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Abstract: The Cdx2 homeobox gene is important in assigning positional identity during the finely
orchestrated process of embryogenesis. In adults, regenerative responses to tissues damage can
require a replay of these same developmental pathways. Errors in reassigning positional identity
during regeneration can cause metaplasias—normal tissue arising in an abnormal location—and this
in turn, is a well-recognized cancer risk factor. In animal models, a gain of Cdx2 function can elicit
a posterior shift in tissue identity, modeling intestinal-type metaplasias of the esophagus (Barrett’s
esophagus) and stomach. Conversely, loss of Cdx2 function can elicit an anterior shift in tissue identity,
inducing serrated-type lesions expressing gastric markers in the colon. These metaplasias are major
risk factors for the later development of esophageal, stomach and colon cancer. Leukemia, another
cancer in which Cdx2 is ectopically expressed, may have mechanistic parallels with epithelial cancers
in terms of stress-induced reprogramming. This review will address how animal models have refined
our understanding of the role of Cdx2 in these common human cancers.
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1. Introduction

During the development of the embryo, the specification of cellular and tissue identity is dictated
according to location. This is achieved through a combination of inductive cues and cell-intrinsic
genetic factors. Our current understanding of the fundamental molecular mechanisms that underly
these processes, referred to as pattern formation, was initially spurred by the study of the fruit fly,
Drosophila melanogaster, over a century ago [1]. In 1894 William Bateson reported a peculiar mutation
in D. melanogaster, in which a leg developed in the place of antennae. This he termed “homeosis”,
developmental anomalies which cause one body part to develop in the likeness of another. Genetic
mutations which cause homeosis are called homeotic mutations.

Many homeotic mutations have been identified in D. melanogaster. These include the bithorax
mutation, where an extra pair of wings are present instead of a pair of halteres, and the aforementioned
Antennapaedia mutation, where legs developed in the place of antennae. The gene responsible for
the Antennapaedia mutation would be identified almost 90 years later [2] and others soon followed.
Comparative sequence analyses indicated that several homeotic genes, including the Antennapaedia
gene, contained a conserved 180 nucleotide sequence—the homeobox [3–5]. Although many genes
important for pattern formation were found to contain a homeobox sequence, homeotic transformations
in D. melanogaster were only associated with those genes mapping to a single genetic locus, termed the
HOM-C locus [6–8].

In human, the HOM-C homologues are termed the HOX clusters. Duplication events during
mammalian evolution have produced four separate HOX clusters: HOXA, HOXB, HOXC and HOXD [9].
The expression of genes within both the HOX and HOM-C clusters are spatio-temporally regulated;
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those located at the 3’-end are expressed earlier and in more anterior regions, while those located at the
5’-end are expressed later and in more posterior regions [10–13].

Mutations in HOX genes do not cause the dramatic anatomical transformations observed
in D. melanogaster, as mammalian development is much less dependent on segmental structures.
Only branchial arches, the hindbrain and somites appear to develop on a truly segmental basis, and here
the role of HOX genes in controlling development of these structures is well documented [13]. In the
mouse, loss-of-function mutations of Hox genes often cause anterior homeotic transformations—an
anterior transformation being when a segmental unit acquires the characteristics of one more rostral.
Anterior transformations of the axial skeleton have been reported for several Hox null mutants,
including Hoxa2 [14,15], Hoxb4 [16], Hoxc8 [17], Hoxd3 [18] and Hoxd13 [19].

An additional paralogous Hox cluster (ParaHox) also exists and, like the Hox cluster, also exhibits
spatio-temporal co-linearity [20]. Both gene clusters are evolutionarily ancient, splitting from a
common ancestral ProtoHox cluster prior to the split between Bilaterians and Cnidarians, i.e., before
the establishment of body plans with bilateral symmetry [21]. In humans, the ParaHox cluster consists
of three genes, GSH, PDX1 and CDX2.

As with many of the Hox genes, loss-of-function mutation of Cdx2 in mice is associated with
anterior homeotic transformation of the axial skeleton [22]. Similarly, loss-of-function mutation of the
related paralogue Cdx1 also causes anterior homeotic shifts [23] and these patterning defects become
further exacerbated in Cdx1/Cdx2 compound mutants [24]. Null mutants of the third paralogue, Cdx4,
do not exhibit skeletal defects, but exacerbate the axial patterning defects of both Cdx1 and Cdx2
mutants [25]. These findings illustrate not only functional overlap, but show that their collective
activity is required to achieve wild-type levels of functional activity—i.e., their functional overlap
does not equate to functional redundancy. As such, any genetic or environmental factors that alter
Cdx protein levels can have significant effects on establishing positional identity. This is true not
only during embryogenesis, but also following regenerative tissue repair in adult tissues, where the
reestablishment of positional identity can be required. Incorrect reprogramming of tissue identity in
adult tissues is termed metaplasia and metaplasia is increasingly recognized as a major risk factor for
developing cancer. This review will focus on the function of Cdx2 and, less so, its paralogues, Cdx1 and
Cdx4, and how genetically engineered mutations of these genes have provided us with animal models
that have spurred our understanding of the important links between metaplasia and cancer.

2. Metaplasia is an Important Etiological Factor in Cancer

Metaplasia has long been recognized as a risk factor for cancer development and most often
follows a common sequence: an environmental insult will cause tissue damage and, in the course of
renewal, this tissue may transdifferentiate into a tissue type inappropriate for its location. An early
recognized example is the often observed transition from a normal columnar bronchial epithelium
to a squamous epithelium in the lungs of smokers, a metaplastic change that is believed to be the
site of origin of lung cancers [26]. In 1985, Jonathan Slack proposed that many of these epithelial
metaplasias may be analogous to homeotic transformations [27]. He proposed that epithelial stem cells
may sometimes be reprogrammed back to an early ontological state and then, as normal progression
proceeds, can acquire a new stable epigenetic state that is phenotypically anteriorized or posteriorized.
This hypothesis was bolstered by findings showing an anterior shift in epithelial identity in the focal
regions of the large intestine of Cdx2 mutant mice, occurring concomitant with anterior shifts in the
axial skeleton [22,28,29]. Later studies would show that targeted overexpression of Cdx2 could induce
metaplasias in the gut, in which anterior epithelial structures were replaced with posterior structures,
i.e., directly analogous to a posterior homeotic shift [30–34] (Table 1, Figure 1). Thus, Cdx2 insufficiency
was associated with shifts in the opposite direction to conditions where Cdx2 was overexpressed.
Nevertheless, in both cases, the shifts were associated with cancer progression pathways. As will
be discussed in the following sections, these animal models have been valuable in furthering our
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understanding of cancers of the esophagus, stomach and colon, as well as its less understood oncogenic
role in leukemia.

Table 1. Animal cancer models generated through the genetic manipulation of Cdx genes.

Mutation Phenotype Reference

Cdx2KO

Homozygotes: preimplantation lethality
Heterozygotes: anterior homeotic shift of vertebrae,

nondysplastic colonic tumors often containing
metaplastic/heterotopic foci with gastric features

[22,28,29]

Cdx2CKO; Apc+/∆14 Mixed tumors with adenomatous and serrated features [35]
Tg(Foxa3–Cdx2) Metaplasia in stomach [33]
Tg(Atp4a–Cdx2) Metaplasia in stomach [32]
Tg(K14–Cdx2) Non-intestinal type metaplasia in esophagus [31]

Tg(Krt7rtTA); Tg(otet-Cdx2) Intestinal type metaplasia in esophagus [34]
Tg(krt5:cdx1b–EGFP) 1 Metaplasia in esophagus [30]

1 Transgenic zebrafish model.
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Figure 1. Simplified schematic diagram depicting how metaplasia caused by the alteration of Cdx2
expression can progress to cancer.

Environmental insults can induce reprogramming of the gut epithelium. These metaplasias
and metaplasia-like (i.e., serrated polyps in the colon) alterations can confer risk for subsequent
development of cancers of the gastrointestinal tract.

3. Esophageal Cancer

3.1. Barrett’s Esophagus is a Major Risk Factor for Human Esophageal Adenocarcinoma

Barrett’s esophagus is a metaplastic change of normal squamous esophageal epithelium to an
abnormal columnar epithelia with gastric and intestinal features [36,37]. The metaplasia arises as a



Genes 2019, 10, 928 4 of 15

consequence of the epithelial damage and inflammatory response wrought by chronic acid reflux.
Patients diagnosed with Barrett’s esophagus have an approximate 100-fold increased risk of developing
esophageal adenocarcinoma [38] and, because this metaplastic transformation appears irreversible,
preventative measures have relied on controlling acid reflux, primarily through the use of proton pump
inhibitors (PPIs) [39]. A recent clinical trial has shown that patients with existing Barrett’s esophagus
can still reduce their risk of developing adenocarcinoma by taking PPIs [40].

Not being present in the normal esophagus, CDX2 expression is a biomarker for Barrett’s
esophagus [41–44]. Moreover, CDX2 expression can often be found in esophageal squamous epithelia
inflamed by acid reflux, suggesting that its expression precedes the metaplastic transformation [41,45].
CDX2 is a direct transcriptional target of the key inflammatory mediator NF-κB [46]. Thus, it is
likely that the onset of CDX2 expression is due to activated NF-κB, which has also been shown to be
present in pre-metaplastic inflamed squamous epithelia [47,48]. CDX2 expression is maintained if the
metaplasia advances to an adenocarcinoma, but expression diminishes as the cancer loses epithelial
morphology [49,50].

3.2. Animal Models Reveal Functional Roles for Cdx2 in Barrett’s Esophagus

A keratin 14 promoter was used to force Cdx2 overexpression to the squamous epithelia of mouse
esophagus [31]. This was sufficient to induce metaplastic changes in the esophagus that resembled
Barrett’s esophagus, but lacked the intestinal goblet cells that are characteristic of the disease in humans.
The transition from squamous to columnar epithelia was also associated with a decrease in barrier
function, leading to the hypothesis that the transformed epithelia could, in turn, be more sensitive to
reflux esophagitis, reinforcing the transition [31]. A similar model was generated in zebrafish, using a
keratin 5 promoter, to drive expression of cdx1b [30]. Like the transgenic mouse model, the zebrafish
model exhibited similar metaplastic changes in the esophagus but, once again, without any appearance
of goblet cells. More recently, a discrete transitional columnar epithelium was found to exist at the
junction of the stomach and esophagus [34] and may represent the true source of Barrett’s esophagus.
Keratin 7 was identified as a specific marker of this transitional epithelium and, by employing a keratin
7 promoter to confine inducible Cdx2 overexpression to this cell-type, a metaplasia that included goblet
cells was observed [34]. Currently, this compound transgenic model (Krt7rtTA; otet-CDX2-T2A-mCherry)
represents the best animal model for replicating Barrett’s esophagus.

4. Stomach Cancer

4.1. CDX2 and the Metaplastic Origins of Human Stomach Cancer

The current model for human gastric carcinogenesis, proposed in 1992 [51], follows a similar
course to the model for esophageal carcinogenesis discussed earlier, in that an initial pro-inflammatory
stimulus will lead to inflammation (gastritis), followed by intestinal metaplasia, and, ultimately,
to adenocarcinoma. In the stomach, the major environmental stimulus initiating this pathway,
and thereby conferring the risk of cancer development, is chronic infection with Helicobacter pylori [52].

Two major types of metaplastic lineages have been identified adjacent to cancers of the stomach:
an intestinal-type metaplasia with the characteristic presence of goblet cells [53] and a spasmolytic
polypeptide-expressing metaplasia (SPEM) which expresses trefoil factor 2 (TFF2), then designated as
spasmolytic polypeptide [54]. SPEM exhibits similarities to glands of the antrum (the caudal-most region
of the stomach) [55,56]. SPEM may represent a reparative response to acute gastritis, while goblet-cell
intestinal metaplasia may require a chronic inflammatory environment.

CDX2 expression is detected in gastric intestinal metaplasia but not in normal gastric
mucosa [57–59]. CDX2 could also be detected in chronic gastritis without evidence of metaplasia,
suggesting that the onset of CDX2 expression preceded the metaplastic change [60]. As the metaplasias
progresses to carcinoma, CDX2 levels are often reduced [58].
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4.2. Animal Models Reveal Functional Roles for Cdx2 in Stomach Cancer

Cdx2 overexpression in the gastric mucosa of transgenic mice using the parietal cell-specific
H+/K+-ATPase subunit b promoter resulted in gastric intestinal-type metaplasia that spontaneously
developed into adenocarcinomas [61,62]. Another line, employing the Foxa3 promoter to drive Cdx2
overexpression, also exhibited intestinal-type metaplasia but progression to adenocarcinoma was not
observed [33]. The significant overlap in phenotype is somewhat surprising, as Foxa3 is expressed
during embryonic development while the H+/K+-ATPase promoter is only active postnatally in the
acid-producing parietal cells. It is possible that the phenotype may be indirectly influenced by parietal
cell loss, as gastrin knockout mice, which exhibit impairment of stomach acid production, also exhibit
intestinal-type metaplasia that eventually progresses to stomach cancer [63,64].

Modelling the action of the major risk factor for stomach cancer, H. pylori infection, has proven
more difficult in mice, as this is heavily mouse strain-dependent [65] and produce SPEM rather than
intestinal-type metaplasia [66]. For replicating the human disease, the Mongolian gerbil has been
superior, recapitulating upon H. pylori infection the progression from gastritis to intestinal metaplasia
and, eventually, to gastric cancer [67–69].

5. Colon Cancer

5.1. CDX2 is a Tumour Suppressor in Human Colorectal Cancer

Most colorectal cancers arise from an epithelial-derived adenomatous precursor lesion that,
with further mutations in oncogenes and tumor suppressor genes, can clonally progress to
carcinoma [70]. This adenoma–carcinoma pathway is most often initiated by activating mutations of
the WNT pathway [71]. An alternative pathway, broadly termed the ‘serrated pathway’, maintains
epithelial gland morphology and mucin production in the benign precursor lesions. It has been
estimated that 20%–30% of colorectal cancers arise by this alternative pathway, although classification
can be difficult as the cancer progresses and loses its serrated morphology [72,73]. This pathway is
most often associated with activating mutations in the BRAF oncogene [72,74], and is considered to
follow a more aggressive course than the conventional pathway [75]. Loss of CDX2 expression has
recently emerged as a biomarker for colon cancers arising via the serrated pathway, often coinciding
with activated BRAF mutations [76,77]. It also has been identified as a prognostic marker in stage II
colon cancer, where it was suggested that patients with CDX-negative cancers would benefit from
adjuvant chemotherapy, rather than the common practice of treating all stage II patients with surgery
alone [78].

Are serrated pathway cancers derived from metaplastic changes in the colonic epithelium?
Suggestive of an anteriorization of epithelial identity is the fact that these cancers often express gastric
epithelial markers, including mucin 2 (MUC2), MUC5AC, MUC6 and annexin A10 (ANXA10) [79–81].
Perhaps more compelling is that loss of CDX2 expression is associated with a gain in PDX1 expression,
the ParaHox gene responsible for patterning the midgut [77].

5.2. Animal Models Reveal Functional Roles for Cdx2 in Colorectal Cancer

A possible role for Cdx2 in colon cancer was initially suggested based on the knockout phenotype
in mice; heterozygous mice had numerous tumors, although they never spontaneously advanced to
carcinoma [22,29]. Upon closer examination, these tumors consisted of small foci of histologically
normal forestomach epithelia that were surrounded in successive order by cardia, corpus, antrum
and small intestine epithelia [82]. This observation was ascribed as a heterotopia, analogous to a
metaplastic transformation, only with its origins occurring during embryological development instead
of as a consequence of mucosal injury and repair. To model the latter, a Cre-ERT transgene under
the Cyp1a1 promoter, was used to achieve mosaic inactivation of a Cdx2fl/fl allele, thus allowing the
study of Cdx2 deficient lesions in the context of wild-type mucosa [83]. The Cdx2 deficient lesions
were found to express a number of gastric genes but did not form normal gastric mucosa, presumably



Genes 2019, 10, 928 6 of 15

because of incompatible mesenchymal signaling [83]. Under current classifications, these lesions could
be interpreted as “serrated”. Could they therefore be susceptible to transformation via activating
mutations of BRAF?

Mouse models combining Cdx2 inactivation and oncogenic BRAF (BRAFV600E) activation were
recently described and indeed, this led to invasive carcinogenesis along the serrated pathway [77,84].
Tamoxifen-regulated Cre protein (CreERT2) was used to inducibly inactivate loxP-containing alleles of
Cdx2 (Cdx2fl/fl) or to inducibly activate an oncogenic BRAF allele (BRAFV600E) in the adult intestinal
epithelium. Mutation of either allele individually had little to no effect on median survival; however,
their combined mutation resulted in progression to carcinoma. Immunohistochemical analyses of
tumors revealed ectopic expression of typical serrated pathway markers such as annexin A10 and
mucin 5AC [77].

Mouse models have also provided information that loss of Cdx2 expression can influence not only
the serrated pathway, but also the classical adenoma–carcinoma pathway. The classical pathway is
associated with activating mutations of the Wnt signaling pathway, most predominantly through loss
of function of the Wnt-signaling inhibitor, Apc [71]. Mutations in the human APC gene are causative
for the cancer syndrome Familial Adenomatous Polyposis (FAP), as well as for sporadic cancers arising
predominantly in the distal colon [85]. FAP can be modeled in mice carrying mutations of the Apc
gene, including the truncated mutant Apc∆716 [86], but tumors in mice arise predominantly in the small
intestine. When the Apc∆716 mutant allele is combined with the Cdx2+/− heterozygous mutation, there
is a large increase in the number of adenomatous polyps in the distal colon, more closely reflecting the
tumor distribution in human FAP [87].

More recently, it was reported that the tumor-promoting effect of Cdx2 deficiency on the classical
adenoma–carcinoma pathway may be non-cell autonomous [35]. This discovery was enabled by a
complex mouse model, where mosaic inactivation of a Cdx2fl/fl allele was combined with a mutant
Apc+/∆14 allele to drive adenoma formation and a conditionally activated fluorescent reporter allele
(tdTomato) to trace cells that underwent Cre-mediated recombination. As expected, adenomas contained
high levels of nuclear β-catenin, a measure of hyperactive Wnt signaling arising due to the loss of
heterozygosity of the Apc tumor suppressor allele. However, these cells were never red (Cdx2 negative).
The Cdx2-negative cells were not contributing to the adenoma, but instead created an environment
that promoted neoplasia of Cdx2-positive cells—i.e., Cdx2 was acting as a “non-cell-autonomous tumor
suppressor” [35].

Previous studies had shown that Cdx2+/− mice are more susceptible to DSS-induced colitis [88].
Perhaps the permissive environment is pro-inflammatory. Indeed, NF-κB, a key mediator for
inflammatory responses, was activated only in the Cdx2-positive cells that were adjacent to the
regions of incomplete metaplasia [35]. These activated cells also expressed high levels of nitric oxide
synthase (iNOS), indicating that these cells were under increased nitrosative and oxidative stress and
therefore more susceptible to DNA damage. Supporting this hypothesis, treatment with the iNOS
inhibitor aminoguanidine reduced the tumor load in mice carrying a mutant Cdx2 allele (Apc+/∆14;
Cdx2+/−), while having no effect on mice with only wild-type Cdx2 alleles (Apc+/∆14; Cdx2+/+) [35].

6. Leukemia

6.1. CDX2 is a Proto-Oncogene in Human AML

A possible role for CDX2 in human acute myeloid leukemia (AML) was first suggested following
the identification of a novel chromosomal rearrangement, t (12; 13)(p13;q12), in a patient with AML.
The rearrangement yielded an ets variant gene 6–CDX2 (ETV6–CDX2) fusion protein [89] and, as ETV6
is an important regulator of HSC survival and is frequently affected by translocations [90,91], it was
thought that this fusion may be oncogenic. However, when the fusion protein was transduced into
murine hematopoietic progenitors, it caused only minor myeloproliferation, and not transplantable
AML [92]. It is now accepted that it was the full-length CDX2 protein, driven from an alternative ETV6
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promoter, that was leukemogenic. Indeed, transduction of full-length CDX2 into murine hematopoietic
progenitors does result in transplantable lethal AML [92].

Up to 89% of AML cases, and up to 81% of acute lymphoblastic leukemia (ALL) cases,
express CDX2 [93–96] and at least for ALL, CDX2 expression levels were directly associated with
the aggressiveness of the disease [93,95]. Thus CDX2 is one of the most frequently expressed
proto-oncogenes in human leukemia.

Known downstream targets of CDX2, namely the HOX genes, had also been identified as
proto-oncogenes in AML [97,98]. Forced expression of Hoxa9 or Hoxa10 are also capable of inducing
rapid AML in mice [99,100], and aberrant expression of human HOX genes, including HOXA9,
correlates with clinical measures of disease burden [101–104].

During hematopoiesis, HOX genes of the A and B cluster are highly expressed in normal murine
and human hematopoietic stem and committed progenitor cells, and become silenced during the
course of normal differentiation [105,106]. Bone marrow from Hoxa9 deficient mice has a profound
deficiency in the number of hematopoietic stem cells and progenitors [107,108]. On the other hand,
CDX2 is not detected in hematopoietic stem or progenitor cells from healthy subjects, neither in human
nor in mouse [109]. Also, there were no significant effects on hematopoiesis in knockout mouse
models of any of the CDX genes [22,25,109,110]. Thus, although CDX2 and the HOX genes have
similar roles in leukemogenesis, the similarities are not readily apparent in regards to the process of
normal hematopoiesis. A true functional role would only be revealed as a result of important scientific
discoveries in zebrafish.

6.2. Cdx Genes are Required for Normal Hematopoiesis in Zebrafish

The first indication that Cdx genes may have a functional role in hematopoiesis came from studies
in zebrafish, when the causative mutation underlying the autosomal recessive mutation kugelig (kgg)
was identified in the cdx4 gene [111]. Homozygous kgg embryos die early in development (day 5 to 10
post fertilization) with severe tail defects and a prominent reduction in hemoglobin-staining erythroid
cells. This phenotype was consistent with the expression pattern of cdx4, which became restricted to
the posterior end of the embryo during early somitogenesis, prior to the emergence of the posterior
blood islands. Furthermore, the in vivo injection of cdx4 mRNA was able to rescue hematopoiesis in
these kgg mutants [111].

Zebrafish contain a duplication of the Cdx1 gene (cdx1a and cdx1b), while lacking a Cdx2
orthologue. Therefore, although they contain the same number of Cdx genes as in mammals, they lack
the prototypical ParaHox cluster. Nevertheless, like in mammals, the zebrafish cohort of Cdx genes
does exhibit some degree of functional redundancy. Indeed, morpholino-mediated knockdown of
cdx1a in kgg mutant fish exacerbates the phenotype, causing a complete failure to specify blood [112].

The hematopoiesis defect in cdx4 mutant zebrafish is reminiscent of anterior homeotic
transformation of the axial skeleton observed in mouse loss of function mutants [22,110], as there
appeared to be a posterior shift in the boundary between anteriorly localized hemangioblasts, fated to
develop into endothelial cells and the posteriorly localized hemangioblasts, fated to develop both blood
and endothelial cells [111]. Both populations are labelled with scl (tal1), which coexpresses with cdx4
in the posterior blood islands [111]. Even though scl overexpression is able to expand hematopoietic
cell numbers when overexpressed in wild-type zebrafish embryos [113], it was incapable of rescuing
hematopoiesis in cdx4 mutant kgg embryos [111]. Thus, the hematopoietic defect did not seem to be
due to an overt lack in the number of scl+ hemangioblast progenitors, but rather a failure to pattern
these progenitors to favor differentiation towards the erythrocyte lineage.

An evolutionarily conserved role of Cdx genes in regulating the expression of Hox
genes [110,114,115] appears to underly the failure to pattern scl+ hemangioblasts in zebrafish. Indeed,
kgg mutants exhibit large alterations in hox expression patterns, which can be restored upon ectopic
cdx4 expression [111]. Overexpression of several of the most downregulated hox genes (hoxb6b, hoxb7a
and hoxa9a) successfully rescues hematopoiesis in kgg mutants [111], and overexpression of hoxa9a



Genes 2019, 10, 928 8 of 15

(but not hoxb7a) rescues the complete hematopoietic failure observed upon combined cdx1a and cdx4
deficiency [112].

6.3. Cdx Genes Control Mammalian Hematopoiesis

The implications from these studies in zebrafish were that a functional role for mammalian CDX
genes may be masked by functional redundancies and that the CDX genes may exert their function
not at the level of hematopoetic stem cells, but by pre-patterning their early mesodermal progenitors
during embryogenesis. This possibility could be simply assessed by the in vitro differentiation of
embryonic stem cell lines, since differentiation towards hematopoietic lineages involves a transition
through a hemangioblast intermediate.

In vitro differentiation of single Cdx gene deficient murine embryonic stem cell lines resulted in
only minor reductions in the numbers of multipotential blood progenitor colonies [116]. Knockdown
of either Cdx1 or Cdx2 by RNA interference in a Cdx4-deficient background resulted in more severe
reductions, while combined knockdown of both Cdx1 and Cdx2 in the Cdx4-deficient background
resulted in an almost complete failure of hematopoiesis [116]. In embryos where Cdx2 was conditionally
inactivated in a Cdx1−/− background, there were defects in primitive hematopoiesis as well as yolk sac
vascularization [117]. Thus a previously unrecognized role for Cdx genes in hematopoiesis was made
evident when all genes in the family were inactivated.

The role of Cdx genes in pre-patterning early presomitic mesodermal progenitors, which will
later give rise to hematopoietic lineages, can first of all be inferred by their ability to pattern
the somitic mesoderm, resulting in the prototypical anterior homeotic transformation of the
vertebrae [22,110]. Also, upon in vitro differentiation of human and mouse embryonic stem cells, Cdx
gene expression peaks at the same time as hemangioblasts are specified and, if inducibly overexpressed
during this time window, strongly enhances the production of hematopoietic progenitors [118–120].
The effect on hemangioblast production is likely the result of both a decreased amount of
posterior unsegmented mesoderm [121] and an anterior shift in patterning the mesoderm [122].
In zebrafish, the tbx5a-expressing anterior cardiogenic mesoderm was expanded in cdx1a/4 mutants [122].
Similarly, in mice, ectopic Tbx5 expression was observed in the yolk sac of Cdx1/2 compound conditional
null mutants at the expense of hematopoietic markers [123]. Current evidence supports a mechanism
of action for Cdx genes in which they stably repress cardiac loci in early Mesp1+ mesoderm by directly
recruiting the SWI/SNF epigenetic silencing complex [123]. Thus, the expression of Cdx biases these
progenitors to hematopoietic lineages at the expense of cardiac lineages.

7. Summary

Metaplasias, long recognized as a cancer risk factor, have been suggested to be analogous to
developmental homeosis, where normal tissues develop in an abnormal location [27]. Homeobox
genes, including Cdx2, are important factors in conferring positional identity to developing tissues,
whether during embryogenesis or during the regenerative process following tissue injury. Animal
models in which Cdx2 overexpression is targeted to the esophagus show Barrett’s metaplasia (Barrett’s
esophagus), characterized by the presence of intestinal-type epithelia in place of normal squamous
epithelia. [30,31,34]. Similarly, targeted overexpression of Cdx2 in the stomach also causes metaplasia,
with a posteriorization of epithelial identity [32,33]. These tissue alterations model pre-neoplastic
metaplasias that are common in humans. Conversely, loss of Cdx2 in the colon causes metaplasia-like
alterations, in which epithelia are misallocated towards an identity characteristic of more anterior
structures [22,28,29], and this has provided important insights into understanding the progression of
human serrated-type colonic tumors.

It is easy to recognize epithelial metaplasias, as any change in the reacquiring of positional
identity in an epithelial stem cell will be conferred as a change in phenotype in its regionally
constrained cell progeny. However, this is not the case for another cancer in which Cdx2 is ectopically
expressed—leukemia. Nevertheless, it is possible that the same sequence of events is occurring in
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leukemia—chronic inflammatory damage triggering a regenerative response, which results in the
acquisition of a more “posteriorized” epigenetic state.

While the importance of CDX2 in human cancer pathology is indisputable, its functional role has
been more difficult to define. It has been designated, somewhat contradictorily, as both as an oncogene
and a tumor suppressor. But, unlike prototypical oncogenes and tumor suppressor genes, there is
no strong statistical evidence for cancer-associated mutations or loss of heterozygosity. The issue is
that these terms describe cell-intrinsic functions, while the core function of CDX2, as a designator of
positional identity, is, by definition, relativistic. Therefore, a true understanding of its role in cancer
progression must be context-dependent. Indeed, the conceptual advances in this field, as discussed in
this review, have been driven almost exclusively by the judicious use of animal models.
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