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Abstract: Liposomes have long been effective delivery vehicles for transport of toxins to 

peripheral cancers. The combination of convection-enhanced delivery (CED) with 

liposomal toxins was originally proposed to circumvent the limited delivery of 

intravascular liposomes to the central nervous system (CNS) due to the blood-brain-barrier 

(BBB). CED offers markedly improved distribution of infused therapeutics within the CNS 

compared to direct injection or via drug eluting polymers, both of which depend on 

diffusion for parenchymal distribution. This review examines the basis for improved 

delivery of liposomal toxins via CED within the CNS, and discusses preclinical and 

clinical experience with these therapeutic techniques. How CED and liposomal 

technologies may influence future neurooncologic treatments are also considered. 

Keywords: blood-brain-barrier; convection-enhanced delivery; diffusion; glioma; 

liposome; neurooncology 

 

1. Introduction  

The effective delivery of therapeutic agents via the vasculature to the central nervous system (CNS) 

is significantly affected by the presence of the blood-brain-barrier (BBB) [1]. The endothelial cells of 

the BBB differ from those in other vascular locations, since they lack fenestrations and have more 
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extensive tight junctions (TJs), while lacking significant pinocytic vesicular transport [2]. In addition, 

the BBB features an acellular basement membrane immediately beneath the endothelial cells, and two 

other cellular components, the pericytes and astrocytes encompassing and completing this limiting 

structure to ingress into the CNS [2]. While the TJs significantly reduce the paracellular passage of 

hydrophilic molecules into the brain [3], O2, CO2, and small lipophilic molecules easily diffuse across 

the cell membranes, driven by their concentration gradients [4]. Specific membrane transporters are 

available for the uptake of glucose and amino acids from the blood, while many macromolecules are 

taken up via receptor-mediated endocytosis [5–7]. All of these components, working in concert, are 

essential to the homeostasis of the CNS provided in part by the BBB. 

In neurooncology, the BBB is often disrupted in association with the intrinsic growth of tumors within 

the CNS parenchyma [8,9]. While some feel that the BBB does not play a significant role in ―impeding the 

success of brain tumor chemotherapy‖ [10–12], most feel that the presence of the BBB significantly 

reduces the effective delivery of intravascular chemotherapeutic agents to the brain [13]. The major 

strategies developed to improve chemotherapeutic delivery to brain tumors involve designing drugs or 

methods with improved permeability to the BBB [14–16], delivery strategies that feature BBB  

disruption [17–19], or by circumventing the BBB altogether by intrathecal cerebrospinal fluid (CSF) 

delivery [20–23], or intraparenchymal delivery that excludes convection enhanced delivery (CED)  

methods [24–29]. All of these approaches attempt to achieve turmoricidal drug levels and increased contact 

time within, and in proximity to, the brain tumor, and thereby provide effective treatment [13,30]. 

Over the last 10–15 years, local drug delivery, bypassing the BBB, has gained momentum by 

offering expanded capabilities to the magnitude and types of drugs that can be delivered within CNS 

for the treatment of neurooncologic pathologies [31], and by delivering therapeutic levels of 

chemotherapeutic agents within brain parenchyma compared to other delivery modalities [30]. The 

remainder of this review directs attention to two particularly appealing delivery modalities for use with 

neurooncologic chemotherapeutic agents, CED and liposomes. Although developed independently, 

these two delivery options have been recently combined in an effort to improve efficacy in the 

treatment of CNS malignancies. Details of both modalities will be explored and their future prospects 

in neurooncology considered. 

2. Diffusion versus Convection-Enhanced Delivery (CED) 

To better understand the basic physiology and distribution mechanisms associated with CED, it is 

important to contrast it with diffusion. Diffusion-based delivery mechanisms are essential to the 

distribution of chemotherapeutic agents within the brain parenchyma following intravascular delivery, 

intrathecal cerebrospinal fluid infusions, direct brain injections, elution from implanted polymers, and 

via microdialysis (Figure 1A). With all of these distribution options, therapeutic agents disperse 

through the extracellular space (ECS) according to their concentration gradient and inversely 

proportional to their molecular size [32–34]. Chemotherapeutic agent diffusion does not typically 

extend for greater than a few millimeters from the site of greatest concentration with the modalities 

listed above [35], and, especially for smaller molecules, can be impacted by capillary clearance and 

metabolism [36–38], affecting the local ECS microenvironment. To date, delivery of chemotherapeutic 

agents utilizing these diffusion-based technologies are exceedingly difficult to standardize and  



Toxins 2011, 3                

 

 

371 

control [39]. Diffusion, unfortunately, provides a limited and heterogeneous distribution of 

therapeutics in the normal brain ECS [40], and that associated with gliomas [41,42], due in part to its 

mechanism of action and intrinsic parenchymal factors [39–43].  

Figure 1. (A) Diffusion-based delivery system. A characteristically larger injection 

cannula is used to deliver the infusion volume within the target region for direct injection 

and microdialysis. The infusion volume typically displaces the surrounding parenchyma at 

the tip of the cannula and forms a small cavity from which diffusion occurs into the 

surrounding brain, eventually expanding to the diffusion limit, but falling far short of 

filling the subcortical target volume. Implanted polymers filling the infusion volume show 

similar diffusion volume. Another factor that limits the effectiveness of this technique is 

the development of backflow or reflux (dashed black arrow) of the infusate out of the target 

region, along the path of the injection cannula. This is seen most often with larger cannulae; 

(B) Convection-enhanced delivery system. Optimal CED cannulae are narrow  

(~165 µm) and are attached to the pump mechanism that controls the rate of infusion. The 

infusion cannula extends for a distance beyond the outer guide cannula, with the transition 

between the two called the cannula step. The infusate is delivered with a constant flow rate 

(most commonly 0.2–5.0 µL/min) from the infusion cannula tip. This flow rate establishes 

a pressurized extracellular bulk flow that allows the homogenous distribution of various 

sized molecules/particles significant distances from the infusion cannula tip. Reflux 

(dashed black arrow) typically only occurs up to the cannula step, and major backflow 

along the cannula and out of the target region prevented by central placement of the step 

within the target volume. The convection limit can more easily approach the subcortical 

target volume limit.  
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In contrast to diffusion, CED is a delivery modality within the brain ECS that utilizes bulk flow, or 

fluid convection, established as a result of a pressure gradient [44], rather than a concentration gradient 

(Figure 1B). Through the maintenance of a pressure gradient from the delivery cannula tip to the 

surrounding tissues, CED is able to distribute small and large molecules, including high molecular 

weight proteins, to clinically significant target volumes [44,45], centimeters rather than millimeters in 

diameter. Viruses and other large particles [46], including liposomes [47], are also easily distributed 

within the brain via CED. The advantages of CED over diffusion, therefore, include: (i) expanded 

volume of distribution (Vd); (ii) a more uniform concentration of the infused therapeutic within the 

target Vd; (iii) delivery of the vast majority of the infused therapeutic within the target volume [45].  

Our understanding of CED distribution has been amplified by the realization that arterial pulsations 

within the brain’s perivascular spaces enhances the distribution of convected therapeutics [48], and by 

a better appreciation of the complexities of the extracellular matrix and its effects on  

convection [49–51], and consideration of the biophysical properties of the ECS volume fraction [43]. 

Technical CED infusion parameters, such as cannula size and shape (Figure 2), infusion rate (usually 

0.2–5.0 µL/min or 0.012–0.3 mL/h), infusate concentration, and tissue sealing time, have been defined 

and refined to improve distribution of therapeutics [46,52–54], while limiting potential toxicities and 

morbidities [46,54,55]. A major advance in the safe and efficacious use of CED in clinical 

neurosurgery has been the development of real-time convective delivery (RCD) [56–58], which 

currently utilizes magnetic resonance (MR) imaging to visualize the CED process with the aid of  

co-convected contrast agents (Figure 2) [55,59–61]. The use of RCD has become critical in allowing 

treating physicians to directly monitor the distribution of therapeutics within the brain. Reflux along 

the CED catheter or leakage outside the target area, especially at higher flow rates, can be monitored 

and corrective steps taken, such as retargeting the catheter or altering the rate of infusion [39,62].  

Several recent human clinical trials that utilized CED for the delivery of therapeutics to the brain 

without RCD have been regarded as not meeting clinical endpoints, including trials for treatment of 

neurodegenerative disease [63–66], and neoplastic conditions [67–73]. It remains unclear as to whether 

the inconclusive results in these trials could be: related to lack of efficacy of the therapeutic; due to 

variability in response of patients to the therapeutic; due to lack of consistent volumetric delivery of 

the therapeutic to the target; or, to some additional factor(s) yet to be confirmed. Lack of effective 

monitoring of the infused therapeutics, without imaging, and the likelihood of poor drug distribution in 

these human trials has led to recurring criticisms [74,75].  

Similarly, in the first comparative Phase III trial of CED delivered chemotherapy versus Gliadel wafer 

(diffusion-based eluting polymer) therapy for recurrent glioblastoma treatment [75], no significant 

survival difference was seen between the two groups. Intrinsic tumor barriers and parenchymal effects 

may be the primary forces influencing the distribution of convected chemotherapeutic agents [76]. 

Phenotypic characteristics associated with glioblastoma multiforme (GBM) include rapid growth, high 

glucose consumption, intra-tumoral necrosis, hypoxia, and vasogenic brain edema [77]. Although greater 

edema should allow facilitated diffusion due to a larger ECS, diffusion appears impeded in tumors due to 

altered extracellular matrix composition [41]. Tumor malignancy grade strongly corresponds to an 

increase volume of the ECS accompanied by structural changes manifested by increased barriers to 

diffusion for small molecules [41]. Whereas in low-grade tumors the diffusion of molecules is reduced 

mainly by the presence of a dense network of tumor cell processes, the barriers to diffusion within the 
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ECS of high-grade gliomas is caused by the overproduction of certain glycoprotein components of the 

extracellular matrix (ECM), mainly tenascin [42,78]. ECM glycoproteins not only stabilize the ECS 

volume, but also serve as a substrate for adhesion and subsequent migration of the tumor cells through 

the enlarged ECS. These same alterations in ECS structure may hinder the diffusion of certain 

neuroactive substances or therapeutic molecules within neoplastic tissue [78]. These barriers to diffusion 

and convection, directly related to the tumor parenchyma, provide a less permeable medium for CED, 

and even less so for diffusion-based delivery options. 

Figure 2. (A) Photograph of actual step cannula used for CED. The guide cannula is 

stereotactically placed within brain tissue to just above the intended target. The delivery 

cannula is then passed through the guide to reach the final target point. (B-D) Coronal MR 

images of RCD using mixture of gadolinium liposomes and liposomes carrying CPT-11 in 

a canine with temporal lobe glioma (outlined by white arrowheads); (B) Pre-CED image 

following catheter placement within tumor mass. Notice ventricular mass effect on 

ipsilateral ventricle (outlined in white); (C) RCD with significant filling of tumor volume 

with contrast. Note contrast reflux along guide cannula (small white arrows) and increased 

mass effect on ventricle; (D) Coronal MRI one month after CPT-11 RCD. Notice decrease 

in mass effect on ipsilateral ventricle and temporal lobe in this canine patient. 
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While interstitial fluid velocity measurements in vivo are difficult to assess, investigators have 

developed mathematical models based on physical principles to predict fluid transport that occurs 

during CED in normal and neoplastic brain tissue [79,80]. These models predict that the tumor core 

maintains an elevated interstitial fluid pressure [79], and that tumors have an outward flow of 

extracellular fluid (ECF) at their periphery [80]. For CED to adequately perfuse a neoplasm, therefore, 

this pressurized outward flow of ECF from the tumor core must be overcome, unless the delivery 

catheter is somehow centered in the lesion’s center of pressure [76]. Despite adequate coverage of a 

tumor volume with an effective therapeutic via CED, the rapid clearance of the drug due to this 

outward flow of ECF (and reduced concentration-time product) may provide little or no clinical 

efficacy [76,81]. Such interstitial pressures and fluid flows make it even less likely that peripherally 

placed diffusion-based therapeutics will influence the tumor core. The use of RCD in future 

neurooncologic and neurodegenerative disease trials may allow better differentiation of efficacy 

between CED and diffusion-based treatment modalities, but will also allow direct visualization of the 

Vd of convection therapies, and allow a better estimation and standardization of the therapeutic  

contact time.  

3. Liposomes 

Liposomes have been included into a group of phospholipid nanoparticles, that form a ―core-shell 

structure‖ [82–84], since their initial description by Bangham [85–87], and which can be used to carry 

various therapeutic agents. Liposomes are typically composed of double chain phospholipid 

amphiphiles (chemical compounds with combined hydrophilic and lipophilic properties) in 

combination with cholesterol, forming spheroidal bilayer membrane structures that encompass an 

aqueous internal domain [83,88] (Figure 3). The length of the fatty acid chains and the presence or 

absence of double bonds within the bilayer lipids affects the membrane fluidity, as does the 

combination of different phospholipids within the membrane structure [89,90]. The cholesterol 

strengthens and stabilizes the bilayer membrane [91], and reduces cation leakage in physiologic 

systems [92]. Increasing the molar cholesterol content of liposomal drug carriers reduces the release 

kinetics of the therapeutic [93]. Specific liposomal properties, therefore, can be tailored by the 

membrane component makeup [94,95], and most recently through the combination of polymer 

nanoparticle technology with liposomes [96].  

Liposomes are typically formed by the addition of energy to amphipathic phospholipids in aqueous 

solution. Liposomal structures can range from long tubules to spheres, with dimensions from several 

hundred Angstroms to fractions of a millimeter [97]. A prototypical liposomal vesicle has a single, 

closed lipid bilayer confining a single internal aqueous volume. The three basic types of liposomal 

structures include multilamellar vesicles (MLV, typically > 500 nanometers (nm)), small unilamellar 

vesicles (SUV, <100 nm), and large unilamellar vesicles (LUV, ≥100 nm) [94,97,98] (Figure 4). 

Sonication of phospholipids in an aqueous solution can produce liposomes [97], but in extreme 

circumstances can damage the vesicles. Low shear conditions favor the development of MLVs, while 

increasing shear produces LUVs, and finally SUVs. 
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Figure 3. A schematic representation of the phospholipid structure and that of a theoretical 

therapeutic liposome in aqueous solution. (A) Phosphatidyl choline is a typical double 

chain amphiphile with the steric characteristics that preferentially forms bilayers and 

liposomes. The hydrophilic head (blue dashed rectangle) of the molecule is charged and 

contains the anionic phosphate group and that cationic choline molecule, attracting water to 

its domain. The glycerol molecule (within black dotted rectangle) connects the hydrophilic 

end of the amphiphile to two fatty acids (typically of different lengths (purple and green 

groups), which make up the hydrophobic tails (yellow dashed rectangle); (B) A schematic 

representation of the phosphatidyl choline amphiphile (or other double chain amphiphile), 

featuring the hydrophobic head (blue) and hydrophilic tails (yellow); (C) Schematic 

representation of a theoretical therapeutic liposome in aqueous solution, seen in cross 

section. The double chain amphiphiles arrange themselves in a spherical bilayer vesicle, 

with water surrounding the outside of the liposome and retained within the central aqueous 

milieu. Cholesterol in the membrane (orange rectangle) stabilizes the liposome structure. 

Complex targeting molecules (green) are shown on the outer surface of the bilayer, 

allowing preferential binding of the liposome to targeted cell surface receptors for cellular 

uptake. Immune system-defeating molecules (black) (e.g., polyethylene glycol, PEG), 

through their enhanced steric effects, increase the ability of the liposome to avoid clearance 

via phagocytosis. Within the phospholipid bilayer (red brackets), lipophilic drugs can be 

assimilated and transported via the liposome. Finally, small and large molecular species 

can exist within the liposome’s aqueous core (based on liposomal size), including proteins, 

drugs, genetic material, viruses, and other particulates, for eventual incorporation within 

the target cell. 
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Figure 4. A size-based, schematic representation of the three basic liposomal structures. 

Black line at bottom of the figure represents 500 µm. A multilamellar vesicle (MLV) has 

layered membranes separated by minimal aqueous volume and is typically a larger 

structure that provides an increased hydrophobic volume for better incorporation of 

lipophilic drugs. A large unilamellar vesicle (LUV) provides increased internal volume for 

incorporation of hydrophilic therapeutics. A small unilamellar vesicle (SUV) is also 

depicted with an expanded view of the typical component membrane structure shared by all 

three liposomal types.  

 

Regardless of the preparation methodologies [99–111], liposome formation results from the addition 

of energy (e.g., heating, sonication, homogenization, shaking, etc.) altering the tendency for lipid 

membranes to form a flat bilayer at an aqueous interface, and instead form bilayered vesicles [112]. 

Unfortunately, only a few of the conventional liposomal production methods are capable of entrapping 

large quantities of water-soluble agents [107]. Conventional liposomal production methods, such as  

the reverse-phase evaporation technique [101], ether injection/vaporisation technique [99,100], and  

freeze-thaw method [102], produce a heterogeneous mixture of large unilamellar vesicles (LUV) or 

multilamellar vesicles (MLV) [112]. Production of a more homogenous liposome mixture has been 

accomplished through centrifugation [113], or filtering methods [114,115]. 

Typically, liposomes within the circulation are quickly coated with opsonizing plasma proteins, 

taken up by phagocytic cells within the reticuloendothelial system (RES) (see next section, Cellular 

Uptake of Liposomes), and rapidly cleared from the bloodstream. The addition of polyethylene glycol 

(PEG) or derivatives to the external membrane surface of liposomes (PEGylation) has proven effective 

in inhibiting RES clearance and thereby increasing plasma circulation time [116–118]. The mechanism 

of PEGylated liposome longevity has been investigated [119], and postulated to be primarily due to a 

protective conformational cloud of steric interference on the liposomal surface associated with the 

flexible hydrophilic polymers. Such a protective surface also alters surface charge characteristics, and 

reduces opsonization and phagocytic clearance.  

From the circulating bloodstream, liposomes of small and large diameters are able to diffuse across 

the BBB due to their lipophilic characteristics. SUVs modified with brain transport molecules on their 
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surface can also undergo receptor-mediated or absorptive-mediated transcytosis [98]. Within the brain, 

liposomes present little or no toxicity to the host [120], and most commonly enter cells within the CNS 

via endocytosis. Upon entering the CNS ECS, liposomal diffusion is markedly limited due to their size 

and cellular binding characteristics. 

4. Cellular Uptake of Liposomes 

Liposomes were first shown to be effective intracellular transport vehicles for substances that 

typically did not gain access to the intracellular space in 1974 [121]. Two major pathways for cellular 

internalization of liposomes are present: phagocytosis, and endocytosis [122]. Phagocytosis occurs 

primarily in professional phagocytes (e.g., macrophages, monocytes, neutrophils, and dendritic  

cells) [123]. Fibroblasts, endothelial cells and epithelial cells have some phagocytic capabilities but to 

a much lower extent [124]. Opsonization or tagging of the nanoparticles for phagocytosis, is 

effectively carried out by serum proteins, including immunoglobulins, complement components, 

laminin, fibronectin, C-reactive protein, and type-I collagen [125,126]. Opsonized particles specifically 

attach to phagocytes via receptor-ligand interactions, which trigger a signaling cascade that results in 

actin-dependent pseudopodia extension and eventual engulfing of the particle, ingestion, and 

processing through phagolysosomes [122]. The entire process can take 30 min to 2 h and is highly 

dependent on surface properties of the ingested particle [123]. Particle size matters in phagocytosis, 

with the process optimized for particles greater than 250 nm, and with smaller particles less efficiently 

internalized [127]. Larger sized liposomes show increased opsonization by serum proteins and 

phagocytic clearance, a process that has been largely defeated in the peripheral circulation through  

the use of polyethylene glycol (PEG)-coating on liposomes [119], and other nanodelivery  

vehicles [122,128]. Additionally, liposomes with a significant surface charge (positive or negative), 

have a much higher binding affinity to phagocytes than vesicles that are neutral, and hydrophobic 

nanoparticles are more readily taken up than hydrophilic non-ionic ones [122]. Finally, shape and 

rigidity of the liposome or nanoparticle also influence the likelihood of cellular uptake via 

phagocytosis. Less spherical and more rigid particles directly stimulate phagocytic ingestion [122].  

The uptake and intracellular fate of nanoparticles is highly dependent on the above-mentioned 

factors but especially to particle size. Larger particles and volumes of the ECF are taken up by 

phagocytosis and macropinocytosis through two different mechanisms that share a similar intracellular 

fate (Figure 5). Smaller particles (<150 nm) are taken up and processed via at least three other 

mechanisms (Figure 6). Cellular uptake mechanisms for liposomes are summarized in Table 1. 

Non-phagocytic endocytosis is common to all cells and involves uptake of both fluids and solutes 

through four main mechanisms: macropinocytosis, clathrin-mediated endocytosis, caveolin-mediated 

endocytosis, and endocytosis which is independent of clathrin and caveolin [122].  

Macropinocytosis shares some features with phagocytosis and is a clathrin- and caveolin-independent 

cellular uptake system that occurs in macrophages as well as many other cell types [129–131]. 

Utilizing membrane protrusions generated by actin interactions in a manner similar to phagocytosis, it 

differs in the formation of larger endocytic vesicles (typically ranging in diameter from 1–5 µm) 

through membrane fusion, which nonspecifically samples the ECF and its content. Intracellularly, 
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macropinosomes acidify and shrink, sometimes fusing with lysosomes or recycling their contents to 

the cell surface. 

Figure 5. Schematic representation of intracellular processing of large liposomal 

nanocarriers (>250 nm diameter) based on phagocytosis and macropinocytosis mechanisms. 

In the phagocytosis pathway (A–E), an MLV (or LUV) is opsonized with serum proteins or 

immunoglobulins (A). Receptor binding on the cell surface to opsonins results in actin 

assembly and particle engulfment (B), leading to the formation of a phagosome (C). With 

maturation of the phagosome, pre-lysosomal vesicles fuse with it and release degradative 

enzymes (D), and finally form a phagolysosome with acidification and degradation of the 

liposomal vesicle and contents (E). In the macropinocytotic internalization pathway (F,G, 

and E), large membrane protrusions non-specifically engulf a large amount of ECF, 

including liposomes of various sizes (F). The fate of the resulting macropinosome (G) 

includes processing of its contents via acidification and fusion with enzyme-rich vesicles to 

form a phagolysosome (E). An alternative pathway (blue dotted arrow) for the 

macropinosome is to fuse with and recycle its content to the cell surface. 

 

Clathrin-mediated endocytosis (CME) is essential to cellular homeostasis, allowing uptake of 

signaling and nutrient macromolecules, and membrane components. Both receptor-mediated and  

non-specific CME exists, with materials engulfed ending up in degradative lysosomes. CME 

typically occurs in a membrane region enriched with the cytosolic coat protein clathrin, which 

polymerizes to form a basket-like framework beneath the cell membrane, causing invagination 

(clathrin-coated pit, up to 150 nm in depth) and eventual dynamin-mediated formation of a  

clathrin-coated vacuole (or vesicle) [132,133], with a diameter of 100 nm [134] to 120 nm [130]. 

The internalization of receptor-ligand complexes via receptor-mediated CME is one of the best 

defined cellular internalization mechanisms [129], and of paramount importance for various free 

ligands and nanocarriers bearing targeting ligands (e.g., LDL, transferrin, and epidermal growth 
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factor), and many viruses (e.g., influenza) [122,134,135]. Fluid-phase endocytosis [134], or  

receptor-independent CME is an internalization pathway for extracellular fluid and its contents that 

avoids direct binding to the cell membrane components. Another contrasting feature of this pathway 

is the slower internalization and processing compared to the receptor-mediated CME, with most 

other features being shared [134].  

Figure 6. Schematic representation of intracellular processing of smaller liposomal 

nanocarriers (e.g., SUVs). Extracellular SUVs interact with the cell membrane and are 

taken up by (A) Clathrin-mediated endocytosis (CME), (B) Caveolin-mediated endocytosis 

(CvME), or (C) Non-clathrin- or non-caveolin-mediated endocytosis (NCME). With CME 

(A) clathrin coated pits form either as a receptor-mediated event or spontaneously, the 

latter process called fluid-phase endocytosis. Vesicle fission from the membrane is 

mediated by the GTPase dynamin. Coated vesicles are internalized, shed their clathrin 

coats, and develop into early endosomes. With acidification and fusion with enzyme-rich 

pre-lysosomal vesicles in the late endosome stage, a lysosome forms with degradation of 

the ingested materials. In the CvME pathway (B), particles that specifically bind to the cell 

plasma membrane are routed to flask-shaped membrane invaginations that are coated with 

caveolin. Again, vesicle fission is dynamin-dependent. Rather than processing through 

endosomes (dashed arrow), the majority of these vesicles form caveosomes, with further 

processing/routing of the contents based on actions within the endoplasmic reticulum or 

Golgi apparatus. The NCME pathway(s) (C) continue to be investigated. Cholesterol-rich 

membrane microdomains or ―lipid rafts‖, are the specific targets of binding for ligands that 

stimulate this internalization pathway. Similar to CvME, the lysosomal stage is bypassed 

with the sparing of the internalized materials from harsh acidic and enzymatic processing. 

They also appear to be routed to the intracellular membrane organelles. 
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Table 1. Cellular uptake mechanisms for liposomes. 

Mechanisms of 

Endocytosis 

Primary Cell 

Types Involved 

Opsonization 

Dependent 

Surface Feature-

Dependent 

Length of 

Process to 

Processing 

Vesicle 

Size 

Typical Cellular 

Processing 
Other Factors 

Phagocytosis 

Macrophages 

Monocytes 

Neutrophils 

Dendritic cells 

Yes, usually 

Yes, increased for 

both cationic and 

anionic particles 

30 min to 2 h >250 nm 
Acidified, enzyme-

rich phagolyso-some. 

Increased with 

hydrophobic, rigid, 

non-spherical particles. 

Actin-dependent. 

Macropinocytosis All cells No No - 1–5 μm Degradative lysosome Actin-dependent 

CME and fluid-phase 

endocytosis 
All cells No 

Enhanced by 

specific ligands 

5–10 min for 

receptor-mediated. 

45–90 min for 

fluid phase. 

<150 nm 

Early and late 

endosomes and 

eventually degradative 

lysosomes 

Receptor-mediated and 

non-specific uptake 

exists. Clathrin- and 

dynamin-dependent. 

CvME 

All cells, but 

especially 

endothelial cells. 

No 

Receptor-ligand 

trafficking on cell 

surface 

20–40 min <80 nm 

Caveosome, avoiding 

acidic- and enzyme-

rich processing. 

Caveolin- and 

dynamin- dependent 

CME- and CvME- 

independent 

endocytosis 

All cells No 

Selected by using 

targeting ligands 

specific for 

―rafts‖. 

- <50 nm 
Non-lysosomal 

pathways 

Still being 

investigated. 
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Caveolin-mediated endocytosis (CvME) features flask-shaped membrane invaginations sized at the 

lower end of the 50–100 nm range [129,130,134,136], lined by the dimeric protein caveolin. Caveolae 

(CvME vesicles) are most abundant in endothelial cells, making up 10–20% of the cell surface [130], 

and allow endocytosis of various proteins and viruses (e.g., SV40), as well as smaller  

nanocarriers [122]. CvME is more highly regulated than CME, through the involvement of complex 

signaling on the membrane surface [130,134]. Receptor-ligand interactions on the membrane surface 

traffic particles to caveolar invaginations [134]. Caveolar fission from the membrane surface is 

mediated by the GTPase dynamin, a process that is shared with CME [122]. The major differentiation 

between CME and CvME, besides the typical vesicle size, is the absence of enzymatic activity 

associated with CvME processing, allowing nanocarriers to by-pass the lysosomal degradation 

pathways for their payloads (e.g., drugs, peptides, proteins, nucleic acids, etc.). The uptake kinetics are 

not as rapid as seen with CME, but ligands such as albumin, cholesterol, and folic acid are regularly 

taken up using CvME [134]. 

While additional clathrin- and caveolin- independent endocytosis pathways have been described, a 

specific classification for these has only recently been proposed [136]. Like CvME, many, but not all 

of these pathways involve membrane microdomains, or ―rafts‖, that are abundant in cholesterol and 

have diameters of 40–50 nm [130]. Their specific mechanisms and implications in the uptake of 

nanocarrier systems remain to be better defined. 

5. Liposomal Toxins 

Distinct liposome classes have been developed to package various therapeutic agents for the 

treatment of cancer, based on structural/pharmacologic features [137]. While most oncologic drugs 

were initially integrated within the aqueous core of SUVs (see Liposome section), drug incorporation 

within the liposomal membranes of MLVs further expanded the repertoire of drugs available for 

liposomal delivery. Drug loading within liposomes is either a passive (drug is incorporated within the 

vesicle during liposome formation) or an active (addition after vesicle formation) process [138]. 

Hydrophobic drugs (e.g., taxol and annamycin) can be passively incorporated into liposomes, based on 

their drug-lipid properties and enhanced by the increased lipid content of MLVs. Drug trapping 

efficiencies under these conditions can approach 100% for highly lipid soluble agents. In contrast, 

passive incorporation of hydrophilic drugs (e.g., topotecan, irinotecan) is primarily based on the 

encapsulated volume of aqueous solution carrying the drug within the vesicle. This internal aqueous 

volume is increased with vesicle size (e.g., LUV) and typically reduced in MLVs (Figures 3 and 4). 

Trapping efficiency under these circumstances is typically <30%, due to the liposome size constraints 

and drug solubility [138], but techniques have been developed to improve hydrophilic drug 

incorporation results approaching those of lipophilic agents [139]. Active drug incorporation methods 

into liposomes have been shown to be strongly affected by the drug-buffer composition used as well as 

the nature of the membrane lipid headgroups [140]. Remote-loading, ion-gradient, intraliposomal 

stabilization methods of hydrophilic drug incorporation within liposomes have proven effective [141]. 

Hydrophobic and hydrophilic chemotherapeutic agents can, therefore, be incorporated into liposomes 

and transported and released over prolonged periods [142–144], compared to the non-encapsulated 

drugs alone. The circulating half-life of these liposomal toxins (LT) can be enhanced further by the 
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addition of a polyethylene glycol (PEG) coat to the liposomal surface, which can also be modified with 

specific targeting molecules that increase the specificity for receptor-mediated endocytosis, or other 

cellular incorporation strategies in target cells (see Liposomes, and Cellular Uptake of Liposomes 

sections above). 

6. CED of Liposomal Toxins: Pre-clinical Neurooncologic Studies 

CED has been used to effectively deliver liposomes and LTs within the CNS in small animals 

with or without tumors [141,145–149], canines with spontaneous brain tumors [150,151], and 

nonhuman primates [57,58,152]. From these studies, it has been confirmed that liposomal 

chemotherapeutics are less toxic and have an extended half-life within brain parenchyma compared 

to free drugs [153]. Relevant to this discussion, tissue affinities for chemotherapeutic agents 

delivered via CED were noted to be a limiting factor for parenchymal Vd within the CNS [147], 

despite being significantly greater than via diffusion-based delivery methods. In this same  

study [147], drug encapsulation within liposomes significantly increased the effective Vd of the 

therapeutic. Importantly, alteration of liposomal surface properties (e.g., presence or absence of 

surface charge, percentage of PEGylation) markedly affected the Vd. Increased liposomal 

PEGylation yielded the greatest Vd compared to volume of infusion (Vi), probably related to steric 

stabilization and reduced surface charge [147]. Liposomes delivered via CED within the brain were 

noted to preferentially traffic in the ECS along white matter tracts, in a path of least resistance, as 

opposed to passage through more cellular gray matter structures [152,154]. Liposomes were also 

transported significant distances away from the site of infusion upon gaining entry into the 

perivascular spaces [154], via a perivascular pump mechanism [48]. 

Delivery of LTs via CED in rodents harboring brain tumors confirmed higher concentrations of 

drug at the target site with decreased local toxicity compared to either systemic therapy or CED of 

non-liposomal drug [146,148]. Efficacy of these methods has been confirmed in rodent tumor  

models [141,146,148,149], as well as the effective use of mixed liposomes for both drug delivery and 

contrast agent visualization of the CED process using RCD [57,145,155]. In canines, similar  

CED-delivered LTs failed to show clinical or histopathological adverse effects in normal [150] or 

brain tumor-bearing animals [151], while confirming clinical efficacy (Figure 2B–D) and highlighting 

the importance of RCD to maximize tumor coverage and minimize inappropriate infusions. 

Convection of gadolinium liposomes (GDL) in nonhuman primate brain has confirmed the lack of 

toxicity and ability to monitor the infusion process in a larger brain using RCD methods similar to 

those for humans [58,76]. Recently [156], in vivo CED of magnetic nanospheres conjugated to an 

antibody that selectively binds to the epidermal growth factor receptor (EGFR) mutant (EGFRvIII) 

found on glioblastoma xenografts, not only allowed specific tumor visualization on MRI, but through 

an apoptotic mechanism, was associated with targeted cell death with sparing of normal astrocytes. 

With these and other preclinical data [157], we have argued for the importance of a delivery  

platform [39] that utilizes RCD to monitor therapeutic distribution, and potential complications 

associated with CED [62,76] in the neurooncologic patient. 

  



Toxins 2011, 3                

 

 

383 

7. CED of Liposomal Toxins: Clinical Neurooncologic Studies 

Clinical trials featuring LTs in general oncology have been ongoing for over 20 years [158]. With 

advances in liposomal PEGylation and ligand targeting, improved efficacy and safety for a growing 

number of LTs (e.g., doxorubicin, acridine, Ara-C, daunomycin, retinoid fenretinide, 5-FdU) has been 

confirmed [159]. Additionally [160–162], novel intraliposomal drug loading and stabilization 

technologies have allowed incorporation of other therapeutics (e.g., irinotecan, CPT-11), and may lead 

to additional chemotherapeutic agents being available for clinical development as LTs. 

In the brain, use of LTs has been limited over the last decade. PEGylation of some liposomes has 

been associated with complement activation with repeat injections [163], and the development of 

complement activation-related psuedoallergy (CARPA) [164,165], which is potentially life-threatening. 

Initially, liposomes were compared with viral vectors for local direct delivery of genetic payloads to 

tumors. Although preclinical studies suggested significant transduction rates using liposomal gene 

therapy vectors, they were generally less efficient than viral vectors [166].  

The use of liposomes delivered via CED in clinical neurooncology dates back just over 10 years. In 

an initial phase I/II study [167,168], patients with recurrent glioblastoma multiforme (rGBM) were 

treated with cationic liposomes containing a suicide gene [169,170], sensitizing tumor cells to systemic 

ganciclovir therapy. This trial reported no morbidity or mortality associated with the surgical 

treatment. Liposomal delivery via CED was felt to cause only transient clinical worsening in the 

patients, possibly related to the infused volume (30 mL over 48 h). Infusion rates varied from  

0.025–1.8 mL/h (maximum of 30 µL/min) and were delivered via infusion pump through either one or 

two implanted silicon catheters within the tumor. Unfortunately, although pre-infusion CED of 

gadolinium (Gd) contrast attempted to predict the Vd of the therapeutic infusate, it is not clear as to the 

actual extent of the tumor coverage by the convected therapeutic. The authors actually conclude that 

the beneficial effect in their patients was restricted to a relatively small volume around the infusion  

sites [168], making the Vd of the CED suspect. 

In another phase I/II trial utilizing a similar cationic liposomal vector/CED protocol for progressive 

or rGBM, the gene for human interleukin 12 (IL-12) was delivered in an effort to stimulate a local 

cellular immune antitumor response [171]. Infusion flow rates in this study ranged from 0.1 to  

0.5 mL/h (maximum of 8.3 µL/min) until an 11 mL volume was delivered. Although clinical results 

from this trial were not published, the delivery of similar gene products in neurooncology eventually 

shifted from initial use of liposomes to the use of viral vectors with this IL-12 paradigm [172], 

primarily due to the virus’ higher transduction efficiency [98,173]. 

8. Future Directions 

Delivery of LTs bearing additional active agents to tumors within the CNS will be forthcoming, 

based on the significant preclinical experiences to date and the improved methods of incorporation of 

drugs into liposomes. The further development of MRI contrast-bearing liposomal preparations (e.g., 

gadoCED) combined with LTs [155], will allow the use of RCD to better document tumor coverage 

and reduce local complications.  
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Recent discussion of retro-convection enhanced delivery (R-CED) techniques [174], and their 

ability to augment intravenously delivered therapeutics into brain tumors, may promote a systemically 

administered option for some LTs. A step beyond this concept, yet to be implemented, could include 

the use of both CED and R-CED to optimally perfuse a local tumor volume and susceptible 

surrounding brain, using a modification of the push-pull method of cerebral perfusion [175].  

CED of targeted liposomes carrying a computed tomography (CT) contrast agent for imaging, as 

well as boron (
10

B) for use in boron neutron capture therapy (BNCT) is progressing [176], and could 

provide another therapeutic option for human glioma with a real-time imaging option. In this 

preclinical model [177], transferrin-conjugated PEG liposomes provide selective uptake of 
10

B by the 

tumor tissue, thereby increasing tumoricidal activity with BNCT.  

Liposomal boron delivery options have been recently reviewed [178], and suggest future 

therapeutic uses of non-targeted and targeted liposomes in BNCT. Finally, the use of focused low 

frequency ultrasound (LFUS) to regulate drug release dynamics from LTs [179], suggests a future 

option for focal parenchymal distribution of liposomally encapsulated therapeutic agents within the Vd 

provided by CED that may be independent of cell binding/processing. Further investigation of the 

relative efficacy/toxicity of this approach versus a targeted liposomal approach will be required. 

9. Summary and Conclusions 

With the tremendous gains in knowledge regarding liposomal chemistry and cellular processing, the 

number of therapeutic agents available for delivery within these nanocarriers continues to grow 

rapidly. Liposomal drug incorporation techniques continue to evolve and provide basic and clinical 

investigators with more potent and selective LTs for use in oncology. CED provides a precise and 

effective method for distribution of LTs within the CNS, bypassing the BBB. Together with liposomal 

contrast agents, LTs convected within a brain tumor and surrounding parenchyma with CED can be 

directly monitored with MRI, improving the ability to cover the proposed target, avoiding significant 

leakage from the target site, and providing improved control and safety.  

It remains critical, however, for investigators and clinicians to understand the basics of CED 

technology prior to considering its use for human trials. A lack of understanding will not allow the 

proper assessment of this delivery option and prevents a fair comparison to alternatives. Deciphering 

the mechanisms and critical points associated with CED has been painstakingly worked out over the 

last 25 years. At a minimum, investigators should have familiarity with how catheter size and shape 

are essential to minimize tissue trauma and enhance the convection of infusate, while minimizing 

reflux. Why flow rates are critical to the CED process and should typically not be used above  

5 µL/min in an effort to avoid reflux or focal tissue cavitation. The importance of optimal infusion 

catheter placement within the brain parenchyma, especially related to proximity to ventricular system, 

subarachnoid space, or tumor resection cavity is critical in maximizing effective Vd. Finally, why the 

ability to directly visualize the CED process with RCD is essential for reproducible treatment 

strategies, improved patient safety, and a better determination of therapeutic efficacy, or lack thereof.  

The combination of CED and liposomal technologies is approaching a critical stage in 

neurooncology, and may finally affect the survival of patients suffering with CNS malignancies  

(Table 2). In this era of evidence-based medicine, real-time imaging has the opportunity to at least 
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document that the therapeutic agent has been distributed to the target. Incorporation of agents within 

liposomes for specific intracellular delivery to tumors can reduce the non-specific toxicity of the drug 

and improve the distribution and contact time within the brain parenchyma. Controlling these 

parameters will finally allow a clearer picture of comparative drug efficacy, especially if administered 

via a common platform. 

Table 2. Essential Components for Combined Use of CED and Liposomes in Neurooncology. 

Treatment Modality Essential Components 

CED Thorough understanding and implementation of parameters to optimize convection. 

Cannula size and shape 

Infusion flow rates 

Specific infusion volumes 

Safe use of contrast agents (free vs. liposomal) to visualize the CED process (e.g., RCD). 

Avoid reflux or leakage 

Document Vd, and specific coverage of tumor 

Liposomes Effective use of liposomal technology for improved formulation of LTs. 

Improved understanding of the cellular processing of LTs based on particle size. 

Effective use of lysosomal or non-lysosomal pathways based on delivered  therapeutic agent. 

Better appreciation of ultrasound-induced release dynamics and efficacy. 

Effective tumor-specific targeting based on surface ligands. 
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