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Abstract

Background: Next generation sequencing (NGS) enables a more comprehensive analysis of bacterial diversity from
complex environmental samples. NGS data can be analysed using a variety of workflows. We test several simple
and complex workflows, including frequently used as well as recently published tools, and report on their
respective accuracy and efficiency under various conditions covering different sequence lengths, number of
sequences and real world experimental data from rhizobacterial populations of glyphosate-tolerant maize treated
or untreated with two different herbicides representative of differential diversity studies.

Results: Alignment and distance calculations affect OTU estimations, and multiple sequence alignment exerts a
major impact on the computational time needed. Generally speaking, most of the analyses produced consistent
results that may be used to assess differential diversity changes, however, dataset characteristics dictate which
workflow should be preferred in each case.

Conclusions: When estimating bacterial diversity, ESPRIT as well as the web-based workflow, RDP pyrosequencing
pipeline, produced good results in all circumstances, however, its computational requirements can make method-
combination workflows more attractive, depending on sequence variability, number and length.

Background
The application of nucleic acid-based techniques is a
useful tool for diversity studies in natural habitats [1]
and a number of culture-independent nucleic acid-based
methods have been used to characterise microbial com-
munities. Next Generation Sequencing (NGS) of hyper-
variable regions from small-subunit ribosomal RNA
genes is a conventional tool to analyse the composition
and diversity of microbial communities in several habi-
tats [2-4]. NGS allows gene sequencing from complex
environmental samples [2,5,6] favouring the analysis of
bacterial diversity in a comprehensive manner [7].
Taxonomy-independent studies are used to analyse

diversity at different similarity levels [8-12]. Several ana-
lytical methods included in different software packages
are available for these processes [9,12-22].
Typical diversity data analysis workflows start by

assessing data quality and removing primers and noise.

This is usually followed by a multiple sequence align-
ment (MSA) used for distance calculation, which is the
basis for clustering sequences into Operational Taxo-
nomic Units (OTUs) at the desired dissimilarity, usually
3% for species and 5% for genera [2,20]. Additional fil-
tering steps may be inserted to remove redundant gaps,
even sequence ends, and detect repeated or closely
related sequences to reduce the amount of data to be
processed [20-26]. Filtering processes are also used to
improve sequence quality [24-26]. Each step can be car-
ried out using a variety of tools, and different tool com-
binations are commonly used to tailor the analysis to
the original data [e. g. 26]. Some approaches avoid MSA
by using pairwise alignments to compute distances
[20,22,23].
Observed OTU counts and relative abundances are

representative of actual diversity, yet we cannot be sure
that total diversity has been identified unless an appro-
priate sample size has been employed, which depends
on diversity and hence is difficult to predict. For this
reason estimates of species richness must be considered,* Correspondence: rpmellado@cnb.csic.es
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such as rarefaction curves and ACE or Chao1 estima-
tors, among others.
Comparative studies of diversity in environmental

samples are usually carried out either by comparing the
above estimators or using phylogenetic information, as
implemented in UniFrac [27]. Lately, approaches to
derive OTU numbers from taxonomic classifications
produced by the RDP classifier [28] have been proposed,
however, this approach is limited by the existing data in
the databases [29].
Recent reports have compared some of the methods

available and their potential advantages [11,25,30] com-
puting OTU counts, however, there is still little knowl-
edge on how these combinations affect workflow
performance under different conditions, and the specific
suitability for differential diversity studies. In order to
acquire useful rules and advice on the choice of work-
flow, we employed the most commonly used tool com-
binations to generate the corresponding workflows.
Application of these techniques has been greatly facili-

tated by the availability of tool collections packaged for
easy setup and use, such as QIIME [31], which includes
many of the tools analysed here, allowing scientists to
select and combine specific tools to suit their needs,
highlighting the requirement for studies to compare the
relative merits of each method combination workflow.
We tested three different alignment strategies: ab

initio alignments using the progressive alignments of
MUSCLE [14], the MAFFT partition tree method [16],
and reference guided alignments as implemented in
Mothur [19]. The effectiveness of filtering and pre-clus-
tering was tested on Mothur alignments. We checked
the effect of alternative distance calculation approaches
using the Jukes-Cantor correction for multiple nucleo-
tide substitution, as implemented in DNADIST
[2,12,32-34], the uncorrected distance with the gap
count method from Mothur [19] (hereinafter referred to
as “Mothur distance”), and the k-mer based distance
method from MAFFT [16] (referred to as “MAFFT dis-
tance”). Finally, all combinations of MSA and distance
matrices were clustered using Mothur [19].
In addition to these combinations, we also considered

other popular streamlined OTU identification work-
flows: Mothur used as the only tool for the whole pipe-
line with and without pre-clustering, ESPRIT [20],
which uses pairwise alignments to compute distances,
the recently published CROP [23], which uses an unsu-
pervised Bayesian clustering method, Otupipe, which is
based on UCLAST/USEARCH [22], and the RDP pyro-
sequencing pipeline [21], which uses Infernal [35,36]
alignments and its own complete linkage clustering
method.
To compare these workflows, we needed to resort to

well-defined datasets representative of typical

experimental set ups: we used reference 16S sequence
data of various lengths using synthetic data developed
by us, as well as datasets proposed by Youssef [37],
Quince [26], Hao [23,38] and Huse [24]. These sets test
accuracy by using a single sample with a limited number
of species. To analyse workflow suitability for differential
diversity studies, we used real-world field data of hyper-
variable V6 16S rDNA sequences [32] retrieved at differ-
ent times under different environmental conditions. The
V6 region is a common choice for this kind of analysis
as it has been proven to yield results similar than longer
sequences [11,37], and is a sensible choice for short-
length sequencing approaches.
In order to compare clustering results one needs to

account for potential method-dependent variability due
to randomness in the workflow (e.g. Mothur randomly
selects the cluster to group in case of a tie and CROP
uses a Markov Chain Monte Carlo -MCMC- approach).
We have collected statistics on the variability results
obtained with Mothur, ESPRIT and CROP.

Results
Reference set of short-length hypervariable V6 16S rDNA
The results obtained with short V6 region sequences
using our synthetic data sets derived from 60 species are
shown in Table 1, which indicates the number of OTUs
obtained at 3%, 5% and 10% dissimilarity levels with
each workflow. Manual checking of the selected

Table 1 Accuracy test

60 seqs 50 × 60 seqs

Reference expected values 59 57 52 59 57 52

CROP 59 59 59 60 60 60

ESPRIT 59 57 52 59 57 52

MAFFT+JC 58 56 50 58 57 51

MAFFT+MAFFT 59 59 59 59 59 59

MAFFT+Mothur 59 56 51 59 57 54

Mothur+JC 55 55 55 2992 2992 2992

Mothur+MAFFT 41 40 36 252 251 243

Mothur+Mothur 48 48 48 48 48 48

Mothur+PreC+JC 44 44 44 43 43 43

Mothur+PreC+MAFFT 47 47 47 47 47 47

Mothur+PreC+Mothur 48 48 48 48 48 48

MUSCLE+JC 58 56 50 63 59 59

MUSCLE+MAFFT 59 59 59 59 59 59

MUSCLE+Mothur 59 56 55 66 62 56

Otupipe 59 57 52 59 57 52

RDP 59 57 52 59 57 52

OTUs observed with each of the workflows analysed at distances of 3, 5 and
10% for the datasets containing 60 test sequences and 50 replicas of the
same (50 × 60). JC stands for Jukes-Cantor and PreC for the pre-clustering
step applied after Mothur MSA. Combined workflows are indicated stating
first the method used for alignment (MAFFT, Mucle, Mothur or Mothur with
pre-clustering), and then the distance method used (Jukes-Cantor, MAFFT or
Mothur). Clustering was performed with Mothur for all combined workflows.
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sequences revealed that two of them were identical,
(EU930421 and DQ989484), two pairs of sequences had
a dissimilarity level below 5% (X90760 and AM743175,
AF328681 and EU551675), and five pairs of sequences
had a dissimilarity level below 10% (AM935529 and
EU631792, AF114805 and AY894325, AY234615 and
EF173341, AF114805 and AY894325, U855746 and
EU360125). Therefore, the expected number of OTUs
should be 59 at 3% dissimilarity, 57 at 5% dissimilarity,
and 52 at 10% dissimilarity, which are precisely the
results obtained with ESPRIT, Otupipe and the RDP
pipeline. CROP correctly identified the number of
OTUs at 3% when only 60 sequences were used, yet
overestimated them at 5% and when 50 repeated copies
of them were used. Mothur, on the other hand, underes-
timated the number at all dissimilarity levels, both with
and without the pre-clustering step, due to the removal
of sequence fragments during the reference-guided
alignment step, converting divergent sequences into
identical or more closely-related fragments (http://www.
mothur.org/wiki/Align.seqs).
Regarding combined workflows, it is noticeable that

both MAFFT and MUSCLE alignments produce good
results, and that the combinations of Mothur alignments
with either Jukes-Cantor corrected or MAFFT distance
calculations give abnormally high counts with the 50
replica data set. The MAFFT distance calculation had
trouble to discriminate between 3%, 5% or 10% dissimi-
larity levels (59 OTUs), in contrast to Mothur or Jukes-
Cantor corrected distances.

Reference sets of short length mutated V6 rDNA
To highlight the effect of sequence alignment on clus-
tering and diversity estimation we mutated the 60 refer-
ence sequences and arranged them in two different
groups: stacked or interspersed. Since random mutations
have been added, we now expect diversity to be higher
at 3% distance and conserved at 5% or more. Results are
summarized in Table 2: CROP gives abnormally large
counts, ESPRIT overestimates at 3% dissimilarity but
returns to acceptable estimations at 5% and 10% dis-
tances. Mothur alignments exceedingly overestimate
diversity on account of the mentioned abnormal align-
ments, with the preclustering step reducing OTU
counts, which is likely because these discard many
sequences as if they were sequencing errors. Once again
MAFFT and MUSCLE alignments give better results
when combined with Jukes-Cantor corrected or Mothur
distances, but not with MAFFT distances.
There are obvious differences in the calculations

depending on sequence ordering. A strong influence
arises from the alignment step, verified by looking at the
MSA. We know that each sequence contains only one
change and therefore, deviations are easily identifiable.
In both cases (stacked or interspersed) MAFFT and
MUSCLE produced shorter alignments than Mothur,
with or without pre-clustering (400 MAFFT, 686 MUS-
CLE sites vs. 2641 Mothur sites for stacked mutants,
and 445 MAFFT, 372 MUSCLE sites vs. 2553 and 2436
Mothur sites for interspersed mutants). Evening
sequence ends in Mothur produced useless alignments.

Table 2 Alignment test

50 × 60 mutated (interleaved) 50 × 60 mutated (stacked)

3% 5% 10% 3% 5% 10%

Reference expected values 59 57 52 59 57 52

CROP 1959 1954 1955 1865 1850 1850

ESPRIT 193 59 56 205 59 56

MAFFT+JC 141 101 85 132 113 113

MAFFT+MAFFT 2289 1708 80 2289 1777 1270

MAFFT+Mothur 261 119 96 279 121 121

Mothur+JC 2947 2947 2948 2985 2985 2985

Mothur+MAFFT 899 685 477 2999 2999 2999

Mothur+Mothur 1087 923 736 1100 930 888

Mothur+PreC+ JC 1198 1198 1198 1333 1333 1333

Mothur+PreC+MAFFT 1328 1328 1328 1346 1346 1346

Mothur+PreC+Mothur 1080 938 938 1087 940 915

MUSCLE+JC 70 59 44 2999 2999 2999

MUSCLE+MAFFT 2287 1707 80 2288 1785 1269

MUSCLE+Mothur 264 64 57 571 466 466

Otupipe 139 91 59 144 95 61

RDP 59 58 53 59 57 52

OTUs observed with each of the workflows analysed at distances of 3, 5 and 10% for the datasets containing 50 different mutated replicas of the 60 test
sequences stacked or interleaved.
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Strong differences can also be detected between both
datasets, with the combination of MUSCLE and Jukes-
Cantor yielding very high values with stacked data.
ESPRIT is more resilient to sequence order, as it avoids
the MSA step, showing only minor differences in results
between datasets and consistently producing good
Chao1 estimates (Additional file 1, Table S1.3). Otupipe,
which also avoids the MSA step, displays a similar beha-
viour. Only RDP produced results consistent with the
expected values and was able to avoid the influence of
sequence order in the input data.

Reference sets simulating 454 NGS data of 16S rDNA
Table 3 summarizes the results obtained when analysing
the V5 region datasets from Quince et al. [26]. CROP,
ESPRIT, Otupipe and the RDP pipeline results are in
line with published data [23,26], with CROP and Otu-
pipe giving low estimates. When Mothur was used to
compute the alignment with only vertical filtering to
remove gaps, extremely large OTU counts were
obtained, independently of the distance algorithm used
(data not shown). However, Mothur behaviour could be
corrected by removing uneven ends in the filtering step
("trump”), producing estimates closer to those previously
published but lower than ESPRIT. MUSCLE alignments
were able to produce acceptable results with the Artifi-
cial but not the Priest Pot data. MAFFT alignments pro-
duced very large OTU counts. In all cases, the worst
results were obtained when MAFFT k-mer distances
were used.

Reference set using a large number of short length reads
Recent advances in pyrosequencing have increased the
size of reads that can be collected, making this technol-
ogy an attractive tool for biodiversity studies. To analyse
the likely behaviour of these new approaches we have
resorted to a well- known and established dataset con-
sisting of a large number of sequences (340150) pre-
viously reported by Huse et al., [24]. Results are shown
in Table 4: CROP failed to successfully deal with this
large dataset. For the remaining approaches, the main
problem arises from the size of the distance matrices
generated, which can easily reach terabyte file sizes,
becoming unmanageable for clustering programs such
as Mothur. In these cases, the data can be processed
either by including a preclustering step (e.g. in Mothur
or combining MUSCLE with USEARCH), or analyzing
unique sequences (albeit at the cost of losing informa-
tion on abundance), or by obviating the need for an
MSA (like ESPRIT or Otupipe). The RDP pipeline was
able to build the alignment, but it could not be pro-
cessed in the standard manner, and it did require speci-
fic RDP staff assistance to process this dataset.
None of the workflows involving an MSA followed by

distance-matrix calculation and clustering could be
completed due to the huge size of the distance-matrix.
When the 23445 unique sequences in the dataset were
used to reduce dataset size, with or without precluster-
ing, all of them gave very high OTU counts and were
unable to make distinctions at different similarity levels.
Only ESPRIT, Otupipe and the RDP pipeline were able
to produce different results at each dissimilarity level
(Table 4).

Table 3 Quince’s 454 data

Artificial Priest Pot

3% 5% 10% 3% 5% 10%

CROP 41 25 15 562 246 42

ESPRIT 248 77 38 1115 773 394

MAFFT+JC 686 686 686 3764 3764 3764

MAFFT+MAFFT 31933 31933 31933 15984 15984 15984

MAFFT+Mothur 1756 1756 1756 6672 6672 6672

Mothur+JC 49 36 33 640 537 537

Mothur+MAFFT 4276 4276 4276 2824 2824 2824

Mothur+Mothur 113 53 53 766 642 642

Mothur+PreC+ JC 61 40 36 662 482 482

Mothur+PreC+MAFFT 3864 3141 3141 1905 1625 1625

Mothur+PreC+Mothur 136 65 46 810 575 575

MUSCLE+JC 146 146 146 4059 4059 4059

MUSCLE+MAFFT 33491 33491 33491 15718 15718 15718

MUSCLE+Mothur 258 258 258 6433 6433 6433

Otupipe 66 39 24 793 570 302

RDP 250 94 43 1209 862 456

OTUs observed with each of the workflows analysed at distances of 3, 5 and
10% for Quince’s Artificial and Priest Pot datasets. For the Priest Pot data, 855
OTUs at 3% and 699 at 5% were previously estimated by Quince et al. [26].

Table 4 Huse short read data

3% 5% 10%

CROP NC NC NC

ESPRIT 6464 3308 1402

Unique:MAFFT+JC 23442 23442 23442

Unique: MAFFT+MAFFT 23445 23445 23445

Unique: MAFFT+Mothur 23445 23445 23445

Unique:Mothur+JC 23441 23441 23441

Unique: Mothur+MAFFT 23441 23441 23441

Unique: Mothur+Mothur 18210 18210 18210

Mothur+PreC+ JC 15594 15594 15594

Mothur+PreC+MAFFT 15601 15601 15601

Mothur+PreC+Mothur 14776 14776 14776

Unique:MUSCLE+JC 22816 22816 22816

Unique:MUSCLE+MAFFT 23444 23444 23444

Unique:MUSCLE+Mothur 21318 21318 21318

Otupipe 2149 1422 878

RDP 4228 2932 1777

OTUs observed with each of the workflows analysed at distances of 3, 5 and
10% for a large number of short length reads dataset [24]. NC = non
computable.
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Reference sets using near-full length 16S rDNA sequences
We have analysed two near-full length sets with similar
sequence counts: Hao’s axillary skin reference data com-
prised low diversity, while Youssef’s prairie soil samples
contained higher diversity. The results are summarized
in Table 5: CROP results show a strikingly high number
of OTUs. In all cases fairly similar results were obtained
with both datasets and Mothur gives acceptable figures
either alone or in combined workflows, again with the
exception of k-mer based distance calculation (MAFFT),
which overestimates OTU numbers, albeit much less
than the estimates obtained when shorter sequences
were analysed.

Experimental V6 16S rDNA sequences from soil samples
These datasets compare differential diversity estimations
before and after herbicide treatment with a control: dif-
ferences in diversity should be consistent across work-
flows. The results are shown in Table 6. CROP gives the
lowest diversity estimates in all cases. In the remaining
workflows, the untreated and glyphosate-treated soils in
practically all cases are more diverse than the GTZ-trea-
ted soil when comparing sampling times. The actual fig-
ures varied considerably depending on the workflow
used. Combined workflows showed again a tendency to
produce higher OTU counts when MAFFT was used to
calculate distances.

Computational variability of results
Most calculations were repeated to confirm the
observed results. This showed, in several instances, the

same computation producing different results due to
intrinsic algorithmic randomness. These expected varia-
tions were measured repeating the calculations 20 times
with three selected datasets under the same conditions.
The results obtained are presented in Table 7. ESPRIT
did not show any variability, Mothur showed a slight
variability in some instances, which should not change
OTU estimates, and CROP showed a slightly higher
variability, which may induce minor estimate changes.
Since CROP estimates are obtained via independent

runs for each distance, this may result in a seemingly
contradictory output, where OTU counts at 5% might
be greater than at 3% (e.g. one of the runs for the
stacked mutants produced 1865 OTUs at 3%, and
another 1869 at 5%).

Discussion and Conclusions
We have analysed the most commonly used workflows
applied for bacterial diversity studies including simple,
one-tool, workflows and tool combinations, and com-
pared them for accuracy, results variability and effi-
ciency under a variety of conditions representative of
Illumina-based, 454-based, near full-length and differen-
tial diversity studies.
While more complex workflows can be devised (e. g.

using RDP web alignments or ESPRIT distance calcula-
tions or clustering as optional combinatorial steps),
these are rarely reported except when evaluating new
algorithms [23,26] and are inconvenient for routine use.

Table 5 Near-full length sequences

Skin axillary Prairie soil

3% 5% 10% 3% 5% 10%

CROP 1009 1009 1009 1128 1128 1128

ESPRIT 59 43 26 504 340 162

MAFFT+JC 47 39 39 490 346 183

MAFFT+MAFFT 266 126 109 1007 895 714

MAFFT+Mothur 50 39 36 503 351 181

Mothur+JC 47 39 36 491 352 184

Mothur+MAFFT 269 126 109 977 872 689

Mothur+Mothur 54 40 38 535 396 204

Mothur+PreC+ JC 47 39 36 491 353 268

Mothur+PreC+MAFFT 287 127 109 977 877 836

Mothur+PreC+Mothur 55 40 38 536 397 305

MUSCLE+JC 50 39 37 480 337 175

MUSCLE+MAFFT 266 126 109 1007 895 714

MUSCLE+Mothur 58 40 38 487 339 173

Otupipe 49 37 26 490 336 160

RDP 60 43 27 504 348 175

OTUs observed with each of the workflows analysed at distances of 3, 5 and
10% for the skin axillary microbiome data described by Hao et al. [23], and tall
grass prairie soil data [37].

Table 6 Comparative diversity analysis

Control GTZ Glyphosate

t1 t2 t1 t2 t1 t2

CROP 812 286 414 625 454 477

ESPRIT 1631 1053 1227 922 1951 1102

MAFFT+JC 1936 1087 1025 975 1977 1088

MAFFT+MAFFT 2792 1588 1971 1329 3296 1577

MAFFT+Mothur 2112 1215 1655 1163 2646 1326

Mothur+JC 3464 1622 3842 823 5024 1090

Mothur+MAFFT 2789 1589 1969 1328 3323 1574

Mothur+Mothur 1730 1128 1310 982 2122 1209

Mothur+PreC+JC 2479 1460 1958 826 3134 1498

Mothur+PreC+MAFFT 2471 1459 1961 1252 3135 1495

Mothur+PreC+Mothur 2063 1143 1890 1010 2516 1221

MUSCLE+JC 1762 1247 1257 950 2020 1238

MUSCLE+MAFFT 2790 1587 1970 1330 3296 1577

MUSCLE+Mothur 2278 1352 1800 1059 2772 1477

Otupipe 1314 881 938 795 1428 948

RDP 1762 1106 1236 901 1932 1094

OTUs observed with each of the workflows analysed. For simplicity, only
results at 3% dissimilarity are shown from pooled samples collected at two
different times from control, GTZ and glyphosate treated soils [32]. Full data
at 3, 5 and 10% is provided in the comprehensive OTU results table of the
Additional file 1, Tables S1.1, S1.2 and S1.3.
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The most relevant patterns from the wealth of informa-
tion generated by our analysis are highlighted below.

Sequence processing
The relevance of initial data quality to the reliability of
the results has been repeatedly noted, leading to the
recommendation of filtering raw data according to qual-
ity, removal of chimeras and experimental noise, and
ensuring all sequences correspond to the same region of
16S rDNA. This last step usually relies on the selection
of experimental primers, but may sometimes benefit
from the additional removal of non-overlapping
sequences ("trump” filtering in Mothur). This step may
arguably remove important elements in an alignment (e.
g. if terminal gaps are significant), but it was the only
way to obtain sensible results with the datasets from
Quince et al. [26]. However, its use with our artificially
mutated sequences resulted in useless alignments, show-
ing that this option must be applied with caution.
When a large number of short length sequences are

used [24], it is easy to find many individuals with the
same sequence. Identifying and using unique sequences
exerts a major impact on reducing computation time,
especially when dealing with modern vast datasets (in
the hundreds of thousands or millions of sequences).

Alignments
ESPRIT, which uses pairwise alignments, generally pro-
duces more accurate results than workflows relying on
MSAs. Pairwise alignments; however, do not consider
likely evolutionary relationships or structural properties,
which is why MSA tools are often preferred. Alignments
based on a reference alignment are shown to be very
useful, while improving quality, as can already be seen
from the RDP pipeline results; however, we observe that

using MAFFT or MUSCLE to obtain ab initio MSAs
gave better results than Mothur reference-guided align-
ments for short sequence lengths. This is most evident
with our engineered mutated datasets, and is likely due
to reference guided alignments selecting different refer-
ence sequences for related mutants, leading to an MSA
where related sequences include more variability than
actually exists. Hence, Mothur MSAs should always be
filtered to remove redundant gaps if other tools are to
be used for distance calculation [19]. MAFFT and MUS-
CLE frequently identify the mutation correctly and pro-
duce more accurate alignments, as can be seen by
inspecting the aligned stacked dataset. This advantage is
diluted as sequence length increases (datasets from
Quince, Hao and Youssef), since the availability of more
information increases the accuracy of reference
identification.
Another major difference is related to the computa-

tional time required for constructing the alignments.
Both MAFFT and MUSCLE have a well-defined beha-
viour: MAFFT time complexity is O(N2L) [39], N being
the number of sequences and L their length, and MUS-
CLE uses multiple iterations with a cost of O(NL+L2)
per iteration; however, ESPRIT, CROP and Mothur
compute more expensive Needleman-Wunsch align-
ments (cost O(L1·L2), or O(L2) for equal-length
sequences) and rely on a previous filtering step to
reduce N, the number of sequences to be compared.
ESPRIT and CROP require (N·(N-1)) comparisons to
build the distance matrix; one may expect ESPRIT k-
mer filtering or CROP unique identification step to
become less efficient for longer, relatively distant
sequences. In the case of Mothur only N comparisons
-each sequence against its reference, selected using one
of various filtering methods (k-mer, blastn and suffix

Table 7 Observed output variability

50 × 60 seqs mut stacked 50 × 60 seqs mut interleaved Prairie soil

N μ Err Min Max μ Err Min Max μ Err Min Max

CROP 3% 20 1852.2 2.16 1847.6 1856.7 1954.6 0.83 1952.8 1956.3 1128 0 1128 1128

CROP 5% 20 1853.5 2.43 1848.4 1858.5 1952.4 0.66 1951 1953.7 1128 0 1128 1128

CROP 10% 20 1850.9 1.65 1847.4 1854.4 1951.7 0.62 1950.4 1953 1128 0 1128 1128

ESPRIT 3% 20 205 0 205 205 193 0 193 193 565 0 565 565

ESPRIT 5% 20 59 0 59 59 59 0 59 59 381 0 381 381

ESPRIT 10% 20 56 0 56 56 56 0 56 56 180 0 180 180

Mothur 3% 20 1465.3 0.23 1464.8 1465.8 1173 0 1173 1173 541 0 541 541

Mothur 5% 20 1465.3 0.23 1464.8 1465.8 1173 0 1173 1173 400 0 400 400

Mothur 10% 20 1465.3 0.23 1464.8 1465.8 1173 0 1173 1173 347 0 347 347

Mothur+PreC 3% 20 1490.6 0.16 1490.3 1490.9 1197.3 0.12 1197 1197.6 541 0 541 541

Mothur+PreC 5% 20 1490.6 0.16 1490.3 1490.9 1197.3 0.12 1197 1197.6 400 0 400 400

Mothur+PreC 10% 20 1490.6 0.16 1490.3 1490.9 1197.3 0.12 1197 1197.6 348 0 348 348

Observed output variability with 20 equal runs of CROP, ESPRIT and Mothur (with (PreC) and without preclustering). N is the number of observations for all
samples; μ is the observed mean of the sample. Standard error (Err) and confidence intervals (Min and Max) were calculated from these values, as described in
Methods. Many of the CROP calculations failed to complete in this test, as reflected by N (Prairie soil), and statistics were adjusted accordingly.
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trees)- are needed. Additional file 2, Table S2 sum-
marises the computational time needed for each step in
the diversity analysis.
Summarizing, ESPRIT works better for short and clo-

sely related sequence reads and is usually very fast; how-
ever, it is much slower when tens of thousands of
sequences are considered. MUSCLE is preferred for
short sequence lengths, but its long running time puts it
at a disadvantage when sequences are long, deficiently
grouped, or too many are used. Mothur generally
achieves the fastest alignments when using a reference
database, although there are concerns with the relative
merits of this approach [19,35]. In the case of long
sequences, MAFFT offers a very good balance between
speed and quality.
Special mention must be made for MSAs of huge

datasets in the order of hundreds of thousands of
sequences: in these cases, MUSCLE is unable to directly
align the data and requires a previous “clumping” and
filtering step with USEARCH to guide the final align-
ment, or selection of unique sequences prior to align-
ment. In any case, subsequent processing makes it
advisable to favour working with unique sequences or a
pre-clustering step when available, both to reduce com-
putation time and produce manageable datasets. Regard-
ing computation time, this is the most expensive step,
but only becomes a real issue with modern computer
architectures when dealing with very large sequences
(which is not usually the case in diversity studies) or
huge numbers of sequences. In the last case, the selec-
tion of unique sequences and/or preclustering helps to
reduce computation to acceptable times (from days or
even months down to hours). In the case of MUSCLE it
may additionally be required to reduce the number of
iterations and increase the maximum memory used
(–maxiter 2 –maxmb 10000) (Additional file 2, Table
S2).

Distance calculation
It has been argued that the direct calculation of dis-
tances from pairwise comparisons yields better distance
matrices than distances calculated from MSAs, and
indeed one expects less gaps in a pairwise than a multi-
ple alignment, as reflected in the ESPRIT package,
which tends to produce the lowest number of OTUs, in
agreement with earlier findings [20,25]. However, the
computational cost increases with the number of
sequences, making it more attractive to use MSA-based
methods for large datasets (Additional file 2, Table S2).
We see that both Jukes-Cantor corrected distances and
Mothur distances give consistent and sensible results.
Mothur distances are inclined to produce lower diversity
and MAFFT distances tend to give 30-35% overestima-
tions in the number of OTUs. The behaviour of

MAFFT distance calculation is explained by its k-mer-
based approach, where few changes in short sequences
will have a bigger impact on overall distance than simi-
lar changes in longer ones.
In conclusion, distances derived from pairwise align-

ments produce better results, but may become inconve-
nient for long or large numbers of sequences. In these
cases, Mothur distances produce lower OTU counts
than Jukes-Cantor. K-mer-based distances are not cur-
rently recommended.
It is worth noting here that distance matrices inher-

ently grow in size with the number of sequences
squared. This may become a problem with modern
datasets consisting of hundreds of thousands or millions
of sequences, where terabyte-sized matrices may be gen-
erated. Thus, methods that avoid generating distance
matrices may be more advisable for this data.
New versions of other popular alignment methods

tuned for NGS analysis are expected soon (Higgins, D,
personal communication), and it will be interesting to
test them as soon as they become available.

Clustering analysis
We have compared the results obtained with different
clustering strategies: CROP, ESPRIT, Mothur,
USEARCH and RDP. To simplify the study, we did not
consider other clustering tools such as CD-HIT-454,
which uses heuristics that are too stringent for richness
analysis [40]. It is difficult to compare the different clus-
tering strategies as ESPRIT, CROP, USEARCH and RDP
have only been considered in their own workflow,
except for the fact that Mothur is the easiest to integrate
in complex workflows and offers a wider range of clus-
tering options (average, furthest and nearest neighbour).
However, Mothur failed to process the huge, terabyte-
sized, distance matrices derived from full MSAs of the
extensive dataset [24], forcing us to reduce information
content by including only unique sequences in the
MSA. Regarding the results obtained with CROP, while
proposing a new, promising and rigorous approach, it
was unable to complete the analyses or produced anom-
alous results in several cases. This may be due to CROP
being a new method that is still actively refined.
We have also considered variability in the results of

the clustering algorithms. There are two sources of
variability. One is due to the sub sampling required to
build rarefaction curves and estimate actual diversity.
The other source depends on algorithmic randomness,
and after Studentized correction, the results from 20
repeated analyses show that ESPRIT consistently pro-
duces the same results, Mothur produces a slight varia-
bility, depending on the analysed dataset, and will not
normally affect the diversity results, and CROP, which
uses an MCMC step, has a higher but still low
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variability that should have a minimal impact on the
results, although this may rarely lead to counter-intui-
tive diversity estimates as separate runs are used for
each similarity level.

Suitability for differential diversity studies
The results obtained from the analysis of the short-
length hypervariable V6 16S rDNA sequences from soil
were in all cases (with the exception of CROP for GTZ
and glyphosate data) in good agreement with those pre-
viously reported for the same set of sequences, confirm-
ing that the reduction in species richness was more
evident in the GTZ-treated soil at the first sampling
time, and that the relative recovery from this herbicide
treatment appeared to be poorer than that from the gly-
phosate treatment [32]. All of the workflows used,
except CROP, were able to show differences in species
richness among the different herbicide treatments used,
and the untreated soil was the one that contained the
highest bacterial diversity. This is in accordance with
the results we have obtained from other field studies
(data not shown), yet a general conclusion may not be
reached just from our soil data.

Workflow accuracy
Use of our reference set of 60 short-length hypervariable
V6 16S rDNA sequences shows that MSAs obtained
using MUSCLE and MAFFT produce the same results,
regardless of the distance calculation method (with the
exception of MAFFT), while the Mothur guided align-
ment underestimates diversity when dealing with a
small number of OTUs. The method used for distance
calculation also affects the number of OTUs, as MAFFT
is unable to discriminate between different dissimilarity
levels (even at 18%, data not shown), considering the
small number of OTUs found. Jukes-Cantor or Mothur
distances slightly underestimate the number of OTUs.
No aberrant combinations were found when nearly

full-length 16S rDNA sequences were analysed, thus
indicating that when dealing with long sequences,
Mothur reference-guided alignments may be preferred.
When dealing with short length sequences, the ESPRIT
package and the RDP pipeline are the most accurate on
the three dissimilarity levels. When analysing a large
number of long sequences, computational time require-
ments adversely affect the use of the ESPRIT package
due to the longer time needed, while the use of Mothur
alone produces acceptable estimates in a reasonable
time.
For even larger numbers of short length sequences in

the range of hundreds of thousands [24], a filtering step
that reduces sequence numbers is needed. ESPRIT and
Otupipe automatically apply an initial filtering step and
hence can directly work with these huge datasets,

producing acceptable results. The RDP web-based pipe-
line may experience troubles or long delays with some
datasets, but does generally give good results. In the
case of MAFFT, Mothur and MUSCLE, the initial selec-
tion of unique sequences and optional preclustering
steps helps by significantly reducing the data to manage-
able sizes.
In conclusion, the RDP web-based pipeline is most

convenient for general use, but when dealing with very
large or many datasets, or when timely results are
needed, ESPRIT and Otupipe are very efficient and can
be used locally to produce acceptable results in every
circumstance. In all the cases tested, RDP and ESPRIT
always rendered more accurate and similar results,
although perhaps in specific circumstances, and depend-
ing on the number of sequences, length and variability,
combination workflows may still be an attractive option.

Methods
Test datasets of 16S rDNA sequences
To check for accuracy, we constructed a reference data
set with sequences retrieved from the NCBI and
trimmed to obtain the V6 region (from positions 963 to
1063 in E. coli) using 60 sequences of different bacterial
species from 59 different genera, according to NCBI tax-
onomy (accession numbers: AF538931, AF363135,
DQ310706, AY167839, X90760, AM743175, AY367026,
AF530131, U855746, EU360125, AM747393, FJ486138,
AY691545, DQ366688, EF076758, AY234615,
AM936268, AJ233945, FJ418118, AM935473, EF606819,
AJ298940, EF173341, EF019646, CU466738, AM935145,
AM935820, EF212893, AM59107, FM209153,
EU375221, EF054879, EF466123, EF466120, EU722519,
AF328681, EU58528, EU593733, AM935529, EU631792,
AJ519368, AM935078, AY730501, EU630729,
EU634621, DQ263467, X99390, DQ676361, AY852181,
EU930421, DQ989484, AF448044, AJ224039, AB360346,
AF114805, AY894325, EU551675, EU427317, AJ314848,
AB037012). The accuracy of non-parametric estimators
(ACE, Chao1) is expected to depend on changes in the
ratio of OTUs to sequence numbers and OTU cluster
size. To test their accuracy, the base dataset was copied
50 times to build a second set of 3000 sequences, and
with the same number of OTUs.
To test the MSA step and richness estimators (ACE,

Chao1), we simulated natural variability by generating
two new 3000 sequence datasets mutating 50 copies of
each sequence using EMBOSS [41] to introduce a single
random mutation (indel or point mutation): one set had
the 50 different mutants of each sequence stacked and
the second one had them interspersed. Alignments were
inspected using Seaview [42].
Recent studies tend to consider regions longer than

V6 obtained from 454 sequencing. We obtained two
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datasets described by Quince [26], an artificial commu-
nity pyrosequenced GSFLX dataset of 34308 V5
sequences with an average length of 266 nt and a maxi-
mum length of 289 nt, from 90 different clones and the
Priest Pot pyrosequenced environmental DNA GSFLX
data with 16222 sequences (both after initial noise
removal) with an average length of 257 nt and a maxi-
mum length of 303 nt. These datasets were processed as
above but in addition, we also calculated Mothur align-
ments with “trump” filtering to remove uneven ends.
To test the effect of nearly-full length sequences, two

additional experimental data sets were used: one con-
sisting of 1132 16S rDNA sequences from tall grass
prairie soil samples with high diversity [37], with an
average length of 1487 nt and a maximum length of
1542 nt, and a second one consisting of 1130 sequences
from the axillary vault of patient HV5 of the human
skin microbiome data with low diversity [23,38], with an
average length of 1344 nt and a maximum length of
1387 nt, by retrieving the sequences from the EBI and
assembling each dataset in a single file.
Recent advances in pyrosequencing technology have

enabled Illumina reads to reach a length that is suitable
for hypervariable region sequencing, yielding huge num-
bers of sequence reads. We have simulated this situation
using the well-known dataset of Huse et al., [24] con-
sisting of 340150 sequences (23445 of which are
unique), with an average length of 96 nt and a maxi-
mum length of 169 nt.
To evaluate suitability for the study of differential

environmental effects we have used a real-world experi-
mental dataset consisting of short length sequences
from rhizobacterial V6 16S rDNA obtained as previously
described [32]. In synthesis, we collected soil samples
from glyphosate-tolerant maize, event NK603 cultivars
that had been treated in pre-emergence with the herbi-
cide Harness®GTZ (GTZ henceforth) or in post-emer-
gence with glyphosate (Roundup®Plus), and from
untreated soil. Samples were pooled seven days after
glyphosate application (first sampling time) and just
before crop harvesting (final sampling time). Sequence
counts obtained from the soils at the first sampling time
were 3467 (untreated) with an average length of 103 nt
and a maximum length of 243 nt, 5025 (glyphosate-trea-
ted) with an average length of 102 nt and a maximum
length of 277 nt, and 3843 (GTZ-treated) with an aver-
age length of 99 nt and a maximum length of 269 nt,
and at the final sampling time were 1814 with an aver-
age length of 101 nt and a maximum length of 157 nt,
1796 with an average length of 100 nt and a maximum
length of 128 nt, and 1526 with an average length of 99
nt and a maximum length of 153 nt, respectively.
Additional file 3 contains the FASTA formatted

sequences of all the datasets used in this study.

Sequence processing
Differential soil data experimental sequences were fil-
tered by 454 software, and additionally cleaned by elimi-
nating those containing ambiguous base calls and
sequences shorter than 50 nt after removing the primer
sequence, as these account for 50% of all NGS errors
[2]. We have omitted analysing the effect of different
pre-processing strategies, as this was not within the
scope of this study.

Sequence analysis workflows
For the combined workflows the first step consists of
obtaining the MSA. We test three different alignment
approaches: a) Iterative progressive alignments by Log-
Expectation comparison as implemented in MUSCLE
version 3.7 [14] with parameters -diags -maxiters 4
-stable. b) A fast group-to-group alignment based on
partition trees implemented in MAFFT version 6.712
[16] with parameters -ep 0.123 -retree 1 -nofft -parttree,
and c) an initial 8-mer search followed by Needleman-
Wunsch pairwise alignments against a reference align-
ment implemented in Mothur version 1.14.0, using the
SILVA-98 [43] and Greengenes [44] reference align-
ment, although only SILVA guided results are reported
because it has been proven more effective in aligning
the 16S rRNA hypervariable regions [11]. For each data-
set we generated two Mothur alignments: one with and
one without a pre-clustering step, filtering the result to
remove redundant gaps using the standard approach
(default parameters) described in the Mothur documen-
tation, and fixing gap characters for compatibility with
other programs.
Using these four initial MSA, we calculate the distance

matrices using three different approaches for each align-
ment: a) evolutionary distance estimation using Jukes-
Cantor correction [34] for multiple substitution as imple-
mented in DNADIST from the PHYLIP software package
version 3.67 [33]; b) simple distance estimation counting
gaps only once, penalizing terminal gap, with a cut-off
value of 0.11 and increasing precision to 1000 using
Mothur [19]; and c) an approximate 6-mer distance cal-
culation method implemented in MAFFT version 6.712
[16]. The MAFFT output file was converted to a lower
triangular matrix to produce the clustering input.
The cluster analysis comprises the generation of

OTUs and calculation of species richness with the
Chao1 and ACE estimators at three dissimilarity levels
(3%, 5% and 10%). Clustering was performed using the
three methods (average, nearest and farthest neighbour)
available from Mothur [19], although we report only
average neighbour calculations, as they are generally
considered more accurate [11,25].
Beside these combined workflow procedures, we have

included other methods that do not require an initial
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MSA: the ESPRIT software package [20], the recently
published CROP package [23], the Otupipe pipeline
(http://drive5.com/otupipe) and the RDP pyrosequencing
pipeline [21]. ESPRIT uses an efficient k-tuple based dis-
tance filter before aligning sequences using the Needle-
man-Wunsch method [18] and computes pairwise
distances using the “quickdist” algorithm [20] to perform
complete-link hierarchical clustering; and CROP filters
sequences first to reduce their number, then uses a modi-
fied Needleman-Wunsch alignment, performs a “quick-
dist” distance calculation, and finally an unsupervised
Bayesian clustering method with MCMC sampling. Otu-
pipe relies on UCHIME [45] to remove chimeras and on
USEARCH to perform sequence comparisons and clus-
tering [22]. RDP builds an initial MSA using the Infernal
[36] tool and then directly proceeds to perform a com-
plete linkage clustering using its own implementation.
To compare diversity estimation, we have compared

rarefaction curves as well as ACE and Chao1 values
obtained in all workflows involving Mothur and ESPRIT
clustering. As CROP only produces OTU counts and
composition, only these were considered in diversity
estimate comparisons.
The results collected from all the different sources

were processed to a common format (Mothur summary
file format) and converted to tab-delimited data for
further analysis and display using gnuplot.

Assessment of clustering consistency
Clustering methods often resort to random decisions,
which may lead to different results in different runs using
the same initial data and conditions. We have analysed
the consistency of the results obtained with different
datasets: analysis of short sequences using our synthetic
mutated datasets (60 species mutated 50 times, with con-
secutive or interspersed sequences) and long sequences
using a 16S rRNA dataset from Youssef et al. These data-
sets were analysed using CROP, ESPRIT and Mothur
(with and without pre-clustering, using the average
neighbour distance clustering method), repeating the
analysis 20 times, collecting the number of OTUs
reported, and calculating mean, standard deviation and
standard error of the mean to derive corrected 95% confi-
dence intervals using Student’s T value for N-1 degrees
of freedom to account for the relatively small sample size.

Additional material

Additional file 1: Table S1.1 OTU counts. J-C: Jukes-Cantor; 50 × 60
seq mut inter: 50 mutated copies of the 60 sequences dataset
interleaved; 50 × 60 seq mut stack: 50 mutated copies of the 60
sequences dataset stacked; NC: not computable; t1, t2: samples taken at
time 1 or time 2 (see Methods). Values marked with an * were
computed using only unique sequences. Table S1.2 ACE estimates J-C:

Jukes-Cantor; 50 × 60 seq mut inter: 50 mutated copies of the 60
sequences dataset interleaved; 50 × 60 seq mut stack: 50 mutated copies
of the 60 sequences dataset stacked; NC: not computable; t1, t2: samples
taken at time 1 or time 2 (see Methods). Values marked with an * were
computed using only unique sequences. CROP, Outpipe and RDP does
not compute the ACE estimator. Table S1.3 Chao1 estimates J-C: Jukes-
Cantor; 50 × 60 seq mut inter: 50 mutated copies of the 60 sequences
dataset interleaved; 50 × 60 seq mut stack: 50 mutated copies of the 60
sequences dataset stacked; NC: not computable; t1, t2: samples taken at
time 1 or time 2 (see Methods). Values marked with an * were
computed using only unique sequences. CROP and Outpipe does not
compute the Chao1 estimator.

Additional file 2: Table S2. Computational time needed for each
step in the diversity analysis. J-C: Jukes-Cantor. Time is indicated as
hours: minutes: seconds. *Alignment was calculated using -maxiter 2.

Additional file 3: This file contains the FASTA formatted sequences
of all the datasets used in this study. Zip file contents are briefly
described in the included README file.
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