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Background: The oxygen extraction fraction (OEF) has been applied to identify ischemic

penumbral tissue, but is difficult to use in an urgent care setting. This study aimed

to investigate whether an OEF map generated via magnetic resonance quantitative

susceptibility mapping (QSM) could help identify the ischemic penumbra in patients with

acute ischemic stroke.

Materials and Methods: This prospective imaging study included 21 patients with

large anterior circulation vessel occlusion who were admitted <24 h after stroke onset

and 21 age-matched healthy controls. We identified the ischemic penumbra as the region

with a Tmax of >6 s during dynamic susceptibility contrast-magnetic resonance imaging

(DSC-MRI) and calculated the perfusion-core mismatch ratio between the ischemic

penumbra and infarct core volumes. The OEF values were measured based on magnetic

susceptibility differences between the venous structures and brain tissues using rapid

QSM acquisition. Volumes with increased OEF values were compared to the ischemic

penumbra volumes using an anatomical template.

Results: Eleven patients had a perfusion-core mismatch ratio of ≥1.8, and reperfusion

therapy was recommended. In these patients, the volumes with increased OEF values

of >51.5%, which was defined using the anterior circulation territory OEF values from

the 21 healthy controls, were positively correlated with the ischemic penumbra volumes

(r = 0.636, 95% CI: 0.059 to 0.895, P = 0.035) and inversely correlated with the

30-day change in the National Institutes of Health Stroke Scale scores (r = −0.624,

95% CI: −0.891 to −0.039, P = 0.041).

Conclusion: Tissue volumes with increased OEF values could predict ischemic

penumbra volumes based on DSC-MRI, highlighting the potential of the QSM-derived

OEF map as a penumbra biomarker to guide treatment selection in patients with acute

ischemic stroke.

Keywords: acute ischemic stroke, magnetic resonance imaging, oxygen extraction fraction, penumbra,
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INTRODUCTION

Various neuroimaging biomarkers have been applied to identify
ischemic penumbral tissues (1). The oxygen extraction fraction
(OEF) is an effective metric to evaluate metabolic reserve in acute
ischemia (2, 3). The oxygen-15 positron emission tomography
(15O-PET) technique is considered the gold standard for
penumbra detection (4–6), although it is difficult to perform
for patients with acute ischemic stroke. A magnetic resonance
imaging (MRI)-based mismatch concept has been validated
as a simpler and more widely applicable modality (7–9), and
the difference between perfusion-weighted imaging (PWI) and
diffusion-weighted imaging (DWI) can reflect physiological or
pathophysiological conditions of penumbral tissue properties
(10, 11). However, this procedure cannot be used for all patients
and in all situations because it requires a dynamic susceptibility
contrast (DSC) protocol, which involves a dynamic scan using
gadolinium-containing contrast media.

Advances in MRI post-processing technology have yielded
a new approach to the OEF calculation (12). Quantitative
susceptibility mapping (QSM) enables direct OEF estimation by
measuring venous concentrations of paramagnetic deoxygenated
hemoglobin (13–15). Furthermore, the principles of echo shifting
with a train of observations (PRESTO) sequence with a
conventional 3.0 T MRI system can provide a rapid acquisition
for magnetic susceptibility (16, 17), which would be useful in an
urgent care setting.

Here, we report the first comparative analysis of ischemic
penumbra based on DSC-MRI and the MRI-based OEF
estimation in patients with acute ischemic stroke. We
hypothesized that ischemic penumbra volumes determined
using the DWI-PWI mismatch would be correlated with those
with increased OEF derived from PRESTO-QSM. This study
aimed to establish a method for creating an MRI-based OEF map
that helps identify penumbral tissues in acute ischemic stroke.

MATERIALS AND METHODS

Subjects
This single-center observational cohort study consecutively
included 21 patients (12 men and 9 women; mean age ±

SD: 76.1 ± 7.4 years), each with a large anterior circulation
vessel occlusion, who were admitted <24 h after stroke onset
to the Department of Neurology, Toyokawa City Hospital
between March 2020 and September 2020. The patients’ clinical
characteristics were investigated and included the premorbid
modified Rankin Scale, the National Institutes of Health Stroke
Scale (NIHSS) score at arrival, time from stroke onset to MRI,
and occluded vessels. Advertisements on local bulletin boards
were used to recruit 21 age-matched healthy controls (11 men
and 10 women; mean age± SD: 75.3± 7.8 years). All participants
fulfilled the following inclusion criteria: the premorbid modified
Rankin Scale of <3, <90 years old, and available results from
detailed neurological and comprehensive MRI examinations.
Patients were excluded if they had a history of stroke or renal
impairment. Clinical and radiological outcomes were assessed
using follow-up MRI findings as well as the modified Rankin

Scale and NIHSS scores at 30 days. This study was approved by
the Institutional Review Board of Toyokawa City Hospital and
written informed consent was obtained from all participants.

Imaging Acquisition
TheMRI scans were performed for each subject using a 3.0 TMRI
system (Ingenia; Philips Healthcare, Best, the Netherlands) that
was equipped with a 32-channel head coil. TheDWIwas acquired
using single shot spin-echo echoplanar imaging (EPI) with the
following parameters: echo-time (TE) = 73ms, repetition time
(TR) = 4,100ms, flip angle = 90◦, b = 0 and 1,000 s/mm2, pixel
size = 2.5 × 2.5 mm2, slice thickness = 4mm, 25 slices, and
field of view (FOV) = 224 × 224 mm2. At admission and after
30 days, fluid-attenuated inversion recovery (FLAIR) and T2∗-
weighted images were acquired to identify irreversible infarctions
and intracranial hemorrhages. The data for QSM were obtained
using the PRESTO sequence with the following parameters: TE=

30ms, TR = 18ms, flip angle = 15◦, parallel imaging factor = 2,
FOV= 192× 192× 148 mm3, voxel size= 1.5× 1.5× 1.5 mm3,
and scan time= 79 s. The PRESTO sequence is a unique gradient
echo sequence that provides a signal acquisition with long TE and
short TR by skipping the data acquisition during the first TR (16),
which provides a rapid and sensitive acquisition for magnetic
susceptibilities in the brain tissues including venous structures
(17). Next, DSC-MRI scans were acquired for patients with acute
ischemic stroke using a single shot T2∗-weighted gradient EPI
with the following parameters: TE = 40ms, TR = 1,600ms,
flip angle = 75◦, pixel size = 2.5 × 2.5 mm2, slice thickness
= 4mm, 25 slices, and FOV = 224 × 224 mm2. Dynamic
scans covering the whole brain were subsequently performed to
determine the affected volumes during a bolus injection: dynamic
temporal resolution = 7.7 s, 10 pre-contrast scans, and 40 post-
contrast scans. The contrast media (gadoterate meglumine at 1.0
mmol/mL to achieve 0.1 mmol/kg; range: 5–10mmol per person)
was injected via the antecubital vein at a rate of 3 mL/s using a
power injector, which was followed by a bolus injection of 50mL
saline solution.

QSM Reconstruction
The QSM was generated from the PRESTO sequence using
our in-house scripts with MATLAB R2019b (MathWorks Inc.,
Natick, MA) (16). The phase images obtained using the PRESTO
sequence were unwrapped using a Laplacian-based method to
extract the total field (18). The tissue local field was calculated by
the sophisticated harmonic artifact reduction for phase data with
varying kernel sizes followed by the Laplacian boundary value
method (19, 20). To minimize radio-frequency transmit-related
phase offset (21), the local field map was corrected by fitting a
three-dimensional polynomial function of the fourth-order to the
resultant local field map (22). The final susceptibility map was
reconstructed from the resultant local field map using improved
sparse equations and the least squares method (23).

OEF Calculation
The OEF maps were generated from the QSM images according
to previously reported methods (13, 14). A venous mask was
created by combining two approaches. A three-dimensional
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Gaussian high-pass filter (filter size: 5 × 5 × 5 voxels) was
applied to the susceptibility map. To extract the small venous
structures, a threshold value of mean+ SD in the brain mask was
applied to the high-pass filtered susceptibility map, based on the
concept that venous susceptibility would be greater than brain
parenchymal susceptibility, given the elevated deoxygenated
hemoglobin concentration. Next, a fixed threshold of 0.03 ppm,
which had been experimentally defined (24), was applied to
the susceptibility map. The large structures such as the deep
nuclei, hemosiderin deposition, dural sinuses, and large venous
structures, were erased based on a volume of >1000 mm3

via morphological processing. The binary venous vessel masks
extracted using the two approaches were multiplied to generate
the venous mask. The susceptibility difference between the vein
and surrounding brain tissue (1χ) was expressed using the
following equation [1]:

1χ = 1χdo ×Hct × (1− Yv)×
1

Pv
(1)

where 1χdo (0.18 ppm) is the difference in susceptibility per unit
of hematocrit between fully deoxygenated and fully oxygenated
blood (25),Hct is each subject’s hematocrit at admission, Yv is the
venous oxygen saturation, and Pv (∼4.1) is a correction factor for
the partial volume effects that was defined based on the simulated
calculation (13). The OEF value is defined as (Ya–Yv)/Ya, where
Ya is the arterial oxygen saturation and can be estimated as 1–Yv

under usual conditions in whichYa is∼100% (26). Thus, the OEF
value can be calculated using the following equation [2]:

OEF =
1χ × Pv

1χdo ×Hct
(2)

DWI-PWI Mismatch
The OEF values in acute ischemic stroke change dynamically
based on the local tissue properties (27). Identification of
ischemic penumbral tissues during the acute phase has been
performed using the DWI-PWI mismatch concept (7–9). In this
context, infarct core is defined as the irreversibly damaged region
where the DWI-derived apparent diffusion coefficient is <620×
10−6 mm2/s (28). After excluding the infarct core, the ischemic
penumbra was defined as the region with a Tmax of >6 s, which
is derived from DSC-PWI (29). Tmax is the time to maximum of
the tissue residue function, which is generated by deconvolution
of the tissue concentration-time curve with use of an arterial
input function from the contralateral middle cerebral artery (30).
The DWI and PWI images were imported into a freely available
software (Perfusion Mismatch Analyzer, version 5.2) (31), which
performs automatic measurements at regions of interest (32).
The DWI-PWI mismatch is generally defined as the ratio of the
ischemic penumbra volume to the infarct core volume, and the
therapeutic target is identified at areas with a mismatch ratio
of ≥1.8 (33). In the present study, patients with acute ischemic
stroke were grouped according to mismatch ratios of ≥1.8 and
<1.8 (i.e., with or without Target Mismatch) (33). Figure 1 shows
a representative case with Target Mismatch based on the results
from the Perfusion Mismatch Analyzer.

OEF Measurement
Using Statistical Parametric Mapping 12 software (Welcome
Department of Imaging Neuroscience, University College
London, UK), the PRESTO-OEF and DSC-MRI images were
coregistered to the Diffeomorphic Anatomical Registration
Through Exponentiated Lie Algebra anatomical template (34),
which was generated using the magnitude images from
the PRESTO sequence. After normalization to the Montreal
Neurological Institute space, the mean OEF values were
measured for the penumbra (a DSC-PWI-derived Tmax of >6 s)
and contralateral regions using the ITK-SNAP semiautomatic
segmentation tool (University of Pennsylvania, Philadelphia,
USA; www.itksnap.org) (35). The interhemispheric OEF ratios
were also calculated between the penumbra and contralateral
regions. The normal range for the OEF value was defined using
the mean and SD values for the anterior circulation territory
from the 21 healthy controls. The cut-off for an increased
OEF value was defined as the mean + 2SD values from the
healthy controls. Using that cut-off value, the increased OEF
volumes weremeasured for the affected/contralateral hemisphere
in patients with acute ischemic stroke.

Statistical Analysis
Continuous variables were expressed as mean ± SD or
median (interquartile range), based on the normality of data
distribution, which was assessed using the Shapiro-Wilk test.
Clinical characteristics, neuroimaging features, and outcomes
were compared between the patients with acute ischemic stroke,
with and without Target Mismatch, and the healthy controls,
using the Kruskal-Wallis test or Fisher’s exact test with post-hoc
Bonferroni correction formultiple comparisons. Significance was
set at a Bonferroni-corrected P value of < 0.05.

The paired t-test was used to compare the OEF values for
the penumbra and contralateral regions in patients with acute
ischemic stroke. The Wilcoxon signed rank test was used to
compare the increased OEF volumes for the affected hemisphere
and the contralateral hemisphere in patients with acute ischemic
stroke. Significance was set at a P value of < 0.05. Correlation
analyses using Spearman’s rank-order correlation coefficient and
linear regression were also performed among patients with acute
ischemic stroke to assess the relationships between the increased
OEF volumes for the affected hemisphere (measured using the
QSM-derivedOEFmap), the penumbral tissue volumes (volumes
with a DSC-PWI-derived Tmax of >6 s), and the follow-up
clinicoradiological findings (follow-up fluid-attenuated inversion
recovery volumes at 30 days [i.e., the final infarction tissue
volumes], the difference between the penumbral tissue volumes
by perfusion imaging at admission and the follow-up fluid-
attenuated inversion recovery volumes at 30 days [i.e., the
salvaged penumbral tissue volumes], and the 30-day change in
the NIHSS scores). Note that the salvaged penumbral tissue
was defined as a region of the brain with formerly delayed
perfusion and not infarcted (9). Dice similarity coefficients were
calculated to measure the overlap fractions between penumbra
volumes detected by the DSC and OEF methods. Finally, a
receiver operating characteristic (ROC) curve analysis using the
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FIGURE 1 | A representative case with Target Mismatch. The maps show DWI (A) and PWI/Tmax (B) with the right middle cerebral artery occlusion 90min after

symptom onset. The infarction core volume derived from DWI (apparent diffusion coefficient <620 × 10–6 mm2/s) is 20ml and the ischemic penumbra volume

derived from PWI (Tmax of >6 s) is 84mL, indicating a mismatch ratio of 4.2 and a good candidate for reperfusion therapy. DWI, diffusion-weighted imaging; PWI,

perfusion-weighted imaging.

QSM-derived OEF map was performed to distinguish patients
with and without Target Mismatch.

RESULT

Subject Characteristics
Table 1 summarizes the clinical characteristics, neuroimaging
features, and outcomes. No significant inter-group differences
were observed in terms of age, sex, premorbid modified Rankin
Scale, or NIHSS score at arrival. The median time from stroke
onset to MRI was shorter for patients with acute ischemic
stroke and Target Mismatch (154min [interquartile range:
114–278min]) than for patients with acute ischemic stroke
but no Target Mismatch (496min [interquartile range: 198–
810min]). Among 11 patients with Target Mismatch, 7 patients
underwent reperfusion therapy (intravenous recombinant tissue-
type plasminogen activator and/or mechanical thrombectomy).”
The occluded vessels included 7 internal carotid arteries, 3
anterior cerebral arteries, and 11 middle cerebral arteries. There

were no significant differences between the patients with and
without Target Mismatch (aside from the mismatch ratio) in
terms of their neuroimaging features, treatments, and outcomes.

Representative Images
Figure 2 shows representative images from PRESTO-QSM and
the corresponding OEF and cerebral blood flow maps for a
patient with acute ischemic stroke and Target Mismatch (right
internal carotid artery occlusion), a patient with acute ischemic
stroke but no Target Mismatch (right middle cerebral artery
stenosis), and a healthy control.

OEF Measurements
Table 2 summarizes the OEF measurements. The mean normal
OEF value was 44.7± 3.4%, which was defined using the anterior
circulation territory OEF values from the 21 healthy controls.
Therefore, the upper limit of normal (mean + 2SD) for the
OEF value was defined as 51.5%, and values of >51.5% were
considered increased. The OEF values for the penumbra region
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TABLE 1 | Clinical characteristics, neuroimaging features, and outcomes.

Acute ischemic stroke patients

Variables With target Without target Controls P value

mismatch (n = 11) mismatch (n = 10) (n = 21)

Clinical characteristics

Age, years 75.2 ± 7.6 77.0 ± 7.5 75.3 ± 7.8 0.827

Women 5 (45.4) 4 (40.0) 10 (47.6) 0.924

Premorbid mRS 1 (0–2) 1 (0–2) 0 (0–0) 0.793

NIHSS score at arrival 12 (7–21) 13 (8–19) NA 0.802

Time from stroke onset, min 154 (114–278) 496 (198–810) NA 0.008

Occluded vessels

Internal carotid artery 3 (27.3) 4 (40.0) NA 0.537

Anterior cerebral artery 2 (18.2) 1 (10.0) NA 0.593

Middle cerebral artery 6 (54.5) 5 (60.0) NA 0.835

Tissue properties

ADC (<620 × 10−6 mm2/s), ml 8.6 (7.1–22.0) 13.5 (5.1–26.6) NA 0.860

Tmax (>6 s), ml 22.6 (14.9–−52.1) 16.3 (7.4–39.1) NA 0.439

Mismatch volume, ml 11.9 (7.8–23.5) 3.6 (2.2–12.5) NA 0.068

Mismatch ratio 2.4 (1.9–2.8) 1.4 (1.2–1.5) NA <0.001

Treatments and outcomes

Intravenous rtPA 5 (45.5) 3 (30.0) NA 0.466

Mechanical thrombectomy 4 (36.4) 2 (20.0) NA 0.696

FLAIR at 30 days, ml 10.5 (9.9–28.0) 29.2 (10.2–42.2) NA 0.290

mRS at 30 days 3 (2–4) 4 (2–4) NA 0.123

NIHSS score at 30 days 8 (4–10) 12 (4–14) NA 0.148

Data are mean ± standard deviation, median (interquartile range), or number (%). ADC, apparent diffusion coefficient; FLAIR, fluid-attenuated inversion recovery; mRS, modified Rankin

Scale; NA, not applicable; NIHSS, National Institutes of Health Stroke Scale; rtPA, recombinant tissue-type plasminogen activator.

(a DSC-PWI-derived Tmax of >6 s, the “affected region” in
Table 2) were higher than those in the contralateral region for
patients with acute ischemic stroke (mean difference: 6.1, 95%CI:
5.0 to 7.2, P < 0.001). The increased OEF volumes in the affected
hemisphere (volumes with OEF values of >51.5% derived from
the QSM-based OEF map, the “affected side” in Table 2) were
also higher than those in the contralateral hemisphere for patients
with acute ischemic stroke (mean difference: 9.5, 95% CI: 3.9 to
15.1, P < 0.001). There were no significant differences between
the patients with and without TargetMismatch in the OEF values,
interhemispheric OEF ratios, and increased OEF volumes.

Correlation Analyses
Figure 3 shows the results of the correlation analyses for the
relationships between the increased OEF volumes (volumes
with OEF values of >51.5% derived from the QSM-based OEF
map) in the affected hemisphere, the penumbral tissue volumes
(volumes with a DSC-PWI-derived Tmax of >6 s), and the
follow-up clinicoradiological findings in patients with acute
ischemic stroke. In all patients, the increased OEF volumes were
positively correlated with the penumbral tissue volumes (r =

0.601, 95% CI: 0.229 to 0.820; P = 0.004) and the final infarction
tissue volumes (r = 0.425, 95% CI: 0.011 to 0.818; P = 0.046).
In patients with Target Mismatch, the increased OEF volumes
were positively correlated with the penumbral tissue volumes (r
= 0.636, 95% CI: 0.059 to 0.895; P = 0.035) and the salvaged

penumbral tissue volumes (r = 0.664, 95% CI: 0.106 to 0.904;
P = 0.026) and inversely correlated with the 30-day change in
the NIHSS scores (r = −0.624, 95% CI: −0.891 to −0.039; P =

0.041). None of the values were correlated in patients without
Target Mismatch.

Dice Similarity Coefficients
Overlapping fractions between penumbra volumes detected
by the DSC and OEF methods were calculated as the Dice
similarity coefficients (mean ± SD), showing high overlapping
fractions for all the patients (0.724 ± 0.152), patients with
Target Mismatch (0.781 ± 0.118), and patients without Target
Mismatch (0.675± 0.186).

ROC Curve Analysis
Figure 4 shows the results of the ROC curve analysis using
the QSM-derived OEF map to distinguish patients with and
without Target Mismatch. The area under the ROC curve was
0.882 ± 0.076. The sensitivity and specificity were 90.9 and
80.0%, respectively, when the cut-off of increased OEF value was
set at ≥9.9.

DISCUSSION

Using a rapid acquisition for whole-brain magnetic susceptibility
by a conventional 3.0 T MRI system in patients with acute
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FIGURE 2 | Representative images from PRESTO-QSM (A–C) and the corresponding OEF (D–F) and CBF (G–I) maps for a patient with acute ischemic stroke and

Target Mismatch [right internal carotid artery occlusion; (A,D,G)], a patient with acute ischemic stroke but no Target Mismatch [right middle cerebral artery stenosis;

(B,E,H)], and a healthy control (C,F,I). CBF, cerebral blood flow; OEF, oxygen extraction fraction; PRESTO, principles of echo shifting with a train of observations;

QSM, quantitative susceptibility mapping.

ischemic stroke, we revealed for the first time that the increased
OEF volumes derived from the QSM-based OEF map were
correlated with the ischemic penumbra volumes with a DSC-
PWI-derived Tmax of >6 s. Furthermore, the mean anterior
circulation territory OEF value from 21 healthy controls (44.7 ±
3.4%) was comparable to the 15O-PET-OEF value (1), which is the

gold standard for penumbra detection. Consequently, the MRI-
based OEF estimation could be useful for identifying ischemic
penumbral tissues, and could be a non-invasive alternative to
15O-PET and DSC-MRI scans in an urgent care setting.

The penumbra has been defined as the area as ischemic
tissues between the upper threshold of electrical failure and the
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TABLE 2 | OEF measurements.

Regions of interest OEF value, % Interhemispheric ratio Increased OEF volume, ml

Healthy controls (n = 21) Anterior circulated territory 44.7 ± 3.4 NA 0.9 (0.0–1.9)

Acute ischemic stroke patients (n = 21) Affected region/side 50.9 ± 4.8 1.14 ± 0.08 11.0 (3.0–23.5)

Contralateral region/side 44.8 ± 3.7 NA 1.4 (0.5–2.0)

With Target Mismatch (n = 11) Affected region/side 51.3 ± 4.9 1.15 ± 0.06 12.8 (3.3–23.0)

Contralateral region/side 44.5 ± 3.5 NA 1.2 (0.4–1.6)

Without Target Mismatch (n = 10) Affected region/side 50.5 ± 4.7 1.12 ± 0.05 9.7 (2.9–31.1)

Contralateral region/side 45.0 ± 3.9 NA 1.5 (0.5–2.0)

Data are mean ± standard deviation or median (interquartile range). NA, not applicable; OEF, oxygen extraction fraction.

lower threshold of energy and ion pump failure (36). The last
four decades have witnessed the rapid development of clinical
neuroimaging tools that are now increasingly applied in the
acute stroke setting. The penumbra is considered as ischemic
tissues that are potentially destined for infarction but are not
irreversibly damaged and can be targeted for acute treatment
(37). Reperfusion therapy for patients with acute ischemic
stroke has been improved by the evolution of mechanical
thrombectomy with or without intravenous recombinant tissue
plasminogen activator (8, 9). Thus, it is critically important to
predict the salvageable penumbral tissue volume in order to select
appropriate acute phase treatments.

Various computed tomography- and/or MRI-based
neuroimaging biomarkers correlate with clinical outcomes
among patients with acute ischemic stroke, including the Alberta
Stroke Program Early Computed Tomography Score (38),
venous imaging (39), collateral flow status (40), and mismatch
between the ischemic core and hypoperfusion volume (7–9).
Recent studies have used a DWI-PWI volume mismatch ratio
of ≥1.8 to identify therapeutic targets and revealed favorable
treatment outcomes (9, 41), which we also applied in the
present study of patients with acute ischemic stroke. However,
the DSC-MRI protocol is contraindicated for patients with a
history of renal impairment (42), which suggests that estimated
glomerular filtration rate must be confirmed before perfusion
imaging. Thus, the DSC-MRI preparation and scanning
procedures last considerably longer than the procedures for
conventional MRI. Regarding hematocrit value requirements, a
standard value, such as hematocrit = 0.45, can be input instead
of raw data for every subject if complete blood count data
are unavailable (13, 14).

An appealing feature of the PRESTO-QSM approach is its
non-invasive nature and ability to quantitatively estimate the
OEF value in acute stroke using a conventional 3.0 TMRI system.
While the 15O-PET-derived OEF value remains the gold standard
for penumbra detection (6), the procedure is too complex for
an urgent care setting, necessitating the need for a technique
that identifies penumbral tissues accurately and more rapidly
(27). Since the salvageable penumbra volume tends to decrease
over time after stroke onset, we grouped the patients according
to their DWI-PWI mismatch ratio to validate the MRI-based
OEF estimation as a penumbra biomarker. This patient grouping
aligned with our hypothesis that ischemic penumbra volumes

determined using the DWI-PWI mismatch would be associated
with increased OEF volumes derived from PRESTO-QSM.

The QSM-based OEF values reportedly exhibit a good
agreement with the values from 15O-PET (13). Furthermore,
QSM-based OEF maps have been applied clinically for patients
with chronic cerebrovascular disease (14). The PRESTO sequence
allows us to achieve rapid data acquisition with strong
T2∗-weighted contrast, using the echo-shifted pulse sequence
(TE >TR) (17). The long TE increases sensitivity to the
proton resonance frequency offset and the signal to noise
ratio of the phase images (43). Since the echo-shifted pulse
sequence uses gradient echo, it is more robust in terms
of image quality (e.g., blurring and distortion) than the
echo planar imaging sequence (43). The accuracy of QSM
reconstruction using the PRESTO sequence was comparable
to the spoiled gradient-recalled echo sequence with flow
compensation in human brain experiments (16). The present
study also revealed that OEF maps could be created using
PRESTO-QSM in patients with acute ischemic stroke and that
these maps could be used to clinically estimate the ischemic
penumbra volume.

Other MRI-based methods that enable OEF extraction should
be discussed. Using venular-targeted velocity-selective spin
labeling, quantitative imaging of extraction of oxygen and tissue
consumption is useful for mapping OEF (44). Asymmetrically
prominent cortical veins are manifestations of increased OEF
(45, 46). Moreover, combining analysis of QSM for phase and
quantitative blood oxygenation level-dependent for magnitude,
that is QQ algorithm developed by Cho et al. (47), enables
OEF extraction directly from tissue voxels. The QQ-based OEF
was compared with 15O-PET (48) and shown to be feasible
to patients with ischemic stroke (49). Unfortunately, however,
the QQ analysis could not have been applied to the current
study because the PRESTO sequence was single-echo acquisition
to reduce acquisition time, which is TR < TE, for an urgent
care setting with maintaining the signal to noise ratio of phase
signal (16).

Despite our small sample of patients with Target Mismatch,
the increased OEF volumes were positively correlated with the
penumbral tissue volumes and inversely correlated with the 30-
day change in the NIHSS scores. However, these values were
not correlated in the patients without Target Mismatch. In this
context, the OEF values fluctuate within the tissues from the
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FIGURE 3 | Overview of correlation analyses between the increased OEF volumes (volumes with OEF values of >51.5% derived from the QSM-based OEF map) in

the affected hemisphere, the penumbral tissue volumes (volumes with a DSC-PWI-derived Tmax of >6 s), and the follow-up clinicoradiological findings (follow-up

fluid-attenuated inversion recovery volumes at 30 days [i.e., the final infarction tissue volumes], the difference between the penumbral tissue volumes by perfusion

imaging at admission and the follow-up fluid-attenuated inversion recovery volumes at 30 days [i.e., the salvaged penumbral tissue volumes], and the 30-day change

in the NIHSS scores) for patients with acute ischemic stroke. Note that blue circles show patients with Target Mismatch and red triangles show patients without Target

Mismatch. DSC, dynamic susceptibility contrast; NIHSS, National Institutes of Health Stroke Scale; OEF, oxygen extraction fraction; PWI, perfusion-weighted imaging.

penumbra to the infarction core (50). A longitudinal evaluation
of QSM-based OEF values in patients with acute ischemic stroke
revealed that the increased OEF values of the penumbral tissues
normalized within several days (15). Therefore, we defined the
ischemic penumbral tissue volume as the volume with a Tmax
of >6 s after excluding the volume of the ischemic core (29).
An ongoing longitudinal study is also attempting to determine
whether OEF changes, which are measured using the PRESTO-
QSM-derived OEF map, are correlated with clinical outcomes
after reperfusion therapy.

The present study has several limitations. It is important
to exercise caution when interpreting magnetic susceptibility
differences as deoxygenated hemoglobin-related changes. For
example, increases in magnetic susceptibility values can be
created by other substances, such as iron and aluminum (51), and
the current QSM approaches are unable to identify the chemical
configuration underlying the abnormal magnetostatic behaviors.
However, we excluded higher paramagnetic and large structures
during the venous mask creation. Although the prior works using
QSM-based OEF extraction based on oxygenation of the draining
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FIGURE 4 | The ROC curve using the QSM-derived OEF map to distinguish

patients with and without Target Mismatch. The area under the ROC curve

was 0.882 ± 0.076. The sensitivity and specificity were 90.9 and 80.0%,

respectively, when the cut-off of increased OEF value was set at ≥9.9. AUC,

area under the curve; OEF, oxygen extraction fraction; QSM, quantitative

susceptibility mapping; ROC, receiver operating characteristic.

veins used submillimeter resolutions (12–14), the current study
algorithm (PRESTO-QSM-based OEF extraction) used iso-voxel
resolution of 1.5 mm3. It is also important to note that using
the PRESTO sequence without gradient moment nulling could
generate artificial signal loss in the blood vessels. Moreover,
phase images are easily affected by artifacts induced from blood
flow around the vessels (16). These effects on the susceptibility
map in and around the vessels are caused by the deconvolution
process of QSM analysis, although the differences in phase values
are considered subtle relative to the spoiled gradient-recalled
echo sequence (52). Finally, the study’s small sample size and
limited follow-up period preclude conclusions regarding the
ability of our strategy to predict favorable and/or poor long-term
outcomes, or whether the therapeutic range for delayed stroke
could be expanded beyond the established time frames.

CONCLUSION

This observational cohort study revealed that the increased OEF
volumes derived from the PRESTO-QSM-based OEF estimation
were correlated with the penumbra volumes with a DSC-PWI-
derived Tmax of >6 s in patients with acute ischemic stroke.
The increased OEF volumes were also correlated with the 30-
day follow-up radiological and clinical findings. These results
highlight the potential of theMRI-based OEFmap as a penumbra
biomarker to guide treatment selection in acute ischemic stroke.
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