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ABSTRACT

COTRASIF is a web-based tool for the genome-wide
search of evolutionary conserved regulatory regions
(transcription factor-binding sites, TFBS) in eukary-
otic gene promoters. Predictions are made using
either a position-weight matrix search method,
or a hidden Markov model search method, depend-
ing on the availability of the matrix and actual
sequences of the target TFBS. COTRASIF is a fully
integrated solution incorporating both a gene pro-
moter database (based on the regular Ensembl
genome annotation releases) and both JASPAR
and TRANSFAC databases of TFBS matrices. To
decrease the false-positives rate an integrated
evolutionary conservation filter is available, which
allows the selection of only those of the predicted
TFBS that are present in the promoters of the
related species’ orthologous genes. COTRASIF
is very easy to use, implements a regularly updated
database of promoters and is a powerful solution for
genome-wide TFBS searching. COTRASIF is freely
available at http://biomed.org.ua/COTRASIF/.

INTRODUCTION

The regulation of gene expression at the transcriptional
level is one of the focal research areas of the modern life
sciences. The development of high-throughput assays
has allowed the generation of voluminous ‘snapshots’ of
the cellular state. Converting those snapshots (data) into a
full-length movie (knowledge) is not a straightforward
transformation. The combination of several appropriate
tools is known to yield better results. Adding to the
arsenal of available tools, COTRASIF is a genome-wide
two-method finder of regulatory elements, with an evolu-
tionary conservation filter.

The control of gene expression relies upon the effects of
the transcription factors (TF) bound to specific regulatory

elements. Each cell type during specific developmental
stages or under the influence of extracellular signal
expresses a characteristic set of active TFs. These TFs
are able to bind to their specific TF-binding sites (TFBS)
in the promoters of the genes, thus activating or repressing
the corresponding gene. Experimental identification of
TFBS within single-gene promoters is common, but
with no prior information this process is both effort-
and time-consuming. Computational prediction of TFBS
identifies potential targets for further experimental verifi-
cation and provides self-sufficient data on the gene regu-
lation patterns associated with each specific TF.
The most common way of representing conserved

sequences (such as TFBS) is to use consensus strings
(built using IUPAC—International Union of Pure and
Applied Chemistry—nomenclature). A major drawback
of using IUPAC consensus strings is that they contain
only a small portion of the information available from
the set of initial sequences. Instead, matrix representation
is gaining well-earned popularity. The two most common
matrices (used to represent TFBS) are (i) position fre-
quency matrix (PFM; also known as position count
matrix or position-specific scoring matrix) and (ii) position
weight matrix (PWM; also known as nucleotide weight
matrix) (1–4). A PFM is a matrix where each position
of the identified binding site consists of the frequency
of each possible nucleotide. PFMs were first used to char-
acterize DNA-binding site specificity during 1982–1986
(5,6). Later, quantitative discrimination of sites with
calculated site similarity scores was introduced, using
position weight matrices and information content evalua-
tion of each matrix position (3,7–9). A weight matrix pat-
tern definition is superior to a simple IUPAC consensus
sequence, as it represents the complete nucleotide occur-
rence probabilities for each position. It also allows
the quantification of the similarity between the weight
matrix and a potential TFBS detected in the target
sequence. PWM-derived score of the candidate sequence
provides an approximation of the binding energy of the
transcription factor to the binding site (3,4). But even
the matrix representation is prone to information loss;
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the method is perfect for recording single nucleotide
frequencies, but higher order groupings (like pairs or tri-
plets of nucleotides) are not accounted for. Using hidden
Markov models (HMMs) helps to preserve this kind of
information as well. Combining Markov state change
probabilities matrix and position-weight matrix for a
single set of sequences yields a method of storing full
TFBS characteristics.
Taking into account the length of matrices used for

TFBS prediction (usually less than 15 nucleotides), search-
ing for IUPAC-denoted binding sites yields numerous
false-positive results that occur by chance. When applying
PWM-based search methods, matrix-TFBS similarity
score threshold can be used to increase specificity
(obtain less false-positives) at the cost of sensitivity
(obtain less true-positives). Thus, the search for TFBSs
alone is not sufficient, as either sensitivity or specificity
has to be sacrificed. Additional processing of results
can help to avoid the loss of sensitivity and reduce the
number of false-positive binding site predictions. Various
methods of additional processing have been suggested
in the literature, for example: looking for paired TFBS,
TFBS motifs, using gene orthology information (10),
microarray-derived gene co-expression data, applying
learning algorithms trained on known transcription
factor target genes.
We have developed a new web-based tool (named

COTRASIF) that enables genome-wide searches with
user-specified TFBS; the results may be filtered based
on evolutionary conservation (11), thus decreasing the
number of false-positive results. COTRASIF allows using
either PFM or a set of sequences as input. When a set of
sequences is provided a hybrid HMM-PWM search
method is used instead of the PWM-only search method.
Online applications, such as MatInspector (12),

MATCH (13) and ConSite (14) were built to predict
TFBS embedded in promoter sequences. These tools are
built to check a database of existing TFBS matrices
against a small number of promoter sequences, suiting
the needs of the molecular biologist studying a specific
set of genes. On the contrary, COTRASIF is a genome-
wide scanner for a single factor’s binding sites, and thus
is more suitable for the identification of genes potentially
responding to the factor in question. Another important
difference is that COTRASIF contains its own, regularly
updated database of eukaryotic promoters (automatically
imported from Ensembl genome annotations), which
simplifies usage significantly and guarantees that the inter-
nal promoters database will not become out-of-date.
Adding to the convenience of use, the JASPAR CORE
and TRANSFAC 7.0 Public databases of TFBS matrices
are integrated into COTRASIF, allowing easy selection
of known matrices.
There is an extensive online help available for the tool.

Non-commercial use of COTRASIF is free.

COMPARABLE TOOLS

We performed a feature-based comparison of COTRASIF
with other tools. As source lists we used Expression->Gene

Regulation and DNA->Sequence Feature Detection cate-
gories from http://bioinformatics.ca/links_directory/
(which includes the tools published in NAR Web Server
Issues since 2003), and Database Summary ‘Trans-
criptional regulatory sites and transcription factors’ cate-
gory at http://www3.oup.co.uk/nar/database/subcat/1/4
(which includes links to the databases published in NAR
Database Issue). Only the tools and databases which were
accessible at the time of comparison, which are capable
of full-genome search and are free to use were considered.
A total of eight tools qualified and were compared.

We found that MAPPER (15) is the most similar to
COTRASIF in terms of available functionality and meth-
ods used. MAPPER requires user registration, but is free
for academic use, and currently has six genome-wide pro-
moter collections for searching. However, not only the
higher number of available in COTRASIF genome-wide
promoter collections makes it different from MAPPER.
COTRASIF was designed as an easy-to-use self-updating
genome-wide search tool, while MAPPER originated as
a database of precomputed putative TFBS locations
(16). Also, COTRASIF offers a more flexible approach
to TFBS conservation filtering, and provides both PWM
and HMM-based TFBS search methods.

Full tools comparison table is available in online
Supplementary Data.

ALGORITHMS AND IMPLEMENTATION

Architecture

COTRASIF is built around an internal MySQL 5 rela-
tional database, where it stores gene metadata, gene
promoters, Ensembl-to-EntrezGene ID mappings (where
available) and gene orthology data for all the genomes
added to the system. The Ensembl genome annotation
system (17) is used as the source for gene promoters and
for the gene orthology data.

As Ensembl is release-based, with each release improv-
ing the quality of genome annotations, a special semi-
automatic data import pipeline was created to fetch the
latest Ensembl release. The pipeline was built using
BioMart’s MartService (18). A set of PHP and Python
program files work directly with COTRASIF’s internal
database, allowing import initiation and control via a
dedicated importer pipeline web-interface.

General scheme of COTRASIF is shown in Figure 1.
At the time of writing, there are 20 genome-wide promoter
sets in COTRASIF, totaling 165 011 promoters.

Definitions

A gene promoter is defined as a sequence starting 2000 bp
upstream from the transcription start site (TSS), and
extending until the first exon (that is, including 50 UTR
sequence, if one is annotated for the gene).

One must understand that the reliability of COTRASIF
promoters directly depends on the quality of annotation
of the 50 gene ends in the Ensembl database. To avoid
accumulating erroneous promoter annotations, we only
import upstream regions of transcripts with status
KNOWN (as defined in Ensembl; see below for other
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import criteria). To account for the possible alternative
promoters of the alternative transcripts we import all the
transcript promoters of each gene, avoiding only identical
and 50-overlapping promoters. COTRASIF database of
promoters is not manually curated. For the details on
Ensembl automatic gene annotation pipeline please see
(17) and online documentation at www.ensembl.org.

The average promoter length in COTRASIF is 2132 bp,
with only 50 promoters shorter than 2000 bp, and less than
2% of all promoters longer than 2866 bp. The following
conditions must be met for the transcript sequence seg-
ment to be imported and saved in the database of
promoters:

� Chromosome must not be mitochondrial or of the
‘temporary’ type (which are used during sequencing
and annotation). Non-qualifying chromosome types
include UNKN/Un (unknown), MT (mitochondrial),
NT_ (contig), _random etc (as defined in Ensembl).
These exceptions are manually set when adding new
species configuration record to COTRASIF, based on
the list of options offered by MartView. As annotation
quality increases, the number of genes in ‘temporary’
chromosomes will decrease towards nil with time.
Until that happens, a number of genes will not make
it into the COTRASIF database, if they belong to one
of the above-mentioned chromosome types.
� Gene biotype must be ‘protein coding’ (applies to all

species). Sequences, coding pseudogenes, miRNAs,
tRNAs, rRNAs and other protein-non-coding RNAs,
are not currently imported by the COTRASIF pipeline.
� Transcript status must be KNOWN (as opposed to

NOVEL). In Ensembl, KNOWN status means that
there is an experimental species-specific evidence in
support of the transcript (17). It’s important to note
that in Ensembl all the predictions are based on exper-
imental evidence (including NOVEL status), but
NOVEL transcripts do not have species-specific evi-
dence—only the one inferred by similarity.

As shown in Figure 1, COTRASIF uses a set of two
search algorithms (here named ‘PWM finder’ and ‘HMM-
PWM finder’) and an orthology filter to produce results.

PWM finder tool

The PWM TFBS finder tool is to be used when the fac-
tor of interest has an already-defined PFM of the corre-
sponding TFBS—e.g. the one from JASPAR (1) or
TRANSFAC (19). In PWM finder, the user-supplied
PFM is first converted into the PWM (20–22):

wðn; iÞ ¼ log2
fn;i þ pðnÞ

ffiffiffiffi
N
p

pðnÞðNþ
ffiffiffiffi
N
p
Þ

1

where w(n, i) is a calculated PWM element value for
nucleotide n in matrix column i, fn,i is a raw count
of nucleotide n in matrix column i of the PFM, N is a
number of sequences used to create the PFM,ffiffiffiffi
N
p

; pðnÞ �
ffiffiffiffi
N
p

are pseudocounts, which correct for the
small sample size N, p(n) is the background frequency
of nucleotide n.
Conversion into PWM allows each matrix cell’s value to

hold both frequency data and information content data
(23), which simplifies further similarity score calculations.
COTRASIF allows both integer frequencies (counts) and
fractional frequencies (with matrix column sums equal
to 1), but weight-matrix input is not possible.
Introduction of pseudocounts into the PWM calcu-

lation formula slightly adjusts the scores so that the candi-
date sequence is not immediately discarded even if at the
current position there is a nucleotide with zero frequency
in the original PFM (22).
In formula (1), most commonly p(n) (nucleotide back-

ground frequency) is taken equal to 0.25. Another
approach is to take p(n) based on AT/GC content for
the whole studied genome. Previously we could not
detect a statistically significant difference between using
p(n)=0.25 and calculating p(n) from the promoter
sequence (20), so in COTRASIF p(n) is fixed at 0.25.
When using the PWM finder tool, the user can select the

desired minimal matrix-to-sequence similarity score.
Based both on literature and our own results, we found
that the following recommended thresholds for the simi-
larity score can be used:

� 0.93 and above ‘tight’—will result in a small number
of highly specific TFBS suggestions. This threshold is

Figure 1. COTRASIF organization and data flow scheme.
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recommended for finding the most probable candidate
targets of TF; not all known TFBS will be found;
� 0.82–0.93 ‘medium’—expect thousands of predicted

TFBS, additional filtering/post-processing will be nec-
essary (e.g. COTRASIF’s orthology filter). This range
is the equivalent of ‘second exon-based cut-off’ (24),
i.e. this score range is tailored to minimize the number
of detected false-positives; not all known TFBS will
be found;
� 0.75–0.82 ‘wide’—filtering/post-processing is required

(ideally, several post-processing filters should be
applied); most—if not all—known TFBS will be
found;
� below 0.75 ‘not recommended’.

As COTRASIF does not yet calculate optimal matrix-
specific TFBS similarity score thresholds in the PWM
search method, it is recommended that users utilize exter-
nal tools to identify best similarity scores for their
purposes (e.g. minimizing false-positive, false-negative or
both prediction errors) (13). The HMM-PWM finder tool,
described below, does provide automatic threshold cal-
culation and adjustment.

HMM-PWM finder tool

A Hidden Markov Model (HMM) is a set of Markov
chains, which together form a graph. In the Markov
chain, sequential independent events are linked with prob-
ability-weighted transitions. As multiple paths exist
through an HMM, it can be used as a classifier, given
preliminary model training on the known set of data.
While the PWM-based TFBS search method assumes

independently occurring nucleotides (thus ignoring pairs
and higher-order groupings of favorably-neighboring
nucleotides), the application of HMMs allows capturing
more statistics from the known binding sites, by taking
into account the co-occurrence frequencies of the neigh-
boring nucleotides. For the application of HMM to the
TFBS search, each event is defined as one of {ACGT}.
Transitions are possible only between neighbor nucleo-
tides. Each event has one incoming transition and four
outgoing transitions.
The HMM training requires that actual aligned

sequences of the known TFBS are given to the tool as
input. At least three sequences are required. Ideally, the
number of sequences should be >16 (this is dictated by
the transition matrix size, which is 4� 4).
If the number of experimentally determined TFBS

sequences is low, one can additionally supply the tool
with the PFM, corresponding to the target factor. Such
a PFM must be built from more sequences than the
number of sequences provided by the user to the search
tool—otherwise there will be no additional benefit in
adding such a PFM. Given both sequences and the
PFM, the HMM-PWM search method will take that
PFM into account when calculating the similarity score
between the candidate sequence and the HMM model.
When no optional PFM is provided to the HMM-

PWM search method, PFM is built internally from the
user-submitted sequences (hence the method name). The
reasoning behind this is to deviate from the pure

transitions-based representation of the TFBS, and instead
incorporate both components: position-weight and neigh-
bor co-occurrence.

The HMM-PWM TFBS search is performed in three
steps:

(i) building the HMM from the user-submitted known
TFBS sequences;

(ii) identifying optimal similarity score threshold;
(iii) comparing the model built in Step 1 to each candi-

date sequence (using a sliding window), then saving
to file models that produce scores higher than the
threshold defined in Step 2.

In step 1, matrices of co-occurrence frequencies are cal-
culated (Figure 2). These matrices are calculated for all
pairs of neighboring nucleotides, using all user-submitted
known TFBS sequences. As each such matrix is 4� 4 in
size, and the total number of nucleotide pairs is (k� 1)
(where k is the length of the known TFBS), the resulting
full-length co-occurrence matrix is 3D, of size 4� 4�
(k� 1).

For the resulting matrix, we define transition function
tf, which incorporates both co-occurrence and position-
weight components (Formula 2):

tfðn; i Þ ¼
frðnÞ 6¼ 0 : frðnÞ

N þ
fifiþ1 N�Nseqð Þ

N3

frðnÞ ¼ 0 : 1
N�N2

seq

 !
2

where tf is the transition function between neighbour
nucleotides, i is the position of the transition origin
nucleotide, i+1 is the position of the transition destina-
tion nucleotide, n is the actual nucleotide present at posi-
tion i (one of {ACGT}), fr(n) is the co-occurrence
frequency of the two nucleotides n and ni+1 (taken from
the 4� 4� (k�1) co-occurrence matrix), N is the number
of sequences used for the construction of the optionally
supplied PFM of the target TFBS (N equals Nseq when no
optional PFM is submitted by the user), Nseq is the
number of user-submitted known TFBS sequences,
1=ðN�N2

seqÞ is the minimal compensator, fi is the raw
count of current nucleotide n in column i of the PFM,

Figure 2. An example of calculating a single co-occurrence matrix for
positions 8 and 9, using the aligned known sequences of the ISRE
(interferon-stimulated response element). In the co-occurrence matrix,
numbers at the row-column intersections represent the observed fre-
quency of the given nucleotides co-occurrence, e.g. the AT nucleotide
pair is observed two times, and all of CA, CC, CG and CT are
observed 0 times. (A) Eight aligned sequences; (B) the resulting
co-occurrence matrix for the highlighted pair of positions 8 and 9.
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fi+1 is the raw count of current nucleotide n in column
i+1 of the PFM.

The transition function tf is defined differently for two
cases: (i) when co-occurrence frequency is equal to zero,
and (ii) when it is not equal to zero. This serves the
purpose similar to that of pseudo-counts, employed in
PWM-based methods to account for the small sample
size. When the co-occurrence frequency is zero [lower
part of formula (2)], then the transition function without
the pseudo-count would be also zero for a given pair of
nucleotides; this would make the algorithm discard such a
candidate sequence immediately. However, if we introduce
some minimal tf value for zero-frequency nucleotide pairs,
then the candidate sequence will not be immediately dis-
carded, and will still be scored by non-zero frequencies in
other positions.

As with the PWM-based TFBS search, comparison of
the HMM-PWM model of the TFBS with the candidate
sequence yields a model-sequence similarity score, and
threshold needs to be estimated. For the HMM-PWM
method, we decided to implement an internal automatic
threshold optimization. Our threshold optimizer attempts
to decrease both false-positive and false-negative predic-
tion errors.

In step 2, the initial threshold is taken as equal to the
lowest similarity score, which is obtained by comparing
user-submitted known TFBS sequences one-by-one to
the model, built from those sequences. Next, 107 random
nucleotide sequences of length k are generated. Random
sequences, yielding similarity score higher than the
current threshold, are then used to build the ‘testing’
co-occurrence matrix, which is compared to the original
4� 4� (k� 1) co-occurrence matrix. If both matrices
have no statistically significant difference (at significance
level of 0.02), then the current (normalized) threshold
is decreased by 0.01; the process is then repeated starting
from the generation of 107 k-long random nucleotide
sequences. Otherwise, if p< 0.02 for the null hypothesis
of two matrices being equivalent, threshold optimization
stops and returns current threshold value.

P-value for the comparison of the original and ‘testing’
co-occurrence matrices was calculated using formula (3):

p ¼
Yk�1
i¼1

X4
r¼1

X4
c¼1

Nseq

f

� �
tf fð1� tf ÞNseq�f 3

where i is the serial number of nucleotide pair within both
‘testing’ and original co-occurrence matrices, k is the
length of the random sequence (equal to the length of
the known TFBS sequences), r and c are the row and
column numbers in single-pair co-occurrence matrix
(Figure 2B), Nseq is the number of user-submitted
known TFBS sequences, f is the value of the observed
frequency, found at row r and column c of the ith pair
of nucleotides in the ‘testing’ co-occurrence matrix, tf
is the transition function value (expected probability)
in the original co-occurrence matrix for pair i, row r
and column c.

In step 3, the sliding model-to-sequence comparison
window is applied to calculate matrix-sequence similarity
scores for each candidate sequence, and select sequences

with scores higher than the threshold. To calculate raw
HMM similarity score, formula (4) is used:

HMMraw ¼
Xk�1
i¼1

log2 tfðn, iÞð Þ 4

where HMMraw is HMM similarity score before normal-
ization, tf is the transition function, defined in formula (2),
i is the position of the current nucleotide within a scanning
window, n is the actual nucleotide found at position i, (one
of {ACGT}), k is the scanning window size (equal to the
TFBS length).
HMMraw is then normalized using formula (5):

HMMscore ¼
HMMraw �HMMmin

HMMmax �HMMmin
5

where HMMscore is the normalized HMM similarity score,
which is written to the results file, HMMraw is the similar-
ity score before normalization, HMMmin is the minimal
possible HMM similarity score, HMMmax is the maximal
possible HMM similarity score.

Conservation filter

COTRASIF currently offers a single post-processing
option, namely conservation (orthology) filter. It works
by comparing two results (obtained by using either
PWM finder or HMM-PWM finder tools) from different
but related species with the orthology data for that pair
of species. The identified TFBS is considered to have bio-
logical meaning (passes the filter) if: (i) the TFBS is found
in the promoter of the gene of the species of interest, (ii)
is also present in the promoter of the orthologous gene
of the reference species and (iii) both peptide identity
and type of orthology satisfy the minimal requirements
(listed below). The assumption behind the procedure is
that if the binding site has no biological meaning, then it
is unlikely to be preserved through evolutionary time.
The conservation filter does not perform promoter

sequence alignments—it relies solely on the presence of
detected TFBS in the promoters of orthologous genes;
throughout the text we use ‘conservation filter’ exactly in
this meaning.
Orthology mappings are imported from Ensembl

by COTRASIF’s import pipeline with each new release
of Ensembl (Figure 1). Ensembl provides peptide
identity percentage for each pair of protein-coding
genes, plus the orthology type flag: it can be one
of ‘ortholog_one2one’ (reciprocal best hit genes), ‘ortho-
log_one2many’, ‘ortholog_many2many’ and ‘apparent_
ortholog_one2one’ (when no other similarities found, or
annotation system error occurred). At the time of
writing the minimal peptide identity percentages for each
orthology type are hard-coded into COTRASIF; in future
releases we plan to make this customizable by end user.
Currently, the following criteria determine whether the
orthology relationship between genes is sufficient to use
it for TFBS selection:

(1) for ‘ortholog_one2one’ entries, peptide identity of
over 60% is required;
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(2) for ‘ortholog_one2many’ and ‘ortholog_many2
many’, 75% identity is required;

(3) for ‘apparent_ortholog_one2one’, 65% peptide iden-
tity is required.

To use the orthology filter, one has to submit and wait
for the completion of at least two tasks for different
genomes, using the same email address (which is currently
the only means of user identification). When there are at
least two finished tasks in the system, it is possible to select
the tasks for comparison using gene orthology data.
It is important to note that input to the orthology filter

is not restricted in any way and allows any combination of
task results to be selected. On the one hand, this approach
allows high flexibility for every research employing
COTRASIF. On the other hand, this puts the burden
of choosing suitable genomes on the COTRASIF user,
but thanks to the simplicity of the orthology filter and
the availability of phylogenetic trees for all COTRASIF
species, this should not be a problem.
In addition to the position-unrestrained TFBS

co-occurrence in the promoters of orthologous genes,
it is planned to implement in the nearest future position-
restrained filtering, with position being measured from
the TSS of each gene in the orthologs pair.

Sample application

To illustrate possible uses, and to verify the results pro-
duced by COTRASIF tool, we performed an investigation
of a gene set specific for the primary cellular response
to Type I interferons (tissue specificity was not accounted
for). For Type I interferons the primary signal transduc-
tion pathway is well-studied—namely, the Jak-STAT
pathway, which results in the activation of ISGF3
transcription factor (interferon-stimulated gene factor 3),
which in turn binds specifically to interferon-stimulated
response element (ISRE) (25). Thus, searching for ISRE
will yield putative genes of the primary response to Type I
interferon treatment.
We ran the search using the hybrid HMM-PWM

finder tool. The TFBS matrix and sequences used for
search are present as pre-input examples on COTRASIF
HMM-PWM task submission page and are also available

in the Supplementary Data and online at http://biomed.
org.ua/COTRASIF/supplement.html. The search was
conducted in the Rattus norvegicus promoters extracted
from Ensembl release 52.

We found 743 putative ISREs in 707 probable IFN
Type I rat primary response genes and 1292 putative
ISREs in 1163 mouse genes. The application of the con-
servation filter (using rat as target genome and mouse as
reference genome) yielded 162 rat genes with putative
conserved ISRE. Full lists of genes are available in
online Supplementary Data.

First, we performed GO enrichment analysis of 707 rat
genes versus the 17 725 protein-coding rat genes repre-
sented in COTRASIF promoters database, using
FatiGO (26). At adjusted p-value < 0.05, five GO cate-
gories were found to be enriched (Table 1).

We also performed GO over-represented terms analysis
of 162 rat genes obtained after applying conservation
filter. The only enriched category was the GO biological
process term ‘immune response’ (GO:0006955), with
p-value 1.23� 10�4 and adjusted p-value 8.52� 10�3.
Enriched category contained nine genes:

� Mbl1, mannose-binding protein A precursor (MBP-A);
no known correlations of Mbl1 expression and inter-
feron treatment.
� LOC687510, ENSRNOG00000029191; this rat gene

is not annotated, but is a 1-to-1 ortholog to Mus
musculus GBP6 gene; murine GBP6 was recently
shown to be IFN-inducible (27).
� Mx1 and Mx2, interferon-induced GTP-binding

proteins.
� Cxcl4, platelet factor 4 precursor (PF-4, C-X-C motif

chemokine 4); no known expression correlation with
interferon treatment.
� Igsf4a, immunoglobulin superfamily, member 4A

(NECL-2); no correlation with interferon found.
� Gzma, granzyme A; is regulated by interferon alpha

(28,29).
� Oasl2, 20-50 oligoadenylate synthetase-like 2 is a well-

known target of IFN.
� GBP4_predicted, ENSRNOG00000028768; similar

to the LOC687510, murine GBP3 ortholog is IFN-
inducible (27,30).

Table 1. GO over-represented terms analysis results for 707 rat genes with putative ISREs found using COTRASIF’s HMM-PWM search method

(list #1) versus all rat protein-coding genes (list #2)

Index Term List #1 versus #2 P-value Adjusted P-value

GO molecular function at level 6
10 Serine-type endopeptidase activity (GO:0004252) 75.27%, 24.73% 6.2� 10�5 0.0382

GO molecular function at level 7
11 Tissue kallikrein activity (GO:0004293) 93.62%, 6.38% 1.4� 10�3 0.0402

GO cellular component at level 7
18 MHC protein complex (GO:0042611) 83.59%, 16.41% 3.76� 10�4 0.0177

GO cellular component at level 8
19 MHC class I protein complex (GO:0042612) 86.64%, 13.36% 8.52� 10�5 0.00554

GO molecular function at level 5
9 Serine-type peptidase activity (GO:0008236) 74.91%, 25.09% 5.05� 10�5 0.0211
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Of nine genes, four are well-known IFN type I targets,
two genes have mouse orthologs which are known to be
IFN type I and type II regulated (27,31), and for three
genes there is no accumulated evidence of IFN type I
regulation.

Future development

The following major new features are planned for
implementation:

(i) Addition of full-genome-sequence search (as
opposed to full-genome-promoters search). This
will be an addition to the existing functionality,
not a replacement.

(ii) Analysis of relative TFBS enrichment of each
promoter, to ease the identification of the most
promising candidates for experimental verification.

(iii) Implementation of the automatic threshold calcula-
tion for the PWM method, similar to the HMM
method. This will be an optional feature (manual
cut-off specification will be preserved).

(iv) Addition of the user-adjustable TFBS position con-
straints to the conservation filter. TFBS position
will be defined as the distance from the TSS in the
promoter of each of the orthologous genes. Position
constraint will be an option—unconstrained filtering
will be also possible.

CONCLUSION

We have developed an easy to use, web-based tool
for genome-wide surveys of eukaryotic promoters for
the presence of TFBSs. We made two different search
tools available: PWM-based, for searches utilizing
position-frequency matrices (PFM) from TRANSFAC
or JASPAR databases, and HMM-based for searches
based on known TFBS sequences.

In addition to the two search methods, COTRASIF
also offers a conservation filter, which allows putative
TFBSs to be tested for cross-species conservation in the
promoters of the orthologous genes. This step acts as an
important biological function filter, decreasing the number
of false-positives without sacrificing search sensitivity.

The interface is simple and accessible not only to bio-
informaticians, in part thanks to the seamless integration
of the JASPAR and TRANSFAC databases. All the
genomes and JASPAR matrices are automatically updated
using a built-in data pipeline, which ensures that
COTRASIF will stay up-to-date and relevant. However,
result reproducibility is not guaranteed between Ensembl
releases due to possible changes in gene annotations.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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