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Abstract

Traditionally reserved to research and development in pharmaceutical companies, screening of small molecule libraries is rapidly becoming
an approach undertaken by academic laboratories. Novel cellular assays, sensitive systems to probe function, emerging new molecular
targets are just some of the reasons explaining this shift. Targets of small molecules identified in cellular screens begin to be amenable
to identification by elegant genetic approaches, such as probing toxicity of candidate small molecules on libraries of genetically modi-
fied yeast strains. Several new targets, such as JAK2 V617F, an activated JAK2 (Janus Kinase 2) mutant genetically associated with the
majority of human myeloproliferative neoplasms, are being actively pursued. In this Review Series, we will learn how libraries of small
molecules are harnessed to identify novel molecules, that alone or in combination, have the ability to alter cell fate, cell signalling, gene
expression or response to extracellular cues.
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Kinase inhibitors

Perhaps the most attractive targets for small library screening
are kinases, as the ATP pocket usually bound by such small
molecules is well understood at the structural level. Imatinib, an
inhibitor of tyrosine kinases Abl, KIT and platelet-derived
growth factor (PDGF) receptor, has changed the landscape of
therapeutic intervention in several diseases, most notably
chronic myeloid leukaemia (CML), where the constitutively
active breakpoint cluster region-Abelson (BCR-ABL) tyrosine
kinase exerts a major pathogenical role [1], but also in other
diseases where KIT is constitutively active, such as gastroin-
testinal stromal tumours [2]. Small molecules able to modulate
KIT activity at different levels, i.e. dimerization versus kinase

activation [3], might also complement the use of heterozygous
KIT �/– cells for the investigation of the mechanistic role of KIT in
the function of several cell types, such as the interstitial cells of
Cajal [4].

JAK2 V617F

The majority of human BCR-ABL negative myeloproliferative neo-
plasms (MPNs), polycythemia vera, essential thrombocythemia
(ET) and primary myelofibrosis (PMF) have recently been linked
to the presence of an activated mutant of JAK2, where a point
mutation in the pseudokinase domain (V617F) leads to dysregu-
lated kinase activity (for review see [5]). Inhibitors of JAK2, such
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as the tyrphostin AG490 [6], have been used to identify JAKs as
responsible for constitutive signalling in primary cells from MPN
patients [7]. But these inhibitors may target several other tyrosine
kinases [8].

Several inhibitors of JAK2 are now being tested in clinical 
trials. These molecules exhibit a certain degree of specificity for
JAK2 versus the other three other JAKs (JAK1, Tyk2, JAK3), but
do not discriminate between wild-type and JAK2 V617F [9–11].
Potential unwanted effects would be myelosuppression, given
the key role of JAK2 in blood formation. An inhibitor specific for
JAK2 V617F, would spare normal haematopoiesis, but would be
much more difficult to obtain. Unexpectedly, a histone deacety-
lase inhibitor (ITF2357) was found to specifically target primary
cells from PV and ET patients harbouring the JAK2 V617F 
mutation [12], suggesting that transformation by JAK2 V617F
might require epigenetic events. In support of this possibility,
CD34� cells from myelofibrosis patients are specifically inhib-
ited by treatment with DNA methyltransferases and histone
deacetylases [13].

MPL (TpoR) mutants

TpoR mutants where juxtamembrane W515 is replaced by leucine
or lysine are present in 8% of ET and PMF patients, that are neg-
ative for JAK2 V617F mutation [14, 15]. W515 is part of a
hydrophobic juxtamembrane cytosolic motif that is required to
maintain un-liganded TpoR inactive [16]. Because JAK2 V617F
signals from complexes with TpoR [5, 17] and because TpoR
W515 mutants are linked to myelofibrosis induction, screening for
small molecules targeting this receptor may lead to compounds
that can be useful in treatment of MPNs.

JAK1 mutants

The homologous JAK2 V617F mutations in JAK1 (V658F) and
Tyk2 (V678F) also lead to constitutive activation [18]. Recently,
it was shown that �20% of human T acute lymphoblastoid
leukaemia harbour activating mutations in JAK1 [19], including
in the pseudokinase domain and the JAK1 V658F [20]. 
More such mutations are expected to be identified in cancer and
other pathologies in the future, making members of the Janus
kinase-signal transducer and activator of transcription 
(JAK-STAT) pathway attractive targets for inhibition by small
molecules.

Designing inhibitors

In an ideal setting, computation should be able to help identify
small molecules that bind to a particular segment of a protein.
This holds the advantage of targeting with very high resolution a
particular segment or module of a protein. In addition, such level
of protein targeting is often necessary when a hit emerges from a
random screen, and chemical groups must be added or substi-
tuted for lead optimization. A new docking software, EADock, is
emerging as such a tool for protein targets that have been crystal-
lized [21]. Validation was accomplished for the ability of EADock
to predict binding modes, by the successful docking of the RGD
cyclic pentapeptide on the �V�3 integrin [21].

Successful cellular screens and target
identification

Screening for small molecules able to modify cell behaviour has
been viewed with scepticism, because identification of the actual
target of a hit is quite difficult. A recent study, however, proved
that cellular screening can lead to isolation of small molecules that
can rapidly be ascribed an intracellular target [22]. Small mole-
cules (tenovins) that activate p53 were isolated from a cellular
screen and found to act via inhibition of the protein de-acetylating
activities of two members of the sirtuin family, SirT1 and SirT2
[22]. The small molecule candidates were then tested on a collec-
tion of diploid Saccharomices cerevisiae strains that each are het-
erozygous for a specific gene deletion. Toxicity of one particular
compound is higher on a strain that is heterozygous for the gene
that codes for the protein that is targeted by the tested compound
[23, 24]. Thus, combining cellular screens with compound-
induced haploinsufficiency can be highly successful. Interestingly,
SirT1 exerts different functions in different cell types, and was
reported to regulate skin aging and skin response to ultraviolet
(UV) [25].

Perspectives

Small molecule screening will likely target not only signalling path-
ways or enzymes, but also newer players, such as microRNAs, pro-
teins involved in epigenetic regulation or those involved in instating
stemness. Coupled to ongoing advances in computation, docking,
proteomics and systems biology, small molecules are likely to
occupy centre stage in future biomedical research.
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