA positive subjects at risk for
developing lupus as predicted by GWAS bio-markers, could be
protected prophylactically with these peptide epitopes.

Thus the peptide epitope therapy might be most suitable for
maintaining lupus patients in true immunological remission
after clinical remission has been induced by more toxic
immunosuppressive agents. To summarize, unlike pinpoint
antigen-specific therapy suitable for straight-forward organ-
specific autoimmune diseases, the histone peptide epitopes
directly or indirectly (through Treg cells they induce) suppress
Innate immune cells (DC), T cells and B cells involved in the
pathogenic autoimmune response in the complex systemic
autoimmune disease, Lupus.

The histone peptide epitopes could also be used to develop
sensitive diagnostic and/or prognostic tools (peptide-MHC
tetramers) or assays (intracellular cytokine response) for
tracking pathogenic Th cells that may appear prior to
manifestation of the disease and elevation of autoantibodies.
Indeed, understanding mechanism/s for generation of unusual
and potent CD8+ Treg cells by the peptide therapy will be of
therapeutic value in a broad spectrum of immune mediated
diseases, and Immunologic Monitoring with the peptide epitopes
may serve as biomarkers for true immunologic remission
(supplementing conventional measures of clinical remission,
such as, SLEDAI SLAM, BILAG).
FUTURE –PERSPECTIVE, PROBLEMS
THAT MAY ARISE, AND
POSSIBLE ANSWERS

Early phase clinical trials have shown promising outcome with
autoantigen peptide therapy for inducing antigen-specific
tolerance in several autoimmune diseases, such as Multiple
Sclerosis and Type 1 Diabetes (161–167). These results are
encouraging for clinical trials with histone peptides for lupus
in the near future, but several distinct features of this lupus
therapy need to be addressed to reach that goal. Unlike pinpoint
antigen-specific therapy suitable for straight-forward organ-
specific autoimmune diseases, the histone peptide epitopes
have unique tolerogenic properties with broad autoreactivity-
specific inhibitory effect. By rendering Innate immune cells (DC)
tolerogenic, the histone peptides induce Treg cells that suppress
T and B cell populations which are both antigen-specifically and
cross-reactively involved in the pathogenic autoimmune
response in the complex systemic autoimmune disease, Lupus:

a) Low-Dose IL-2 and Corticosteroid
Supplementation
Multiple laboratories have shown that histone peptide epitope/s
or other peptide epitopes administered without IL-2 injection,
can induce generation of effective Treg in vivo, which inhibit
disease in various lupus-prone mice (80, 82–85, 108, 122, 168).
Although lupus T cells are deficient in IL-2 production (169,
170), that situation is relative not absolute, as lupus patients do
not succumb to recurrent infections found in IL-2 knockout
April 2021 | Volume 12 | Article 629807
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Immunodeficiency. A possibility in the case of these peptide
epitopes is that in low doses, they could transiently activate
autoreactive T cells, which could then provide small amounts of
IL-2 for generating the regulatory T cells. Indeed this proposed
mechanism (171), has actually been demonstrated by a similar
situation occurring in the thymuswhere IL-2 is produced by a small
population of self-reactive CD4 single positive (CD4SP)
thymocytes, which then stimulates Treg precursor cells to
differentiate (172). Those regulatory T cells induced in vivo may
then be sustained also by other signals such as from ICOS, or
TNFR2 (Tseng WY et al. Proc Natnl Acad Sci USA 2019,
116:21666-21672) (173). Still in view of the benefits of low dose
IL-2 therapy in all autoimmune diseases, whether deficient in IL-2
or not (129, 169, 170, 174–177); adjunct therapywith low-dose IL-2
will bebeneficial in the peptide-epitope therapyof lupus, as stated in
the theme of this Topic. Moreover, Low dose IL-2 and
corticosteroids in maintenance dose, actually were necessary for
the peptide epitopes’ induction of Treg cells in ACTIVE lupus
patients’ PBMC in vitro (147). Indeed, corticosteroids themselves
induce Treg cells by various mechanisms to some extent (Tsai YG
et al. PlosOne 2014, 9:e81344) (178, 179), and thus could potentiate
the autoantigen-specific and cross-reactive autoantigen-directed
Treg response by the peptide epitopes (147).

b) Durable Treg Induction in the Midst of
Inflammation; and Intrinsic Tolerogenic
Properties of the Histone Peptide Epitopes
How can durable immunoregulatory mechanisms be established
in the inflammatory environment of lupus? In lupus patients,
tolerance therapy with histone peptide epitope would be optimal
after inflammatory burden is reduced by drugs. Nevertheless, in
animal models, the peptides alone are effective in ameliorating
established lupus nephritis (80, 108, 109). The regulatory T cells
are more stable in inflammatory environment because they were
induced by the peptide epitopes in vivo, in contrast to Treg cells
induced/expanded in vitro. Furthermore, dexamethasone or
hydroxychloroquine in maintenance doses actually supported
Treg-induction by the peptides in lupus patients’ PBMC
cultures, indicating that drugs that counter the increased activity
of IRF5 andTLRpathways in lupusAPCwould be of addedbenefit
(147). The histone peptide epitopes also can directly regulate
autoimmune B cells and DC in lupus, in addition to generating
Treg cells (80, 101, 109); and indeed the peptides could suppress
autoantibody production to baseline levels in lupus patient’s
PBMC even before significantly increasing Treg cell numbers in
culture (147). The select histone peptide epitopes, which are
tolerogenic, can directly reduce IL-6 and increase TGFb
production by DC (80), a situation which renders the DC not
only be able to induce Treg, but also become susceptible to
suppression by Treg (180). This property of inducing TGFb
production and simultaneously decreasing IL-6 production by
DC, especially pDC, in turn induces TGF-b signal (Smad-3
phosphorylation) in target auto-immune CD4+ T cells
converting them to stable Treg cells; a property highly beneficial
for lupus therapy (80, 147), also because TFH cell differentiation is
inhibited in germinal centers under such conditions (128).
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Since apoptotic cells have immunosuppressive properties (17,
181); the unaltered histone peptide epitopes derived from
apoptotic platform may have intrinsic tolerogenic property (80,
147). In very low doses, without immunostimulatory adjuvants,
the histone peptide epitopes could possibly activate latent TGFb,
by inducing expression of the integrin avb8 in resting pDC, as
shown in other systems (182).

c) Peptide Delivery
Treg cells require continued antigen-specific stimulation from
DC to maintain lineage stability and high affinity regulatory cell
function (183, 184). In lupus-prone mice, regulatory T cells
induced by the peptide epitopes are detectable up to six weeks
after S.C. injection. Subcutaneous injection route works for the
highly soluble and charged histone peptide epitopes which are
very rapidly absorbed systemically (80). In humans many protein
drugs, and mAb biologics, insulin, IVIg etc., are administered
S.C. without causing local/systemic inflammatory response.

However, despite the promising beneficial effects in animal
models of established lupus disease, there is always the possibility
of adverse autoreactive response to the peptide epitopes in
patients with lupus, although they might be selected at the
earliest, pre-clinical stage of disease. Another issue is that
peptide epitope cocktails in low doses were more effective than
a single peptide epitope in suppressing lupus manifestations in
human lupus PBMC, but cocktails may be more immunogenic
when injected in the skin (147).

Therefore, peptide delivery should be considered in fail-safe
tolerogenic vehicles, such as Nanoparticles (NP), which are
described in detail by experts in this field in other articles as part
of this research topic. Just as a brief synopsis, the peptide epitopes
may be delivered within the nanoparticles, or administered around
the same time, but separately from tolerogenic nanoparticles (185).
There are many issues in choosing the right nanoparticles for such
therapy, specifically for lupus; for instance, liposome derived NP
can activate complement, and rapamycin containing NP may
interfere with initial Treg generation (186, 187), although
rapamycin is effective in maintaining Treg, once they are induced
(188). It is noteworthy that injected nanoparticles might be
nonspecifically immunosuppressive, like silica particles, by
overloading the immune system’s APCs, which phagocytose and
engorge themselveswith any foreignparticles (189, 190). Therefore,
targeted nanoparticles designed to be directed against potentially
autoreactive T cells are much more promising (140, 191), as
addressed by articles from experts in this research topic.

Finally, emerging studies on epigenetic or metabolic
mechanisms for Treg cell stability (192–194), and correcting
other abnormalities in lupus T cells, such as, metabolic (12, 13),
could be potentiated by utilizing the benefits of peptide epitope
therapy, in the near future.
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