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Dereplication based on hyphenated techniques has been extensively applied in plant

metabolomics, thereby avoiding re-isolation of known natural products. However,

due to the complex nature of biological samples and their large concentration

range, dereplication requires the use of chemometric tools to comprehensively extract

information from the acquired data. In this work we developed a reliable GC-MS-based

method for the identification of non-targeted plant metabolites by combining the Ratio

Analysis of Mass Spectrometry deconvolution tool (RAMSY) with Automated Mass

Spectral Deconvolution and Identification System software (AMDIS). Plants species from

Solanaceae, Chrysobalanaceae and Euphorbiaceae were selected as model systems

due to their molecular diversity, ethnopharmacological potential, and economical value.

The samples were analyzed by GC-MS after methoximation and silylation reactions.

Dereplication was initiated with the use of a factorial design of experiments to determine

the best AMDIS configuration for each sample, considering linear retention indices and

mass spectral data. A heuristic factor (CDF, compound detection factor) was developed

and applied to the AMDIS results in order to decrease the false-positive rates. Despite

the enhancement in deconvolution and peak identification, the empirical AMDIS method

was not able to fully deconvolute all GC-peaks, leading to lowMF values and/or missing

metabolites. RAMSY was applied as a complementary deconvolution method to AMDIS

to peaks exhibiting substantial overlap, resulting in recovery of low-intensity co-eluted

ions. The results from this combination of optimized AMDIS with RAMSY attested to

the ability of this approach as an improved dereplication method for complex biological

samples such as plant extracts.
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INTRODUCTION

Dereplication plays a crucial role in natural products discovery
and plant metabolomics studies. It provides fast identification
of known metabolites present in complex mixtures using small
quantities of crude material and avoids time-consuming isolation
procedures (Dinan, 2005).

Typically, dereplication studies are based on comparison
of data originating from chromatographic and spectroscopic
techniques, such as LC-UV, LC-MS, LC-MS/MS, and GC-
MS, with molecular features present in standard compounds
libraries such as Chapman and Hall’s Dictionary of Natural
Products, METLIN metabolite database, Pubchem, ChemSpider,
Chemical Abstracts Services, or NAPRALERT. Dereplication
utilizes orthogonal physicochemical characteristics, e.g., UV−Vis
profiles, chromatographic retention times, molecular weight,
NMR chemical shifts, or biological properties, in order to confirm
the metabolic identification (Smith et al., 2005; Blunt andMunro,
2007; Lang et al., 2008).

Although this approach has proven to be very efficient for
rapid identification of compounds in mixtures, it has some
analytical limitations. Such limitations are mainly related to
detection limits, lack of chromatographic resolution, or the need
for additional confirmatory data such as MS/MS and NMR

Abbreviations: AMDIS, Automated Mass Spectral Deconvolution and

Identification System; RAMSY, Ratio Analysis of Mass SpectrometrY; LC-UV,

Liquid Chromatography-UltraViolet detection; LC-MS, Liquid Chromatography

Mass Spectroscopy; LC-MS/MS, Liquid Chromatography Tandem Mass

Spectroscopy; GC-MS, Gas Chromatography Mass Spectroscopy; NAPRALERT,

Natural Products Alert; CDF, Compound Detection Factor; HCA, Hierarchical

Cluster Analysis.

TABLE 1 | Collection locations of plant species.

N◦ Plant species Part Vourcher n◦ Brazilian ecological stations*

1 Licania hoehnei Leaves M847 Estação Ecológica da Juréia-Itatins/Núcleo Arpoador

2 L. kunthiana Leaves M846 Estação Ecológica da Juréia-Itatins/Núcleo Arpoador

3 L. humilis Stems Nu-Assis-87 Estação Ecológica e Experimental de Assis

4 L. humilis Leaves Nu-Assis-88 Estação Ecológica e Experimental de Assis

5 Couepia grandiflora Leaves Nu-Assis-85 Estação Ecológica e Experimental de Assis

6 C. grandiflora Stems Nu-Assis-86 Estação Ecológica e Experimental de Assis

7 Hirtella hebeclada Leaves M491 Parque Estadual da Serra do Mar/Núcleo Cunha

8 H. hebeclada Leaves M799 Estação Ecológica da Juréia-Itatins/Núcleo Arpoador

9 H. hebeclada Stems M851 Estação Ecológica da Juréia-Itatins/Núcleo Arpoador

10 Parinari excelsa Leaves M821 Estação Ecológica da Juréia-Itatins/Núcleo Arpoador

11 Jatropha multifida Leaves HRCB 43223 UNESP—Araraquara experimental garden

12 J. gossypifolia Leaves HRCB 43224 UNESP—Araraquara experimental garden

13 Solanum swartzianum Leaves R271 Estação Ecológica e Experimental de Assis

14 S. swartzianum Stems R272 Estação Ecológica e Experimental de Assis

15 S. swartzianum Leaves F052 Parque Estadual da Serra do Mar/Núcleo Cunha

16 S. americanum Leaves M951 Estação Ecológica de Itirapina

17 S. americanum Stems M952 Estação Ecológica de Itirapina

18 S. excelsum Leaves F55 Parque Estadual da Serra do Mar/Núcleo Cunha

1–10, Chrysobalanaceae; 11–12, Euphorbiaceae; 13–18; Solanaceae.

*The ecological stations where samples were collected are specifically protected areas of Brazil defined by the National System of Conservation Units (SNUC).

experiments (Motti et al., 2009; Tang et al., 2009; El-Elimat et al.,
2013; van der Hooft et al., 2013).

In GC-MS analysis, the standard electron ionization (EI)
at 70 eV provides reproducible and characteristic molecular
ions and fragments. Molecular identification can be established
by matching the spectral dataset with standard mass spectral
databases, such as the National Institute of Standards and
Technology (NIST), the Agilent Fiehn GC-MS Metabolomics
Retention Time Locking (RTL) library, GOLM Metabolome
Database (GMD), Wiley Mass Database, MoNA Database
(http://mona.fiehnlab.ucdavis.edu) or others (Kopka et al., 2005;
Babushok et al., 2007; Kind et al., 2009). Additionally, GC-
retention time (Rt) reproducibility can be used as orthogonal
information (to MS data) for compound identification (Kind
et al., 2009).

Nevertheless, GC-MS-based metabolomics studies have
important limitations when two or more molecules overlap
chromatographically, especially because of the inherent hard
fragmentation of EI (Du and Zeisel, 2013). Soft ionization
techniques, such as chemical ionization (CI) can overcome
this issue by preserving the molecular integrity and avoiding
in-source fragmentation. Still, the lack of informative data
(fragment ions) in CI hampers the rapid identification of known
compounds (Andrade et al., 2008).

Recent advances in chemometric tools combined with the
extensive compound libraries have made substantial progress in
EI-based metabolic identification. In general, statistical analysis
can extract essentially all relevant information from large
datasets, even with high degrees of spectral overlap, allowing for
the removal of noise and interferents (Pilon et al., 2013; Yang
et al., 2013). AMDIS software has been employed in GC-MS data
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to deconvolute, recover and identify compounds based on peak
shape and spectral information (Stein, 1999). Despite AMDIS’s
status as themost widely used deconvolutionmethod for GC-MS,
the indiscriminate use of its empirical parameters and arbitrary
rules can generate as much as 70–80% false assignments (Lu et al.,
2008; Likić, 2009).

More recently, an alternative statistical approach called
Ratio Analysis of Mass Spectrometry (RAMSY) has been
proposed, which facilitates compound identification via
comparison betweenMS peak-intensities that form non-resolved
chromatographic peaks. RAMSY can be utilized to analyze
data from different platforms, including GC-MS and high
resolution LC tandem MS, using data from distinct samples
(Gu et al., 2013). In this study we developed a new GC-MS-
based protocol for rapid identification of plant metabolites
using the RAMSY deconvolution algorithm in combination
with AMDIS deconvolution to provide an improved spectral

identification workflow. The proposed method is initiated with
the optimization of AMDIS deconvolution parameters using a
fractional design of experiments, followed by the application
of RAMSY as a “digital filter” for the AMDIS metabolite
identification process. Solanaceae, Chrysobalanaceae, and
Euphorbiaceae plant species were selected as model systems to
evaluate the new metabolite identification process due to their
ethnopharmacological potential and economical value (Sharma
and Singh, 2012; Carnevale Neto et al., 2013; Funari et al., 2013;
Zappi et al., 2015).

EXPERIMENTAL METHODS

Chemicals
A FAME mixture consisting of a set of 22 fatty acid methyl
esters of chain lengths from C8–C30 was purchased in the form
of the Fiehn GC/MS Metabolomics Standards Kit (7 ampoules:

BOX 1 | AMDIS Approach.

Application of AMDIS Software to the Deconvolution of Metabolites in Plant Samples.

Plant extracts were injected into the GC-MS after a two-step derivatization process. AMDIS deconvolution was optimized according to a developed heuristic

correction factor (compound detection factor, CDF), to prevent false-positive identification. After the GC-deconvolution using AMDIS-based optimized parameters,

the putative identification was performed by spectral comparison (based on match factor, MF ) with available compound databases and using linear retention indices

as orthogonal information.
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1 × 0.5 mL FAME/d27 mixture, 1 × 0.5 mL pyridine, 1 ×
0.5 mL MSTFA/1 % TMCS and 4 × 1.2 mL d27 mystric
acids mix) from Agilent Technologies (Santa Clara, CA, USA).
O-methylhydroxylamine hydrochloride, MSTFA (N-methyl-N-
trifluoroacetamide) with 1% TMCS (trimethylchlorosilane), TSP
(trimethylsilylpropionic acid-d4, sodium salt) and pyridine
(silylation grade) were purchased from Sigma Aldrich (St Louis,
MO, USA).

Biological Material
Plants samples were collected in several Ecological stations in São
Paulo State, Brazil as part of the storage of 2,000 plant extracts
by Brazilian Biodiversity Virtual Institute Program (www.biota.
org.br). Giselda Durigan identified all species and vouchered
specimens were deposited at the São Paulo State Botanical
Institute herbarium (SP) as shown in Table 1.

Extraction Procedure
The plants were separated into leaves and stems, dried at
room temperature and ground in a Wiley mill. The extraction
procedure was chosen on the basis of similar conditions
previously reported (Ju and Howard, 2003; Bergeron et al., 2005).
Extractions were conducted using a Dionex ASE 100 system
(Oakville, ON, Canada) with stainless steel vessels (66mL) using
0.5 g of dry ground plant, and∼60mL EtOH at 60◦C and 1500 psi
for 15 min. The extracts were dried using a vacuum evaporator
(Eppendorf, Hauppauge, NY, USA).

Sample Preparation
All samples underwent a two-step derivatization procedure
before GC-MS analysis (Gu et al., 2013). Initially, methoximation
was performed to protect aldehydes and ketones and to inhibit
the ring formation of reducing sugars. O-methylhydroxylamine
hydrochloride solution (10 µL), prepared using 40mg mL−1

O-methylhydroxylamine hydrochloride, (Sigma-Aldrich
no. 226904—98.0%) in pyridine (99.9%) was added to the

FIGURE 1 | Regression equation used to calculate the linear retention

index using FAME internal standards.

samples, and the mixtures were kept at 30◦C for 90 min.
Next, 90 µL N-methyl-N-trimethylsilyltrifluoroacetamine with
1% chlorotrimethylsilane (MSTFA+1% TMCS) was added
to the samples and kept at 37◦C for 30 min to allow the
trimethylsilylation of acidic protons. Subsequently, 2.0 µL of the
FAME mixture was added to each sample to provide retention
time indices. The solutions were vortexed and transferred to
GC-MS glass vials for analysis (Kind et al., 2009; Gu et al., 2013).

GC-MS
Experiments were performed on an Agilent 7890A GC-5975C
MSD system (Agilent Technologies, Santa Clara, CA) using a
DB5-MS+10m Duraguard Capillary Column (30m × 250 µm
× 0.25 µm) as the stationary phase. The GC parameters used
were as follows: split injection (1.0 µL sample at 100.0◦C, 1.0
min—split ratio of 10:1); He carrier gas (40 cm s−1 at constant
velocity); 275.0◦C transfer line temperature; oven temperature
program: 1.0 min at 100◦C, increased 20.0◦C min−1 to 200.0◦C,
then increased 3.0◦Cmin−1 to 325.0◦C and held for 10.0min,MS
parameters: electron impact ionization at 70 eV, filament source
temperature of 230.0◦C, quadrupole temperature of 150.0◦C,m/z
scan range 50–600 at 2 spectra s−1. Mass spectral signals were
recorded after a 6.10 min solvent delay to avoid derivatization
interferents, and turned off between 10.0 and 13.0 min to
avoid saturation of the detector due to the high content of
monosaccharides. A blank sample with the FAME standard
mixture (FAME std) was also injected under the same GC
conditions.

AMDIS
The analysis of the full-scan data files acquired by GC-MS
was performed using the empirical method developed by
Dromey et al. (1976) and employed by Stein (1999) using the
AMDIS software package. The overall deconvolution process in
AMDIS consists of three sequential steps: (1) noise analysis, (2)
component perception and (3) model shape determination and
spectrum deconvolution (Stein, 1999). The first step extracts the
noise from GC-MS data file by empirically calculating a noise
factor using the median abundance level of a representative
background segment obtained from 13 scans.

Component perception (2), identifies individual
chromatographic components by considering ions that have
maximal intensities at the same time (i.e., the same or similar
scan). It is achieved through a process which sequentially
examines individual peak maxima using a pre-set number of
scans (4–32) in the forward and reverse directions.

Step (3) determines the peak shape for each perceived
component and performs the extraction of “pure” MS spectra.
A peak shape model is determined by considering the sum of
individual ion chromatograms that maximize together and that
have sharpness values within 75% of the maximum value for a
particular component, as defined by:

sharpness =
(Amax − An)

(

n× Nf

√
Amax

) (1)

where Amax is the maximum abundance, An is the abundance
from a pre-set number of scans n and Nf is noise factor. Finally,
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the spectrum is recovered using a least-squares method where
each m/z value is individually fit to the model profile, allowing
a linear baseline:

A(n) = a+ b× n+ c×M(n) + d× Y(n) (2)

where A(n) is the abundance during scan n. a, b, and c are derived
constants, andM(n) is the abundance of the model profile during
scan n. Box 1 illustrates the metabolic identification process
using AMDIS.

RAMSY
Ratio analysis is designed to work using single datasets that
contain multiple MS spectra for the same metabolite (Gu et al.,
2013). For peaks that originate from the same compound, under
the same experimental conditions, their MS peak intensity ratios
across the chromatographic peak should be relatively constant. In

addition, the standard deviations of those ratios should be small
(zero in principle; Gu et al., 2013).

The procedure for calculating the RAMSY spectrum was
described previously (Gu et al., 2013). Briefly, one isolated peak in
the mass spectrum is selected as the driving peak. The intensity
value of this selected driving peak is divided by the intensities
of all the other peaks in the spectra one at a time, as shown in
Equation (3):

Di,j =
Xi,j

Xi,k
(3)

where, the vector Xi is the ith spectrum of a set of n MS spectra,
and the jth data point of m total points in that spectrum is
denoted as Xi,j (Xi,k is the driving peak). D is the ratio matrix
of dimension n×m.

The RAMSY values, denoted as an m-element vector R, are
the quotients of means and standard deviations across columns

BOX 2 | RAMSY Approach.

Application of RAMSY to the Deconvolution of Overlapped Peaks after AMDIS.

AMDIS limitations on deconvolution led to low MF values and/or missing metabolites in regions with high peak overlap. The deconvolution and identification of

major metabolites and well-resolved GC peaks by AMDIS was followed by the application of the RAMSY algorithm described in the text. In RAMSY, the quotients of

average peak ratios and their standard deviations using all the MS scans from the same ion chromatogram efficiently allow the statistical recovery of the metabolite

peaks and facilitate reliable identification. RAMSY was applied to peaks exhibiting substantial overlap, resulting in the recovery of low-intensity and co-eluted ions as

well as an improvement to the AMDIS deconvolution process.
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of D. The standard deviation is zero for the driving peak itself;
therefore, its RAMSY value is pre-defined (e.g., the value of the
highest RAMSY ratio). The other RAMSY values are calculated
as elements of the vector R as follows:

Rj =
1
n

∑n
i= 1D i,j

√

1
n

∑n
i= 1

(

Di,j − 1
n

∑n
i= 1D i,j

)2
(4)

Since a ratio’s standard deviation is used as the denominator, a
small standard deviation will produce a large reciprocal value,
generating a peak (in principle an MS peak from the same
compound as that for the driving peak). In general, the MS
peaks from interfering compounds will generate large standard
deviations and thus small RAMSY numbers, similar to noise
values. Notably, RAMSY values are dimensionless.

Data Analysis
GC-MSmetabolite identification was performed considering two
independent parameters: the Linear Retention Index (LRI) and
the mass spectrum (MS) similarity profile. LRIs were based on
linear regression using FAME internal standards retention times
according to Van den Dool and Kratz, and are shown in Figure 1

(Van Den Dool and Kratz, 1963).
The MS similarity profiles were calculated by comparison

of AMDIS and RAMSY deconvoluted spectra using two MS

databases, FiehnLib (University of California, Davis, CA, USA,
Agilent webpage) and the Golm Metabolome database (Max
Planck Institute, Potsdam–Golm, Germany). The similarities
between samples and databases were calculated using the same
algorithm as those reported for the NIST library (Stein and Scott,
1994). Briefly, we first obtained the “angle” between the two
spectra:

F1 =
∑

M (ASAU)
1/2

[
∑

MAS
∑

MAU

]1/2
(5)

M is them/z value, and AS and AU are the base-peak normalized
abundances of the peaks in the standard spectrum and unknown
spectrum, respectively. Next, F2 is calculated:

F2 =
(

1

NU & S − 1

) NU & S
∑

i= 2

(

AS,i

AS,i− 1

)n( AU,i

AU,i− 1

)−n

(6)

F2 is based on relative intensities of pairs of adjacent peaks
present in both spectra. NU&S is the number of peaks common
to the unknown and standard spectra, and n = 1 (−1) if the first
abundance ratio is less (larger) than the second. TheMatch Factor
(MF) is then calculated as follows:

MF =
1000

NU + NU & S
(NUF1 + NU & SF2) (7)

TABLE 2 | Optimized AMDIS deconvolution and identification parameters using CDF.

Family Species AMDIS deconvolution parameters Meaningful parameters

V1 V2 V3 V4 V5

Chrysobalanaceae Couepia grandifloraL −1 1 −1 −1 −1 V4, V5, V2-4, V2

Chrysobalanaceae C. grandifloraS −1 1 −1 −1 −1 V4, V2

Chrysobalanaceae Hirtella hebecladaL −1 1 −1 −1 −1 V4, V4-5, V2

Chrysobalanaceae H. hebecladaL −1 1 1 −1 1 V4, V2-4, V2

Chrysobalanaceae H. hebecladaS −1 1 −1 −1 1 V4, V3, V2

Chrysobalanaceae Licania hoehneiL −1 1 1 −1 1 V4, V2

Chrysobalanaceae L. humilisB −1 1 −1 −1 −1 V4, V2

Chrysobalanaceae L. humilisL −1 1 −1 −1 −1 V4, V3, V5, V2, V4-5

Chrysobalanaceae L. kunthianaL −1 1 −1 −1 1 V4, V2-4, V2

Chrysobalanaceae Parinari excelsaL −1 1 −1 −1 −1 V4, V5, V2, V4-5

Euphorbiaceae J. gossypiifoliaL −1 1 −1 −1 −1 V4, V5, V2-4, V2

Euphorbiaceae J. multifidaL −1 1 −1 −1 1 V4, V3, V2

Solanaceae S. americanumL −1 1 1 −1 −1 V2, V3, V4, V5

Solanaceae Solanum americanumS −1 1 1 −1 −1 V2, V3, V4, V5

Solanaceae S. excelsumL −1 1 1 −1 −1 V2, V3, V4, V5

Solanaceae S. swartzianumS −1 1 1 −1 1 V4, V2-4, V3-4, V2, V3

Solanaceae S. swartzianumL* −1 1 1 −1 −1 V4, V2-4, V2

Solanaceae S. swartzianumL** −1 1 1 −1 −1 V4, V2

*Harvested in Cardoso city—Sao Paulo, Brazil.

**Harvested in Cunha city—São Paulo, Brazil.

L, leaves; S, stem; B, bark; V1, component with (−1 represent 8 scans and +1 represent 32 scans per section); V2, adjacent peak subtraction (−1 represent 0 and +1 represent 2

peaks per section); V3, resolution (−1 represent low and +1 represent high); V4, sensitivity (−1 represent low and +1 represent high); V5, shape requirements (−1 represent low and

+1 represent high).
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TABLE 3 | Metabolites detected by GC-MS using AMDIS-RAMSY deconvolution.

Metabolite Rt (min) KIlit KIcal error (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PROTEIC AMINO ACIDS

Serine 6.2 1354 1355 0.1 − − − − − − − − − − − − − + + + + −

L-threonine 6.4 1377 1374 −0.2 − − − − − − − − − − − − − − − + + −

Alanine 6.7 1424 1413 −0.8 − − − − − − − − − − + − − + + + + +

L-aspartic acid 7.4 1511 1479 −2.2 − − − − − − − − − − − − − + − − − −

Glutamic acid 8.2 1629 1615 −0.1 − − − − − − − − − + − − − − − − − −

L-asparagine 8.7 1666 1606 −3.6 − − − − − − − − − − − − − − − + − −

NON-PROTEIC AMINO ACIDS

Pipecolic acid 6.4 1365 1371 0.4 − − − − − − − − − − + − − + + − − −

Pyroglutamic acid 7.5 1593 1522 −0.7 + + + + + + + + + + − − + + + + + +

4-aminobutyric acid 7.5 1527 1493 −2.2 − − − − − − − − − − + + − + − − − −

4-guanidinobutyric acid 7.5 1528 1494 −2.2 − − − − − − − − − − − + − − − + − +

Butanoic acid, 4-amino 7.5 1594 1527 −0.7 − + + + + + + − + + − − − − − − − −

ORGANIC ACIDS

Malonic acid 6.6 1479 1460 −1.1 − − − − − − − − − − − + − − − + − −

Malic acid 7.1 1574 1479 −1 + + + + + + + + + + + + + + + + + +

Trihydroxybutyric acid 7.5 * 1495 - − − − − − − − − − − − − − + + − − +

L-phenyllatic acid 7.6 1585 1539 −2.9 − − − − − − − − − − − − − − + − − −

Threonic acid 7.7 1602 1545 −0.6 + − + − − + + + + − + − + + − − − +

Cinnamic acid, trans 7.8 1607 1557 −0.5 − − − − − − − − − + − − − − − − − −

Tartaric acid 8.3 1635 1629 −0.1 − − − − − − − − + − − − − − − − − −

PHENOLICS

4-hydroxy-benzoic acid 8.4 1637 1633 0 + − + − − + − + + + − − + + + + + +

4-hydroxyfenylacetic acid 8.5 1644 1596 −2.9 − − − − − − − − − − − − − − − − − −

3-(2-hydroxyphenyl) propanoic acid 8.9 1670 1651 −0.8 − − − − − − − − − − − − − − − + − −

Vanillic acid 9.8 1707 1766 0.6 − − + + + + − − − − + + + − − + − +

4-hydroxy-3-methoxybenzoic 9.8 1707 1765 0.6 − − − − − − − − − − − − + + + + + +

Ferulic acid 15 1962 1919 −0.4 + − − − − − − − − − − + − − − − − +

Caffeic acid 15.8 2135 2114 −0.3 − − − − − − − − − − − − + − − + − −

Chlorogenic acid 37.9 3099 3078 −0.2 − − − − − − − − − − − − − + + + − −

Hydroquinone 6.6 1548 1402 −1.5 − − − − − − − − − + + − − − − − − −

POLYOLS

D-threitol 7.3 1581 1485 −1 + + + + + + + + + + − − + + + + + +

Erythritol 7.3 1581 1493 −0.9 + + + + + + + + + + − − + + + + + +

Glycerol 1-phosphate 9.8 1714 1566 0.5 − − − − − − − − − − − − − + + + + +

Ononitol 13.2 1875 1946 0.7 − − − + + − − + − − + − − − − − − −

Myo-inositol 14.9 1957 2080 1.2 + + + − − + + + + + − + + + + + + +

CARBOHYDRATES

Ribose 8.6 1646 1650 0 + + + + + + + + + + + + + + − − − −

Arabinose 8.6 1646 1651 0 + + + + + + + + + + − − − − − − − −

Xylose 8.6 1646 1646 0 + + + + − + + + + + − − − − − − − −

Ribitol 9.2 1677 1713 0.4 − + + + + + + + + + + + + + + + + +

Xylitol 9.2 1677 1695 0.2 + + + + + + + + − + + + + + − − + −

Arabitol 9.2 1677 1708 0.3 + + + + + + + + + + − + + + + + + +

Rhamnose 9.3 1682 1707 0.3 − − − − − − − − − − + − − − − − − −

α,α-trehalose 29.3 2671 2726 0.6 − + + + − − + + + − + + + + + + + +

Maltose 30 2705 2720 0.2 + + + + − + + + − + + − − − − − − −

Melibiose 32.1 2809 2837 0.3 + − + − − + − − − − + − + − + − + −

Isomaltose 32.2 2816 2847 0.3 + − + + − + + − − + − − − − − − − −

Raffinose 37.9 3094 3075 −0.2 − + − − − + + + − + + − − − − − − −

(Continued)
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TABLE 3 | Continued

Metabolite Rt (min) KIlit KIcal error (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

POLYAMINES

L-putrescine 9.5 1695 1737 0.4 − − − − − − − − + − + − − − − + − −

PURINES

Xanthine 13.5 1890 2017 1.3 − − − − + − − − − − − − − − − − − −

Uric acid 14.9 1961 2095 1.3 − − − − + − − + − − − − − − − − − −

FATTY ACIDS

Hexadecanoic acid 14.1 1919 2046 1.3 + + + + + + + − + − − − + + + + + +

Palmitic acid 14.1 1919 2048 1.3 − − − − − − − − − − − − − + + − − −

Linoleic acid 17.4 2219 2166 −2.4 − − − − − − − − − − − − − + + − + +

Oleic acid 17.7 2225 2184 −1.9 − − − − − − − − − − + + − + − − + −

Stearic acid 18 2243 2198 −2 − − − − − − − − − − + + − + + + + +

n-eicosanoic acid 22.5 2453 2388 −2.6 − − − − − − − − − − − + − − + − − −

TERPENES AND ISOPRENE DERIVATIVES

Phytol 16.6 2041 2171 1.3 + + + + − + + − − + − − + + + + − −

α-tocopherol 37.9 3094 3161 0.7 + + − − + + − − − − − + − − + − − +

Stigmasterol 40.6 3229 3319 0.9 − − + − − − − + − + + − − + − − − −

β-sitosterol 41.8 3289 3286 1 + + − − − + + + − + + − − − − − − −

Lanosterol 43.2 3360 3391 0.3 + + − − + + + + + − − − − − − − − −

Oleanolic acid 46.1 3500 3620 1.2 + + − − − + + + + + − − − − − − − −

Ursolic acid 47 3546 3649 1 + + − − − + + + − + − − − − − − − −

FLAVONOIDS

Catechin 32.5 2828 2864 0.4 + + + + + − + + − + − + − − + − + −

Epicatechin 32.5 2828 2864 0.4 + + + + + − − + − + − + − − + − − −

Epigallocatechin 33.5 2879 2915 0.4 + + − − − − − − − − − − − − − − − −

Luteolin 36.5 3025 3078 0.5 − − + + − − − − − − − − − − − − − −

Kaempferol 36.5 3025 3078 0.5 − − + − + + − + − + + − − − + − + +

Quercetin 38.8 3141 3169 0.3 − − + + − − − − − + − − − − − − − −

OTHERS

Guanosine 30 2706 2762 0.6 − − − − − − − + − − − − − − − − − −

Dihydrocapsaicin 27.4 * * − − − − − − − − − − − − − − − − + −

1-octacosanol 38.1 3110 3089 −0.3 − − − − − − − − − − − − + + + + + +

1-triacontanol 42 3301 3315 0.2 − − − − − − − − − − − − + − + + + −

Gluconic acid lactone 2 9.9 1716 1776 0.7 − − − − − − − − − − − − − − − − + −

1 C. grandiflora leaves; 2 C. grandiflora stems; 3 leaves of H. hebeclada from P.E. Serra do Mar; 4 leaves of H. hebeclada from E.E. da Juréia; 5 stems of H. hebeclada from E.E. da

Juréia; 6 L. hoehnei leaves; 7 L. kunthiana leaves; 8 L. humilis leaves; 9 L. humilis stems; 10 P. excelsa leaves; 11 J. multifida leaves; 12 J. gossypifolia leaves; 13 S. swartizuanum

leaves from Cardoso; 14 S. swartzianum stems from Cardoso; 15 S. swartzianum leaves from Cunha; 16 S. americanum leaves; 17 S. americanum stems; 18 S. excelsum leaves.

A perfect match results in an MF-value of 1000; spectra with no
peaks in common result in a value of 0.

Previous studies on automated metabolite identification
efficacy using AMDIS showed relatively high (27.8–32.8% false
positive rates (on average) usingMF 700–900 (Aggio et al., 2014).
For that reason, we considered a positive identification only
with LRI errors ≤ 5% and MS similarity profiles with MF ≥
700. The RAMSY algorithm was applied for chromatographic
regions with detected metabolite MFs in the range of 700–
790. Box 2 illustrates the metabolic identification process using
AMDIS-RAMSY.

Chemometric Analysis
2v5−1 Fractional Design
In order to evaluate the AMDIS deconvolution parameters,
a two-level fractional factorial design (2v5−1) was applied
(Brereton, 2007). The component width (8 or 32), number of

adjacent peaks (0 or 2), resolution (low or high), sensitivity
(low or high) and shape requirements (low or high) were
evaluated according to a compounds detection factor (CDF). The
effects (variables) were fitted at the 95% confidence level. The
meaningful variables for each sample are show in Table 2. All
data were calculated using Excel 365 Home (Microsoft Office,
USA).

Hierarchical Cluster Analysis—(HCA)
The GC-MS raw data and the processed metabolite profiles using
the default and optimized AMDIS parameters were subjected
to hierarchical cluster analysis (HCA). The data matrices were
autoscaled to the total area for each chromatogram and the
HCA distance was measured according to the Canberra metric,
using R software (v 3.03, R: A Language and Environment
for Statistical Computing, Vienna, Austria, http://www.r-project.
org/). In case of GC-MS raw data, the area of each peak, after
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being recognized and aligned, was autoscaled to the total area
for each chromatogram using the XCMS R-package (Smith et al.,
2006).

RESULTS AND DISCUSSION

Metabolic Identification Using AMDIS
The use of computational methods can assist the identification
of known metabolites by extracting the signals from co-eluted
GC-MS components (Du and Zeisel, 2013). AMDIS is a freely
available software package that applies arbitrary rules for peak
deconvolution and performs identification in an integrated
matching system combined with the NIST standard reference
and others databases (Stein, 1999). The designed dereplication
protocol started with the application of a 2v5−1 fractional design
on AMDIS parameters: component width (8 or 32), number of
adjacent peaks (0 or 2), resolution (low or high), sensitivity (low
or high) and shape requirements (low or high). The results were
evaluated according to the compound detection factor (CDF)
calculated by the proposed heuristic Equation (8),

CDF = A×
(

A

B

)x

(8)

CDF provides the optimized ratio between the number of
detected (A) and identified compounds (B) by reducing the
negative effects of variable over-fitting due to the inclusion of
noise and/or false components. “A” represents the identification
power derived from the library dataset extension, while the
“(A/B)x” ratio expresses a penalty to conditions where a large
number of peaks are detected but not identified. The “x” value
depends on how important the constraint factor is to the model
(typically x= 3). The best results occur when the relation between
“A” and “B” is simultaneously increased. On the other hand,
when only “B” is increased, CDF is reduced. The optimized
deconvolution and identification parameters by AMDIS using
the CDF are shown in Table 2.

The CDF indicated that high “adjacent peak subtraction,”
low “component width,” and low “sensitivity” generated the best
deconvoluted chromatograms, regardless of the sample, whereas
“resolution” and “shape requirements” showed particular
response based on the metabolic composition.

FIGURE 2 | Polar plot of “pure” MS spectra recovered from co-eluted GC-MS peaks between 7.45 and 7.60 min. Each lane corresponds to the mass

spectrum obtained from AMDIS (blue), RAMSY (red) or database-DB (black). Pyroglutamic acid (AMDIS MF = 750 and RAMSY MF = 970), dodecanoic acid (AMDIS

MF = 810 and RAMSY MF = 920) and threonic acid (AMDIS MF = 710 and RAMSY MF = 920) were found using AMDIS and RAMSY, while 4-aminobutyric acid

was found only by RAMSY (MF = 840).
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Optimized AMDIS deconvolution yielded ∼200 components
per sample, of which ∼100 were putatively identified based on
mass spectral MF and LRI correlations, as shown in Table 3. In
general, the components that could be identified included amino
acids, organic acids, fatty acids, carbohydrates, sugar alcohols,
phytosterols, and specialized metabolites such as flavonoids,
triterpenes, phenolics, polyamines, and related compounds.

RAMSY Deconvolution in GC-MS Regions
with Low AMDIS-based MF
After performing the optimization of AMDIS-based GC-MS
dereplication, we applied RAMSY in regions that showed low
MFs due to high peak overlap, low intensities and/or noise
effects. In the first application of RAMSY, we selected a broad
peak between 7.45 and 7.60 min for the Couepia grandiflora
plant species sample (Chrysobalanceae). According to AMDIS,
this peak represented the overlap of pyroglutamic acid (Rt
7.48 min, MF = 750), dodecanoic acid methyl ester from
the FAME standard mixture (Rt 7.49min, MF = 810) and
threonic acid (Rt 7.53 min, MF = 710). We also observed
the presence of unidentified low-intense ions 304 m/z and
174 m/z. We selected the 15 scans that formed the GC peak
at 7.45–7.60 min for RAMSY analysis. The RAMSY spectrum

calculation was performed using the fragment ion 156 m/z as
the driving peak for pyroglutamic acid, 87 m/z for dodecanoic
acid methyl ester, 292 m/z for threonic acid and 304 m/z
for the unidentified compound. The averaged EI-MS spectrum
was filtered with the RAMSY values (only those MS peaks
with top RAMSY values were shown) and compared with
MS libraries considering MF. RAMSY correctly identified ions
from the three metabolites identified by AMDIS, as depicted
in Figure 2. The application of RAMSY using 304 m/z as the
driving peak provided a new mass spectrum suggested as 4-
aminobutyric acid, based on the NIST MS database (MF =
840). These results provided evidence for the capabilities of
RAMSY to recover low-intense ions in co-elution. RAMSY
also provided MF values > 900 for the other compounds
detected by AMDIS—dodecanoic acid methyl ester (MF = 920),
pyroglutamic acid (MF = 970) and threonic acid (MF = 920),
attesting to the ability of RAMSY to provide deconvolution
enhancement.

In another application of RAMSY, the chromatographic peak
between 37.75 and 38.00 min observed in Solanum americanum
led to the dereplication of three overlapped compounds by
AMDIS, Figure 3. The molecules were identified as α-tocopherol
(MF = 500), octacosanoic acid methyl ester (MF = 770) and

FIGURE 3 | Polar plot of “pure” MS spectra recovered from the co-eluted GC-MS peaks between 37.75 and 38.00 min. Each lane corresponds to the mass

spectra obtained from AMDIS (blue), RAMSY (red) or database-DB (black). Octacosanoic acid (AMDIS MF = 770 and RAMSY MF = 870), α-tocopherol (AMDIS MF

= 500 and RAMSY MF = 900) and raffinose (AMDIS MF = 600 and RAMSY MF = 900) were found using AMDIS and RAMSY.

Frontiers in Molecular Biosciences | www.frontiersin.org 10 September 2016 | Volume 3 | Article 59

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Carnevale Neto et al. Dereplication by GC-MS Ratio Analysis

FIGURE 4 | MF values for detected metabolites using AMDIS in different parameter sets (1–16) and RAMSY. (A) represents the coeluted peak at 7.4–7.6

min; F1: C12 FAME std (dodecanoic acid); P: pyroglutamic acid; M: 4-aminobutyric acid; T: threonic acid. (B) represents the coeluted peak at 37.7–38.0 min: F2: C28

FAME std.; A: α-tocopherol; R: raffinose.

FIGURE 5 | HCA heatmap comparing the GC-MS raw data (left) and AMDIS-RAMSY-based identified metabolites (right). The GC-MS raw data heatmap

(color key box—upper left) represents the metabolite concentrations, while the AMDIS-RAMSY color key indicates the presence among taxa families. The identified

classes of metabolites are shown according to their retention times between the plots.

raffinose (MF = 600). The RAMSY spectrum was calculated
using the 26 scans that compose the GC-MS peak, by selecting
driving peaks at 237m/z, 87m/z and 361m/z. RAMSY improved

the deconvolution, resulting in increased MF values for each
of the metabolites: α-tocopherol (MF = 900), octacosanoic acid
(MF = 870) and raffinose (MF = 900).
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The comparison between RAMSY and AMDIS using the
2v5−1 optimization design experiments is shown in Figure 4 and
indicates that the use of AMDIS alone consistently generated
lower MF values and more false negatives. The application
of RAMSY in combination with AMDIS assisted by CDF
improved the identification of known metabolites in very
complex biological samples.

In order to evaluate the identification efficiency, we compared
the GC-MS raw data and processed metabolite profiles
(AMDIS-RAMSY) by HCA, as depicted in Figure 5. It is
possible to observe a taxonomic correspondence based on
the metabolic content from the GC-MS raw data and the
dataset with the identified metabolites after AMDIS-RAMSY
(colored spots). The AMDIS-RAMSY results presented better
taxonomical grouping compared to raw data due to the
spectral metabolic deconvolution and suppression of noise
and interferent effects. According to the AMDIS-RAMSY
taxonomical grouping, amino acids and fatty acids were
responsible for distinguishing between Solanaceae species, while
for the Chrysobalanaceae species the differentiation was based
mainly on carbohydrates and flavonoids, as evidenced in
Figure 5.

CONCLUSIONS

Dereplication of natural products from GC-MS data was
performed by combining two different deconvolution methods,
AMDIS and RAMSY. According to the results, the optimization
of AMDIS parameters using CDF can improve metabolite
identification and reduce the number of false components.
However, the empirical AMDIS method was not able to
fully deconvolute all GC-peaks, leading to low MF values
and/or missing metabolites, which justifies the application of
a complementary method such as RAMSY. In this first use

of RAMSY as a “digital filter” for AMDIS, it was possible
to show improved ability of ratio analysis to recover low-
intensity ions in co-eluted regions as well as the improvement
of the deconvolution process and metabolite identification.
The incorporation and automation of RAMSY jointly with
AMDIS would benefit compound identification in mass spectra
of complex biological mixtures, such as plants extracts.
Additionally, the development of robust derivatized secondary
metabolite libraries would assist in the identification of known
metabolites, thereby improving the power of the dereplication
tools shown here.
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